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ABSTRACT. In this paper we investigate the inverse problem of determining the time independent scalar po-
tential of the dynamic Schrödinger equation in an infinite cylindrical domain, from partial measurement of the
solution on the boundary. Namely, if the potential is known in a neighborhood of the boundary of the spatial
domain, we prove that it can be logarithmic stably determined in the whole waveguide from a single observation
of the solution on any arbitrary strip-shaped subset of the boundary.

1. INTRODUCTION

In the present paper we seek global stability in the inverse problem of determining the (non necessarily
compactly supported) zero-th order term (the so called electric potential) of the dynamical Schrödinger
equation in an infinite cylindrical domain, from a single lateral observation of the solution over the entire
time span. But in contrast to [33], where the measurement is performed on a sub-boundary fulfilling the
geometric control property expressed by Bardos, Lebeau and Rauch in [3], here we aim for proving that
the measurement of the Neumann data can be limited to any arbitrary extended strip designed on the lateral
boundary.

1.1. Inverse problem. Let us make this statement a little bit more precise. We stick with the notations of
[33]. Namely, ω is an open connected bounded domain in Rn−1, n ≥ 3, with smooth boundary ∂ω, and we
consider the infinite straight cylinder Ω := ω × R, in Rn, with cross section ω. Its boundary is denoted by
Γ := ∂ω × R. Given T > 0, p : Ω→ R and u0 : Ω→ R, we consider the Schrödinger equation,

−i∂tu(x, t)−∆u(x, t) + p(x)u(x, t) = 0, (x, t) ∈ Ω× (0, T ), (1.1)

associated with the initial data u0,
u(x, 0) = u0(x), x ∈ Ω, (1.2)

and the homogeneous Dirichlet boundary condition,

u(x, t) = 0, (x, t) ∈ Γ× (0, T ). (1.3)

For suitable (real-valued) u0 and p, and under appropriate compatibility conditions on these two functions,
we denote by up the unique C0([0, T ], H1(Ω))-solution to the initial boundary value problem (abbreviated as
IBVP in the sequel) (1.1)–(1.3). Given an arbitrary relatively open subset S∗ of ∂ω, with positive Lebesgue
measure, we aim for determining the unknown potential p = p(x) from one Neumann observation of the
function up on Σ∗ := Γ∗ × (0, T ), where Γ∗ := S∗ × R is an infinitely extended strip designed on the
boundary Γ of the waveguide Ω.

The equations (1.1)–(1.3) describe the quantum motion constrained by the waveguide Ω, of a charged
particle (in a “natural" system of units where the various physical constants such as the mass and the electric
charge are taken equal to one) under the influence of the “electric" potential p. Carbon nanotubes, who have
a length-to-diameter ratio up to 108/1, are commonly modelled by infinite cylindrical domains such as Ω =
ω × R. These nanostructures exhibit unusual physical properties, which are valuable for electronics, optics
and other fields of materials science and technology, but they can be affected by the inevitable presence of
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electrostatic quantum disorder, see e. g. [17, 29]. This motivates for a closer look into the inverse problem of
estimating the strength of the electric impurity potential p from the (partial) knowledge of the wave function
u on the boundary Γ of the infinite carbon nanotube Ω.

The uniqueness issue in the inverse problem examined in this paper is to know whether any two admissible
potentials pj , j = 1, 2, are equal, i.e. p1(x) = p2(x) for a.e. x ∈ Ω, if their observation data coincide, that
is, if we have

∂νup1(x, t) = ∂νup2(x, t), (x, t) ∈ Σ∗.

Here ν = ν(x), x ∈ Γ, denotes as usual the unit outward normal vector to Γ and ∂νu = ∇u · ν stands
for the normal derivative of u. We shall give a positive answer to this question provided the two unknown
functions p1 and p2 coincide in a neighborhood of the boundary Γ. This extra information imposed on the
unknown zero-th order coefficient of (1.1) near Γ is technically restrictive, but it is acceptable from a strict
practical viewpoint upon admitting that the electric potential can be measured from outside the domain Ω in
the vicinity of the boundary.

Actually, the above mentioned uniqueness result follows from a stronger statement claiming logarithmic
stability in the determination of the potential p from the observation of ∂νup on Σ∗. This amount to saying
that ‖p2 − p1‖L2(Ω) can be bounded from above in terms of (the logarithm of) a suitable norm of the trace
of the function ∂νup2 − ∂νup1 on Σ∗. Such stability estimates play a key role in the analysis of ill-posed
inverse problems (in the classical sense of [39]), by suggesting regularization parameters and indicating the
rate of convergence of the regularized solutions to the exact one.

The main achievement of this paper is that the Neumann data used in this stability estimate can be mea-
sured on the unbounded strip-shaped subpart Γ∗ = S∗ × R of the whole boundary Γ, where we recall that
S∗ is an arbitrary non-empty relative open subset of ∂ω. The key idea of the proof is to combine the analysis
carried out in [6, 24], which is based on a Carleman estimate specifically designed for the system under
consideration, with the Fourier-Bros-Iagolnitzer (FBI) transformation used by Robbiano for sharp unique
continuation in [48] (see also [41, 45]). Indeed we take advantage of the fact that the FBI transform of the
time derivative of the solution to (1.1) satisfies a parabolic equation in the vicinity of the boundary Γ in order
to apply a Carleman parabolic estimate where no geometric condition is imposed on the control domain.

1.2. Existing papers. There is a wide mathematical literature on uniqueness and stability issues in inverse
coefficients problems of partial differential equations (PDEs), see e.g. [4, 7, 11, 24, 46] and the references
therein. However, most of the known results on these two problems require that the corresponding Dirichlet
or Neumann data be at least measured on a sufficiently large part Γ] of the boundary Γ of the spatial domain
under consideration, if not on the whole boundary itself.

On the other hand, when Γ] = {x ∈ Γ, (x− x0).ν(x) ≥ 0}, where x0 denotes a fixed point in the
complement set of Ω, is a sub-boundary fulfilling the geometric optics condition for the observability derived
by Bardos, Lebeau and Rauch in [3], Baudouin and Puel [5] proved uniqueness and Lipschitz stability in the
inverse problem of determining the electric potential of the Schrödinger equation from the observation of
one Neumann data on Γ]. In the present paper we claim logarithmic stability for arbitrarily small boundary
parts Γ] = Γ∗ which do no necessarily comply with the geometric condition of Bardos, Lebeau and Rauch.
Nevertheless this is at the expense of a stronger hypothesis on the potential, which is assumed to be known
in a neighborhood of Γ.

In the framework of this paper, we are dealing with a single observation of the solution. Uniqueness
results for multidimensional inverse problems from a single observation of the solution were first derived
by Bukhgeim and Klibanov [15] or Yamamoto [53] when Γ] = Γ, by means of suitable Carleman esti-
mates. For a general treatment of the analysis of inverse coefficients problems with a finite number of ob-
servations, based on Carleman inequalities, we refer to Bukhgeim [13], Isakov [27], Isakov and Yamamoto
[28], Khaĭdarov [34], and Klibanov [35]. More specifically, this approach was employed by Bellassoued
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[6, 7], Bukhgeim, Cheng, Isakov and Yamamoto [14], Imanuvilov and Yamamoto [24], Puel and Yamamoto
[46], and Yamamoto [53], for hyperbolic systems, by Bellassoued and Yamamoto [10], Imanuvilov and Ya-
mamoto [26], and Klibanov and Yamamoto [38], for the acoustic equation, by Bellassoued and Yamamoto
[11], and Bellassoued, Imanuvilov and Yamamoto [12], for the elasticity operator, and by Choulli and Ya-
mamoto [18, 19], and Imanuvilov and Yamamoto [25], for parabolic equations.

The stability issue in the inverse problem of determining the time-independent electric potential in the
dynamic Schrödinger equation from a single boundary measurement was treated by Baudouin and Puel in
[5] and by Mercado, Osses and Rosier in [43]. In these two papers the Neumann data is observed on a
sub-boundary satisfying the geometric control condition of Bardos, Lebeau and Rauch. This condition was
relaxed in [8] under the assumption that the potential is known near the boundary. In [54], Yamamoto and
Yuan established Carleman estimates for Schrödinger equations in Sobolev spaces of negative orders, and
derived a result of uniqueness from these estimates.

As for inverse problems for the non-stationary Schrödinger equation by infinitely many boundary ob-
servations (i.e. the Dirichlet-to-Neumann map, abbreviated as DN map in the following), we refer to e.g.
Avdonin et al. [2], where the real valued electric potential is retrieved from the partial knowledge of the DN
map (the observation of the Neumann data is performed on a sub-part of Γ).

In all the above mentioned papers the Schrödinger equation is defined in a bounded spatial domain. In the
present work we rather investigate the problem of determining the scalar potential of the Schrödinger equa-
tion in an infinite cylindrical domain. Actually, it turns out that mathematical papers dealing with inverse
coefficient problems in an unbounded domain are rather sparse. Without being exhaustive, we mention [42],
where Li and Uhlmann proved uniqueness in the determination of the compactly supported electric poten-
tial in an inifinite slab from partial DN map. In [32], the compactly supported potential of the Schrödinger
equation defined in an unbounded waveguide was Lipschitz stably retrieved from one measurement of the
solution on a sub-boundary fulfilling the geometric control property of Bardos, Lebeau and Rauch. This
result was extended to non compactly supported potentials in [33], but Lipschitz stability degenerated to
Hölder stability. Similar uniqueness results for non-compactly supported coefficients of the wave equation
are derived by Rakesh in [47] and Nakamura in [44], while the stability issue was treated by Kian in [31].

1.3. Main results. We start by examining the direct problem associated with (1.1)–(1.3). To this purpose
we consider a fixed natural number k ∈ N∗ := {1, 2, . . .}, and given p0 ∈W 2(k−1),∞(Ω) and u0 ∈ H2k(Ω),
we set

v0 := u0 and vj := (−∆ + p0)vj−1 for j = 1, . . . , k − 1.

We say that u0 satisfies the k-th order compatibility conditions with respect to p0, if the k following identities

vj(x) = 0, x ∈ Γ, j = 0, · · · , k − 1,

hold simultaneously. Evidently, if u0 satisfies the k-th order compatibility conditions with respect to p0, then
it satisfies the k-th order compatibility conditions with respect to p for any p ∈ W 2(k−1),∞(Ω) verifying
p = p0 in the vicinity of Γ.

Further, we introduce the set

Hk = Hk(Ω× (0, T )) :=

k⋂
j=0

Cj([0, T ], H2(k−j)(Ω)),

where Hk(Ω) denotes the usual Sobolev space of order k in Ω. Endowed with the norm

‖u‖2Hk :=
k∑
j=0

‖∂jt u‖2C0([0,T ],H2(k−j)(Ω))
,
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Hk is a Banach space, and we recall from [33, Propositions 2.2 and 2.5] the following existence and unique-
ness result for the system (1.1)–(1.3).

Proposition 1.1. For k ∈ N∗ fixed, assume that ∂ω is C2k, and pick p ∈ W 2(k−1),∞(Ω) in such a way that
‖p‖W 2(k−1),∞(Ω) ≤ M for some a priori fixed constant M ≥ 0. Then for any u0 ∈ H2k(Ω) satisfying the
k-th order compatibility conditions with respect to p, there exists a unique solution u ∈ Hk to the IBVP
(1.1)–(1.3). Moreover, the estimate

‖u‖Hk ≤ C‖u0‖H2k(Ω), (1.4)

holds for some constant C > 0, depending only on ω, T , k and M .

PutN := [n/4]+1, where [s] denotes the integer part of s ∈ R. Then, applying Proposition 1.1 with k =
N + 1, we get that u ∈ C1([0, T ], H2N (Ω)) satisfies the estimate ‖u‖C1([0,T ];H2N (Ω)) ≤ C‖u0‖H2(N+1)(Ω).
Further, as the embeddingH2N (Ω) ↪→ L∞(Ω) is continuous, since 2N > n/2, we deduce from Proposition
1.1 the following result.

Corollary 1.2. Assume that the conditions of Proposition 1.1 are satisfied with k = N + 1. Then there
exists a positive constant C, depending only on ω, T and M , such that the solution u to (1.1)–(1.3) satisfies
the estimate:

‖u‖C1([0,T ],L∞(Ω)) ≤ C‖u0‖H2(N+1)(Ω).

Having seen this, we turn now to introducing the inverse problem associated with (1.1)–(1.3). We consider
p0 ∈ W 2N,∞(Ω;R) and pick an open subset ω0 of ω, such that ∂ω ⊂ ω0. Given b > 0 and d > 0, we aim
to retrieve all functions p : Ω→ R satisfying

Nb,d(p− p0) := ‖eb〈xn〉
d

(p− p0)‖L∞(Ω) <∞ and p(x) = p0(x) for x ∈ Ω0 := ω0 × R. (1.5)

Here and henceforth 〈s〉 is a short hand for (1 + s2)1/s, s ∈ R. Notice that the assumption (1.5) is weaker
than the compactness condition imposed in [32, Theorem 1.1] on the support of the unknown part of p.
Further, M being an a priori fixed non-negative constant, we define the set of admissible potentials as

A(p0, ω0) := {p ∈W 2N,∞(Ω); p = p0 in Ω0, ‖p‖W 2N,∞(Ω) ≤M and Nb,d(p− p0) ≤M}. (1.6)

Last, we choose a relatively open subset S∗ of ∂ω, put Γ∗ := S∗ × R, and introduce the norm

‖∂νu‖∗ := ‖∂νu‖H1(0,T ;L2(Γ∗))
, u ∈ H2.

The main result of this article is as follows.

Theorem 1.3. Let the conditions of Proposition 1.1 be satisfied with k = N + 1 and p = p0. Assume
moreover that u0 fulfills ‖u0‖H2(N+1)(Ω) ≤M ′ for some constant M ′ > 0, and that

∃κ > 0, ∃d0 ∈ (0, 2d/3), |u0(x′, xn)| ≥ κ〈xn〉−d0/2, (x′, xn) ∈ Ω\Ω0. (1.7)

For pj ∈ A(p0, ω0), j = 1, 2, we denote by uj theHN+1-solution to (1.1)–(1.3), where pj is substituted for
p. Then, for any ε ∈ (0, N/2), there exists a constant C = C(ω, ω0, T,M,M ′, b, d, ε) > 0, such that we
have

‖p1 − p2‖L2(Ω) ≤ C
(
‖∂ν(u1 − u2)‖∗ + |log ‖∂ν(u1 − u2)‖∗|

−1
)ε
. (1.8)
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1.4. Comments. Thanks to the extra information p1 = p2 in the vicinity of Γ, the sharp unique continuation
result by Robbiano [49], Robbiano and Zuily [50] or Tataru [51, 52], entails u1 = u2 and ∇u1 = ∇u2 on
∂(Ω \Ω0)× (0, T ), provided T > 0 is sufficiently large. Therefore the method developed by Baudouin and
Puel in [5] yields uniqueness in the inverse problem under consideration. However, since we address the
stability issue here, it is worth noticing that Theorem 1.3 cannot be obtained by only combining the results
of [25, 49, 51].

The technique carried out in this article may be applied, with appropriate modifications, to the determina-
tion of higher order unknown coefficients of the Schrödinger equation, but in order to avoid the inappropriate
expense of the size of this paper, we shall not go further into details about the treatment of this specific prob-
lem.

The analysis developed in this paper boils down to a new specifically designed Carleman estimate for
the Schrödinger equation in the cylindrical domain Ω× (0, T ), when the classical one is valid only in level
sets bounded by the weight function. For a general treatment of Carleman estimates, we refer to Hörmander
[22], Isakov [27], Tataru [51], and also to Baudouin and Puel [5], where Carleman estimates are derived in a
direct pointwise manner. Due to the extra information p1 = p2 in the vicinity of the boundary Γ, it is useless
to discuss here the uniform Lopatinskii condition (see [51] or [9, Section 1.3]) or Carleman estimates with
a reduced number of boundary traces.

We assume in (1.7) that |u(·, 0)| = |u0| > 0 in any subset of Ω where the electric potential is retrieved.
This is because the uniqueness of the potential is not known in general, without this specific assumption,
even in the case where the set {x ∈ Ω \ Ω0;u0(x) = 0} has zero Lebesgue measure. This non-degeneracy
condition is very restrictive but it is still an open question to know how it can be weakened in the context of
inverse coefficients problems with a finite number of data observations.

Notice that in the framework of the Bukhgeim-Klibanov method in a bounded spatial domain Ω, it is
crucial that |u0| be bounded from below by a positive constant, uniformly in Ω. But since Ω is infinitely
extended here, such a statement is incompatible with the square integrability property satisfied by u0 in Ω.
Therefore the usual non-degeneracy condition imposed on the initial condition function has to be weakened
into (1.7). In the same spirit we point out that the derivation of a Carleman estimate in an unbounded
domain such as Ω is not straightforward and does not directly follows from the corresponding known results
in bounded domains.

The subset {x ∈ Γ, (x−x0)·ν ≥ 0}, lying in the shadow of the boundary Γ viewed from a point x0 taken
in the complement set of Ω, satisfies the geometric control property of Bardos, Lebeau and Rauch, see [3].
This property is essentially a necessary and sufficient condition for exact controllability and stabilization of
wave equations. However, due to infinite speed of propagation in the Schrödinger equation, this concept
is not completely natural in the context of quantum systems. Nevertheless, Lebeau proved in [40] that the
above mentioned condition guarantees the boundary controllability of the Schrödinger equation in H−1(Ω)
with L2(Ω) boundary controls.

The remainder of the paper is organized as follows. In Section 2, we establish a Carleman inequality for
the Schrödinger equation and we state a stability estimate for unique continuation. These two results are
needed in the proof of Theorem 1.3, which is given in Section 3. Finally, Section 4 contains the proof of the
logarithmic observation inequality stated in Section 2.

2. PRELIMINARY ESTIMATES

In this section we state two preliminary PDE estimates which are the main ingredients in the analysis of
the inverse problem under study. To this end we introduce the following notations used throughout the entire
text. We consider three open subsets ωj , j = 1, 2, 3, of ω0, such that

ωj ( ωj−1 and ∂ω ⊂ ∂ωj . (2.1)
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We put
Ωj := (ω \ ωj)× R = Ω \ (ωj × R) and Qj := Ωj × (−T, T ), j = 2, 3,

and for T ′ ∈ (0, T ) fixed, we set Q′j := Ωj × (−T ′, T ′).

2.1. A Carleman estimate for the Schrödinger equation. A Carleman estimate is a weighted L2-norm
inequality for a PDE solution. It is particularly useful for proving uniqueness in Cauchy problems or unique
continuation results for PDEs with non-analytic coefficients. Carleman estimates are also well adapted
to energy estimation in PDEs, see e.g. Kazemi and Klibanov [30] or Klibanov and Malinsky [36]. An
alternative method for the derivation of energy inequalities, which is not applicable to the problem under
consideration in this paper, can be found in [3].

It is Carleman who first derived in his pioneering paper [16], a suitable inequality, which was later called
a Carleman estimate, for proving uniqueness in a two-dimensional elliptic Cauchy problem. Since then, Car-
leman estimates have been extensively studied by numerous mathematicians. For the general theory of Car-
leman inequalities for PDEs with isotropic (resp. anisotropic) symbol and compactly supported functions,
we refer to Hörmander [22] (resp. Isakov [27]). For Carleman estimates with non-compactly supported
functions, see Tataru [51], Bellassoued [7], Fursikov and Imanuvilov [21], and Imanuvilov [23]. Notice that
a direct derivation of pointwise Carleman estimates for hyperbolic equations, which are applicable to non
compactly supported functions, is available in Klibanov and Timonov’s paper [37].

Although Carleman estimates for Schrödinger operators in a bounded domain are rather classical, see e.g.
[1, 5, 52], we seek in the context of this paper, a Carleman inequality for the operator

P := L+ p with L := −i∂t −∆, (2.2)

acting in the infinite cylinder Ω. We start by defining suitable weight functions. To this end, we fix x′0 ∈
Rn−1\ω and put

β̃(x′) :=
∣∣x′ − x′0∣∣2 , x′ ∈ ω, (2.3)

in such a way that β̃ ∈ C4(ω). Here |x′| denotes the Euclidian norm of x′ ∈ Rn−1. Next, for every
x = (x′, xn) ∈ Ω, we set

β(x) := β̃(x′) +K, where K := r‖β̃‖L∞(ω) for some r > 1, (2.4)

and we define two weight functions associated with the parameter λ > 0:

ϕ(x, t) :=
eλβ(x)

(T ′ + t)(T ′ − t)
and η(x, t) :=

e2λK − eλβ(x)

(T ′ + t)(T ′ − t)
, (x, t) ∈ Q′ := Ω× (−T ′, T ′). (2.5)

Finally, for all s > 0, we denote by M1 (resp. M2) the adjoint (resp. skew-adjoint) part of the operator
e−sηLesη, acting in (C∞0 )′(Q′), i.e.

M1 := i∂t + ∆ + s2|∇η|2 and M2 := is(∂tη) + 2s∇η · ∇+ s(∆η), (2.6)

where we recall that L is the principal part of the operator P given by (2.2).
Having said that, we now state the following global Carleman estimate for the operator P .

Proposition 2.1. Let β, ϕ and η be given by (2.3)–(2.5), and let the operators Mj , j = 1, 2, be defined by
(2.6). Then there are two constants s0 > 0 and C > 0, each of them depending only on ω and T ′, such that
the estimate

s‖e−sη∇x′w‖2L2(Q′2) + s3‖e−sηw‖2L2(Q′2) +
∑
j=1,2

‖Mje
−sηw‖2L2(Q′2)

≤ C
(
‖e−sηPw‖2L2(Q′) + ‖e−sη∇x′w‖2L2(Q′3\Q′2) + ‖e−sηw‖2L2(Q′3\Q′2)

)
, (2.7)

holds for all s ≥ s0 and any function w ∈ L2(−T ′, T ′;H1
0 (Ω)) verifying Pw ∈ L2(Q′).
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Proof. The proof boils down to [32, Proposition 3.3], which provides two constants s0 > 0 and C > 0, both
of them depending only on ω, T and M , such that we have

s‖e−sη∇x′w̃‖2L2(Q′) + s3‖e−sηw̃‖2L2(Q′) +
∑
j=1,2

‖Mje
−sηw̃‖2L2(Q′) ≤ C‖e

−sηPw̃‖2L2(Q′), (2.8)

for every s ≥ s0, and any w̃ ∈ L2(−T ′, T ′;H1
0 (Ω)) such that Pw̃ ∈ L2(Q′) and ∂νw̃ = 0 on Σ′ :=

Γ× (−T ′, T ′). Next we pick a cut-off function χ ∈ C∞(Rn−1, [0, 1]) satisfying

χ(x′) =

 1 if x′ ∈ ω \ ω2,

0 if x′ ∈ ω3,

and apply the estimate (2.8) to w̃(x, t) = χ(x′)w(x, t). Using that Pw̃ = χPw + [P, χ]w, where [A,B]
stands for the commutator of the operators A and B, and taking into account that [P, χ] is a first order
differential operator whose coefficients are supported in Ω3 \ Ω2, we obtain (2.7). �

2.2. Logarithmic stability of unique continuation. The unique continuation of a solution to the Schrödinger
equation (1.1) from lateral boundary data on Γ∗ was proved by Phung in [45]. The coming result claims
stability for the same problem.

Lemma 2.2. Let pj ∈ A(p0, ω0) for j = 1, 2, let uj be a solution to the Schrödinger equation (1.1)
where pj is substituted for p, and put u := u1 − u2. Then for all µ ∈ (0, 1), we may find a constant
C = C(ω, ω0, T,M,M ′, µ) > 0, depending neither on p1 nor on p2, such that we have

‖∂tu‖2L2((Ω3\Ω2)×(0,T/6)) + ‖∇x′∂tu‖2L2((Ω3\Ω2)×(0,T/6)) ≤ C
(
‖∂νu‖∗ + |log ‖∂νu‖∗|

−1
)2µN

. (2.9)

The proof of this result boils down to the analysis carried out by Robbiano in [48, 49] or Phung in [45],
by means of the FBI transformation. Since it is rather lengthy, we postpone it to Section 4.

3. PROOF OF THEOREM 1.3

In this section we establish the stability estimate (1.8) by adapting the Bukhgeim-Klibanov method pre-
sented in [15], to the context of the infinite waveguide Ω. In light of Lemma 2.2, we set T ′ := T/6. The
first step involves linearizing the system (1.1)–(1.3) and symmetrizing its solution with respect to the time
variable t.

3.1. Linearization and time symmetrization. With reference to the notations of Theorem 1.3, we put
p := p2 − p1 and notice that u := u1 − u2 is aHN+1-solution to the IBVP

−i∂tu−∆u+ p1u = pu2 in Ω× (0, T ),

u(·, 0) = 0 in Ω,

u = 0 in Γ× (0, T ).

(3.1)

In particular we have u ∈ C1([0, T ];H2N (Ω)), hence upon differentiating (3.1) with respect to t, we get that
v := ∂tu ∈ HN is solution to the system

−i∂tv −∆v + p1v = p∂tu2 in Ω× (0, T ),

v(·, 0) = ipu0 in Ω,

v = 0, on Γ× (0, T ).

(3.2)



8 M. BELLASSOUED, Y. KIAN, AND E. SOCCORSI

Further, putting u2(x,−t) := u2(x, t) for all (x, t) ∈ Ω× (0, T ], and bearing in mind that u0 and p are real-
valued, we deduce from (3.2) that the function v, extended on [−T, 0)×Ω by setting v(x, t) := −v(x,−t),
is the ∩Nk=0Ck([−T, T ], H2(N−k)(Ω))-solution to the system

−i∂tv −∆v + p1v = p∂tu2 in Q := Ω× (−T, T ),

v(·, 0) = ipu0 in Ω,

v = 0 on Σ := Γ× (−T, T ).

(3.3)

The second step in the derivation of (1.8) is to apply the global Carleman inequality of Proposition 2.1 to v,
in order to establish Lemma 3.1 stated below.

3.2. An a priori estimate. We stick with notations of Section 2 and Subsection 3.1, and we establish the
following technical result, which is quite similar to [32, Lemmas 3.3 & 3.4] and [33, Lemma 3.3]. Never-
theless, we include the proof just for the convenience of the reader.

Lemma 3.1. Let v denote the C1([−T, T ], L2(Ω)) ∩ C0([−T, T ], H1
0 (Ω) ∩H2(Ω))-solution to (3.3). Then

there exists a constant C > 0, independent of s, such that we have

‖e−sη(·,0)pu0‖2L2(Ω) ≤ Cs
−3/2

(
‖e−sη(·,0)p∂tu2‖2L2(Q′) + ‖e−sη∇x′v‖2L2(Q′3\Q′2) + ‖e−sηv‖2L2(Q′3\Q′2)

)
,

uniformly in s ∈ (0,+∞).

Proof. Put φ(x, t) := e−sη(x,t)ξ(x′)v(x, t) for (x, t) ∈ Q′, where ξ ∈ C∞0 (ω) is a cut-off function satisfying

ξ(x′) =

 1 if x ∈ ω \ ω1,

0 if x ∈ ω2.

According to (2.4)-(2.5), we have lim
t↓(−T ′)

η(x, t) = +∞ for every x ∈ Ω, and hence lim
t↓(−T ′)

φ(x, t) = 0. As

a consequence, it holds true that

‖φ(·, 0)‖2L2(Ω) =

∫
Ω×(−T ′,0)

∂t|φ|2(x, t)dxdt = 2Re

(∫
Ω×(−T ′,0)

(∂tφ)φ(x, t)dxdt

)
. (3.4)

On the other hand, (2.6) and the Green formula yield

Im

(∫
Ω×(−T ′,0)

(M1φ)φ(x, t)dxdt

)
= Re

(∫
Ω×(−T ′,0)

(∂tφ)φ(x, t)dxdt

)
+R,

where

R = Im

(∫
Ω×(−T ′,0)

(∆φ)φ(x, t)dxdt+ s2‖(∇η)φ‖2L2(Ω×(−T ′,0))

)
= −Im

(
‖∇φ‖2L2(Ω×(−T ′,0))

)
= 0.

We deduce from this, (3.4) and the identity ‖φ(·, 0)‖L2(Ω) = ‖e−sη(·,0)ξv(·, 0)‖L2(Ω), that

‖e−sη(·,0)ξv(·, 0)‖2L2(Ω) = 2Im

(∫
Ω×(−T ′,0)

(M1φ)φ(x, t)dxdt

)
≤ 2‖M1φ‖L2(Q′)‖φ‖L2(Q′)

≤ s−3/2
(
s‖e−sη∇x′v‖2L2(Q′2) + s3‖e−sηv‖2L2(Q′2) + ‖M1e

−sηv‖2L2(Q′2)

)
.

Finally, the desired result follows from this upon recalling (3.3), applying Proposition 2.1 to v, and noticing
from (2.4)-(2.5) that η(x, t) ≥ η(x, 0) for every (x, t) ∈ Q′. �
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3.3. End of the proof. For any fixed y > 0, it follows from Lemma 3.1 that

‖e−sη(·,0)pu0‖2L2(ω×(−y,y)) ≤ Cs
−3/2

(
‖e−sη(·,0)p∂tu2‖2L2(Q′) + %2

)
, s > 0, (3.5)

where %2 := ‖∇x′v‖2L2(Q′3\Q′2) + ‖v‖2L2(Q′3\Q′2). Here and in the remaining part of the proof, C denotes a
generic positive constant that is independent of s.

Notice from (1.7) and the vanishing of p in Ω0, that the inequality |(pu0)(x)| ≥ κ〈y〉−d0/2 |p(x)| holds
for every x ∈ ω × (−y, y). Furthermore, we have ‖∂tu2‖L∞(Q′) ≤ C, by Corollary 1.2, and η(x, 0) ≥ 0
for every x ∈ Ω, by (2.4)-(2.5), so we may deduce from (3.5) that(

κ2〈y〉−d0 − Cs−3/2
)
‖e−sη(·,0)p‖2L2(ω×(−y,y)) ≤ Cs

−3/2
(
‖p‖2L2(ω×(R\(−y,y))) + %2

)
, s > 0. (3.6)

Thus, taking s = (κ2/(2C))−2/3〈y〉2d0/3 in (3.6), and recalling from (2.4)-(2.5) that ‖η(., 0)‖L∞(Ω) ≤
(eλK/T ′)2, we obtain that

‖p‖2L2(ω×(−y,y)) ≤ Ce
C〈y〉2d0/3

(
‖p‖2L2(ω×(R\(−y,y))) + %2

)
. (3.7)

Moreover, as ‖p‖2L2(ω×(R\(−y,y))) ≤ C‖e
−2b〈·〉d‖L1(R\(−y,y)) from (1.5), we have for any δ ∈ (0, b),

‖p‖2L2(ω×(R\(−y,y))) ≤ C‖e
−δ〈·〉d‖L1(R)e

−(2b−δ)〈y〉d ≤ Ce−(2b−δ)〈y〉d . (3.8)

Putting this together with (3.7), we find that

‖p‖2L2(ω×(−y,y)) ≤ Ce
C〈y〉2d0/3

(
e−(2b−δ)〈y〉d + %2

)
. (3.9)

Setting %δ := e−(2b−δ), we turn now to examining the two cases % ∈ (0, %δ) and % ∈ [%δ,+∞) separately.

First, if % ∈ (0, %δ), we take y = y(%) :=

((
2 ln %

ln %δ

)2/d
− 1

)1/2

in (3.9), in such a way that %2 =

e−(2b−δ)〈y〉d , and consequently

‖p‖2L2(ω×(−y,y)) ≤ Ce
C〈y〉2d0/3−(2b−δ)〈y〉d . (3.10)

Since d > 2d0/3, we have supt∈(0,1) e
Ct2d0/3−δtd < +∞, whence (3.10) yields

‖p‖2L2(ω×(−y,y)) ≤ C

(
sup

t∈(1,+∞)
eCt

2d0/3−δtd
)
e−2(b−δ)〈y〉d ≤ C%2θ, % ∈ (0, %δ), (3.11)

with

θ :=
b− δ
2b− δ

∈ (0, 1/2). (3.12)

On the other hand, we have ‖p‖2L2(ω×(R\(−y,y))) ≤ Ce
−2(b−δ)〈y〉d ≤ C%2θ for all % ∈ (0, %δ), by (3.8). This

and (3.11) entail
‖p‖2L2(Ω) ≤ C%

2θ, % ∈ (0, %δ). (3.13)

In the case where % ∈ [%δ,+∞), we use the upper bound ‖p‖2L2(Ω) ≤ C‖e−2b〈·〉d‖L1(R), arising from (1.5),
and obtain that

‖p‖2L2(Ω) ≤ C
(
‖e−2b〈·〉d‖L1(R)/%

2θ
δ

)
%2θ ≤ C%2θ, % ∈ [%δ,+∞). (3.14)

Now, recalling the above definition of %2 and the identity v = ∂tu, we find upon applying Lemma 2.2 to u,
that

%2 ≤ C
(
‖∂νu‖∗ + |log ‖∂νu‖∗|

−1
)2µN

, (3.15)
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for any arbitrary µ ∈ (0, 1). Therefore, θ being any real number in (0, 1/2), according to (3.12) and since δ
is arbitrary in (0, b), the estimate (1.8) follows from (3.13)–(3.15) upon taking ε = θµN .

4. LOGARITHMIC OBSERVABILITY INEQUALITY: PROOF OF LEMMA 2.2

In this section we prove the logarithmic observability inequality stated in Lemma 2.2.
Prior to doing that we recall for further reference from the energy inequality (1.4) with k = N + 1, that

for any pj ∈ A(ω0,M), j = 1, 2, the solution v = ∂t(u1 − u2) to the IBVP (3.3), satisfies the estimate

‖v‖CN ([−T,T ],L2(Ω)) + ‖v‖CN−1([−T,T ],H2(Ω)) ≤ 2C‖u0‖H2(N+1)(Ω), (4.1)

where the positive constant C = C(ω, ω0, T,M,M ′) > 0 is the same as in (1.4).

4.1. A parabolic Carleman estimate for unbounded cylindrical domains. In this subsection we state a
parabolic Carleman estimate in unbounded cylindrical domains, which is needed in the proof of Lemma 2.2.
To do that, we start by introducing the two sets

S] := ∂ω0 \ ∂ω and Γ] := S] × R,

and we assume without loss of generality (upon possibly smoothening ∂ω0 by enlarging ω0), that S] is C2.
Then, with reference to [25, Lemma 2.3] and its proof, we pick a function ψ0 ∈ C2(ω0), obeying the four
following conditions:

ψ0(x′) > 0, x′ ∈ ω0 and
∣∣∇ψ0(x′)

∣∣ > 0, x′ ∈ ω0, (4.2)

ψ0(x′) = 0, x′ ∈ S] and ∂νψ0(x′) ≤ 0, x′ ∈ ∂ω0 \ S∗. (4.3)

Next we put `(τ) := (1− τ)(1 + τ) for each τ ∈ (−1, 1), and introduce the two weight functions

ϕ0(x′, τ) :=
eλ(ψ0(x′)+a)

`(τ)
, x ∈ ω0, τ ∈ (−1, 1), (4.4)

and

α(x′, τ) :=
eλ(ψ0(x′)+a) − eλ(‖ψ0‖L∞(ω0)

+b)

`(τ)
, x ∈ ω0, τ ∈ (−1, 1), (4.5)

where λ ∈ (0,+∞) is a fixed parameter, ψ0 is the function defined by (4.2)-(4.3), and

‖ψ0‖L∞(ω0) < a < b < 2a− ‖ψ0‖L∞(ω0) .

Further, in connection with the Schrödinger operator P defined in (2.2), we consider the formal parabolic
operator in Ω0 := ω0 × R, associated with some fixed parameter h ∈ (0, 1),

Lh := h−1∂τ −∆ + p1. (4.6)

We are now in position to state the following Carleman estimate for the operator Lh.

Lemma 4.1. Let ϕ0 and α be defined by (4.4)-(4.5), and for h ∈ (0, 1) fixed, let Lh be defined by (4.6).
Then we may find three positive constants λ0, σ0 and C0, such that for every λ ≥ λ0 and σ ≥ σ0/h, the
estimate

σ‖eσα∇x′w‖2L2(Ω0×(−1,1)) + σ3‖eσαw‖2L2(Ω0×(−1,1))

≤ C0

(
‖eσαLhw‖2L2(Ω0×(−1,1)) + σ‖ϕ1/2

0 eσα∂νw‖2L2(Γ∗×(−1,1))

)
, (4.7)

holds for w ∈ L2(−1, 1;H1
0 (Ω0)) verifying Lhw ∈ L2(−1, 1;L2(Ω0)) and ∂νw ∈ L2(−1, 1;L2(Γ∗)).

Here the constant C0 > 0 depends continuously on λ, M , M ′ and h, but is independent of σ.
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We stress out that a result similar to Lemma 4.1 can be found in [25, Lemma 2.4] (see also [20, 21]) in
the context of bounded spatial domains.

The dependence of the various constants appearing in (4.7), with respect to the parameter h ∈ (0, 1), is
made precise in the derivation of Lemma 4.1, which is given in Appendix A.

4.2. A connection between Schrödinger and parabolic equations. As pointed out by Lebeau and Rob-
biano [41], Robbiano [49], Robbiano and Zuily [50] and Phung [45], connections between solutions of
different types of PDEs may be useful for examining the controllability of numerous Cauchy problems. In
this subsection we prove that the FBI transform of χv, where v is the solution to (3.3) and χ = χ(x′) is
a suitable cut-off function that will be made precise below, is solution to a parabolic Cauchy problem in
Ω0 = ω0 × R.

Prior to doing that we introduce the FBI transform, as defined by Lebeau and Robbiano in [41]. To this
purpose we fix µ ∈ (0, 1) and choose m ∈ N∗ so large that

2m ≥ N and ρ := 1− 1

2m
> µ. (4.8)

Then, for any γ ∈ (1,+∞), the function

Fγ(z) :=
1

2π

∫
R
eizηe−(η/γρ)2mdη, z ∈ C, (4.9)

is holomorphic in C, and there exist four positive constants Cj , j = 1, 2, 3, 4, none of them depending on γ,
such that we have

|Fγ(z)| ≤ C1γ
ρeC2γ|Imz|1/ρ , z ∈ C, (4.10)

and
|Fγ(z)| ≤ C1γ

ρe−C3γ|Rez|1/ρ , z ∈ {z ∈ C, |Imz| ≤ C4|Rez|} . (4.11)

Given T0 ∈ (T/3,+∞), we consider a cut-off function θ ∈ C∞0 (R), obeying

θ(η) =

 1 if |η| ≤ 2T0,

0 if |η| ≥ 3T0,
(4.12)

and we define the partial FBI transform of w ∈ S(Rn+1), by

wγ,t(x, τ) := Fγw(x, z) =

∫
R
Fγ(z − η)θ(η)w(x, hη)dη, z = t− iτ, (4.13)

for all t ∈ (−T0, T0), τ ∈ (−1, 1), γ ∈ (1,+∞) and x ∈ Rn, where h := T/(3T0).
Next, taking into account that ω1 ⊂ ω0, by (2.1), we deduce from the continuity of the function ψ0

introduced in Subsection 4.1, and from the first part of (4.2), that there exists a constant β0 > 0, such that

ψ0(x′) ≥ 2β0, x
′ ∈ ω2 \ ω3. (4.14)

Moreover, due to the vanishing of ψ0 on S], imposed by the first claim of (4.3), we may find a subset
ω] ⊂ ω0 \ ω1, such that

S] ⊂ ω] and ψ0(x′) ≤ β0 for x′ ∈ ω]. (4.15)

Let us now pick ω̃] ⊂ ω], such that S] ⊂ ω̃], and introduce a function χ ∈ C∞(Rn−1, [0, 1]) satisfying

χ(x′) =

 1 if x′ ∈ ω0 \ ω],

0 if x′ ∈ ω̃].
(4.16)
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Thus, bearing in mind that p = p1 − p2 vanishes in Ω0 and that v is the solution to (3.3), we easily find that
the function w(x, t) := χ(x′)v(x, t) satisfies the IBVP

−i∂tw −∆w + p1w = − [∆, χ] v in Q0 := Ω0 × (−T, T ),

w(0, ·) = 0 in Ω0,

w = 0 on Σ0 := ∂Ω0 × (−T, T ).

(4.17)

Moreover, we deduce from (4.1) that

‖w‖CN ([−T,T ],L2(Ω)) + ‖w‖CN−1([−T,T ],H2(Ω)) ≤ C‖u0‖H2(N+1)(Ω), (4.18)

where C denotes a generic positive constant that is independent of γ. From this, (4.10) and (4.13), we get
two positive constants C = C(ω, ω0, T, T0,M,M ′) and δ1, the last one being independent of T0, such that
the estimate

‖wγ,t‖2L2(Ω0×(−1,1)) + ‖∇wγ,t‖2L2(Ω0×(−1,1)) ≤ Ce
δ1γ ,

holds uniformly in t ∈ (−T0, T0) and γ ∈ (1,+∞).
We turn now to establishing that wγ,t is solution to a parabolic Cauchy problem in Ω0, we shall make

explicit below. To do that, we derive from (4.13) upon integrating by parts, that

h−1∂τwγ,t(x, τ) = −iFγ(∂tw)(x, z)− ih−1

∫
R
Fγ(z − η)θ′(η)w(x, hη)dη, z = t− iτ.

Next, as we have ∆wγ,t(x, τ) = Fγ(∆w)(x, z) by direct calculation, we get upon applying the FBI trans-
form Fγ to (4.17) and remembering (4.6), that Lhwγ,t(x, τ) = Aγ,t(x, τ) +Bγ,t(x, τ), (x, τ) ∈ Ω0 × (−1, 1),

wγ,t(x, τ) = 0, (x, τ) ∈ ∂Ω0 × (−1, 1),
(4.19)

where

Aγ,t(x, τ) := −
∫
R
Fγ(z − η)θ(η) [∆x′ , χ] v(x, hη)dη = − [∆x′ , χ] vγ,t(x, τ), (4.20)

and

Bγ,t(x, τ) := −ih−1

∫
R
Fγ(z − η)θ′(η)w(x, ηh)dη, z = t− iτ. (4.21)

The next step of the proof is to apply the parabolic Carleman estimate of Lemma 4.1 to the solution wγ,t
of (4.19) in order to derive the coming result.

Lemma 4.2. There exist ε ∈ (0, 1), δ2 > 0, δ3 > 0, and γ0 > 0, such that any solution wγ,t to (4.19),
satisfies the estimate

‖wγ,t‖2L2((Ω3\Ω2)×(−ε,ε)) + ‖∇x′wγ,t‖2L2((Ω3\Ω2)×(−ε,ε)) ≤ C
(
e−δ2γ + eδ3γ‖∂νwγ,t‖2L2(Γ∗×(−1,1))

)
,

(4.22)
uniformly in t ∈ (−T0, T0) and γ ∈ [γ0,+∞).

Proof. Fix γ ∈ (1,+∞) and t ∈ (−T0, T0). In light of (4.19), we apply the Carleman estimate of Lemma
4.1 to wγ,t, and find for every σ ∈ [σ0/h,+∞) that

σ‖eσα∇x′wγ,t‖2L2(Ω0×(−1,1)) + σ3‖eσαwγ,t‖2L2(Ω0×(−1,1))

≤ C0

(
‖eσαAγ,t‖2L2(Ω0×(−1,1)) + ‖eσαBγ,t‖2L2(Ω0×(−1,1)) + σ‖ϕ1/2

0 eσα∂νwγ,t‖2L2(Γ∗×(−1,1))

)
.(4.23)



AN INVERSE STABILITY RESULT FOR NON COMPACTLY SUPPORTED POTENTIALS 13

Further, we notice from (4.16) that Aγ,t(·, τ) is supported in Ω] := ω] × R for every τ ∈ (−1, 1), and from
(4.5) and (4.15) that α(x′, τ) ≤ (−µ1) for all (x′, τ) ∈ ω]×(−1, 1), with µ1 := eλ(‖ψ0‖∞+b)−eλ(β0+a) > 0.
As a consequence we have

‖eσαAγ,t‖2L2(Ω0×(−1,1)) ≤ e
−2µ1σ‖Aγ,t‖2L2(Ω]×(−1,1)) ≤ e

−2µ1σ‖Aγ,t‖2L2(Ω0×(−1,1)). (4.24)

The next step is to choose ε ∈ (0, 1) so small that µ2 := (eλ(‖ψ0‖∞+b) − eλ(2β0+a))/`(ε) < µ1. Then,
bearing in mind that `(τ) ≥ `(ε) > 0 for each τ ∈ (−ε, ε), we see from (4.14) that α(x′, τ) ≥ (−µ2) for
every (x′, τ) ∈ (ω2 \ ω3)× (−ε, ε). This entails that

e−2µ2σ
(
‖∇x′wγ,t‖2L2((Ω3\Ω2)×(−ε,ε)) + ‖wγ,t‖2L2((Ω3\Ω2)×(−ε,ε))

)
≤ σ‖eσα∇x′wγ,t‖2L2(Ω0×(−1,1)) + σ3‖eσαwγ,t‖2L2((Ω0×(−1,1)), σ ∈ [1,+∞).

Setting µ := µ1 − µ2, it follows from this and (4.23)-(4.24) that

‖∇x′wγ,t‖2L2((Ω3\Ω2)×(−ε,ε)) + ‖wγ,t‖2L2((Ω3\Ω2)×(−ε,ε))

≤ C
(
e−2µσ‖Aγ,t‖2L2(Ω0×(−1,1)) + e2µ2σ‖Bγ,t‖2L2(Ω0×(−1,1)) + σe2µ2σ‖eσαϕ1/2

0 ∂νwγ,t‖2L2(Γ∗×(−1,1))

)
,(4.25)

whenever σ ∈ [σ0/h,+∞). Here we assumed upon possibly substituting max(1, σ0/h) for σ0, that σ0 ≥ h.
In view of (4.10) and (4.20), the first term in the right hand side of (4.25) can be treated by the energy es-

timate ‖v‖C0([−T,T ],H1(Ω)) ≤ 2C‖u0‖H2(N+1)(Ω), arising from (4.1): We get a constant δ′ > 0, independent
of T0 and γ, such that

‖Aγ,t‖2L2(Ω0×(−1,1)) ≤ Ce
δ′γ , t ∈ (−T0, T0). (4.26)

For the second term, we take into account the vanishing of θ′ in the interval (−2T0, 2T0), imposed by (4.12),
and deduce from (4.11) and (4.21) that

‖Bγ,t‖2L2(Ω0×(−1,1)) ≤ Ce
−δ̃T 1/ρ

0 γ , t ∈ (−T0, T0), (4.27)

for some constant δ̃ > 0 depending neither on T0 nor on γ. Here we used the estimate ‖w‖C0([−T,T ],L2(Ω)) ≤
C‖u0‖H2(N+1)(Ω), which follows from (4.18).

Last we notice from (4.3)–(4.5) that ϕ1/2
0 eσα is bounded on S∗ × (−1, 1), and then deduce from (4.25)–

(4.27) that

‖∇x′wγ,t‖2L2((Ω3\Ω2)×(−ε,ε)) + ‖wγ,t‖2L2((Ω3\Ω2)×(−ε,ε))

≤ C
(
e−2µσ+δ′γ + e2µ2σ−δ̃T 1/ρ

0 γ + σe2µ2σ‖∂νwγ,t‖2L2(Γ∗×(−1,1))

)
, σ ∈ [σ0/h,+∞). (4.28)

Now, set γ0 := max (1, 3σ0/T ) and for γ ∈ [γ0,+∞), take σ := T0γ ≥ σ0/h in (4.28). As the sum of the
two first terms in the right hand side of (4.28) is majorized by e(−2µT0+δ′)γ + e(2µ2T0−δ̃T 1/ρ

0 )γ ≤ Ce−δ2γ

upon taking T0 sufficiently large (as we have 1/ρ > 1), we end up getting for all t ∈ (−T0, T0), that

‖∇x′wγ,t‖2L2((Ω3\Ω2)×(−ε,ε)) + ‖wγ,t‖2L2((Ω3\Ω2)×(−ε,ε))

≤ C
(
e−δ2γ + eδ3γ‖∂νwγ,t‖2L2(Γ∗×(−1,1))

)
, γ ∈ [γ0,+∞).

This entails the desired result. �



14 M. BELLASSOUED, Y. KIAN, AND E. SOCCORSI

4.3. Completion of the proof. Set wγ(x, t) := wγ,t(x, 0) and recall from (4.13) that we have

wγ(x, t) = (Fγ ∗ (θw̃)(x, ·))(t), (4.29)

for all γ ∈ [γ0,+∞), x ∈ Rn and t ∈ (−T0, T0), where Fγ is defined in (4.9) and w̃(x, η) := w(x, hη).
Let us first deduce from Lemma 4.2 the following estimate on wγ .

Lemma 4.3. There exist two positive constants δ4 and δ5, such that the estimate

‖∇x′wγ‖2L2((Ω3\Ω2)×(−T0/2,T0/2)) + ‖wγ‖2L2((Ω3\Ω2)×(−T0/2,T0/2))

≤ C
(
e−δ4γ + eδ5γ‖∂νw̃‖2L2(Γ∗×(−3T0,3T0))

)
,

holds for all γ ∈ [γ0,+∞).

Proof. Let ε ∈ (0, 1) be given by Lemma 4.2 and fix κ ∈ [T0 − ε, T0 + ε]. We assume, upon possibly
shortening ε into the left hand side of the estimate (4.22) in Lemma 4.2, that ε < T0/2. Since wγ(x, z) :=
wγ,Re(z)(x, Im (z)) is analytic in z ∈ {ζ ∈ C, Re (ζ) ∈ (−T0, T0), Im (ζ) ∈ (−1, 1)} for every fixed
x ∈ ω2 \ ω3, the Cauchy formula yields

wγ(x, κ) =
1

2iπ

∫
|z−κ|=%

wγ(x, z)

z − κ
dz =

1

2π

∫ 2π

0
wγ(x, κ+ %eiφ)dφ, % ∈ (0, ε).

Therefore, we have |wγ(x, κ)|2 ≤ (2π)−1
∫ 2π

0

∣∣wγ(x, κ+ %eiφ)
∣∣2 dφ, from the Cauchy-Schwarz inequality.

Since the above estimate is valid uniformly in % ∈ (0, ε), we find that

|wγ(x, κ)|2 ≤ 1

2πε

∫ ε

0

∫ 2π

0

∣∣∣wγ(x, κ+ %eiφ)
∣∣∣2 dφd%

≤ 1

2πε

∫
|τ |≤ε

∫
|t−κ|≤ε

|wγ(x, t+ iτ)|2 dtdτ

≤ 1

2πε

∫ T0

−T0
‖wγ,t(x, ·)‖2L2(−ε,ε)dt,

and hence

‖wγ‖2L2((Ω3\Ω2)×(−T0/2,T0/2)) ≤ C
∫ T0

−T0
‖wγ,t‖2L2((Ω3\Ω2)×(−ε,ε))dt,

upon integrating with respect to (x, κ) over (Ω3 \ Ω2)×(−T0/2, T0/2). Thus, bearing in mind (4.12)-(4.13)
and applying Lemma 4.2, we end up getting that

‖wγ‖2L2((Ω3\Ω2)×(−T0/2,T0/2)) ≤ C
(
e−Cγ + eCγ‖∂νw̃‖2L2(Γ∗×(−3T0,3T0))

)
. (4.30)

Finally, we notice upon arguing in the same way, that∇x′wγ may be substituted for wγ in the left hand side
of (4.30), so the desired result follows from this and (4.30). �

We next establish the coming technical result with the help of Lemma 4.3.

Lemma 4.4. There exists T1 ∈ (0, T ), such that we have

‖v‖2L2((Ω3\Ω2)×(−T1,T1)) +‖∇x′v‖2L2((Ω3\Ω2)×(−T1,T1)) ≤ C
(

1

γ2µN
+ eδ5γ‖∂νv‖2L2(Γ∗×(−T,T ))

)
, (4.31)

for every γ ∈ [γ0,+∞). Here C > 0 depends only on ω, ω0, and T , and the constant δ5 is the same as in
Lemma 4.3.
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Proof. Let û(·, ζ), for ζ ∈ R, denote the partial Fourier transform computed at ζ of t 7→ u(·, t). In light of
(4.29), it holds true that

θ̂w̃(·, ζ)− ŵγ(·, ζ) = (1− F̂γ)θ̂w̃(·, ζ), ζ ∈ R. (4.32)

Therefore, taking into account that F̂γ(ζ) = e−(ζ/γρ)2m , using that 1 − e−y2m ≤ CyN for all y ∈ [0,+∞)
(since 2m ≥ N from (4.8)), and recalling that ρ > µ and γ > 1, we derive from (4.32) that

‖θ̂w̃(x, ·)− ŵγ(x, ·)‖L2(R) ≤
1

γµN
‖ζN θ̂w̃(x, ·)‖L2(R), x ∈ Ω3 \ Ω2. (4.33)

Since the function θ, defined in (4.12), is supported in (−3T0, 3T0), it then follows from (4.33) that

‖θw̃(x, ·)− wγ(x, ·)‖L2(R) ≤
1

γµN
‖∂Nt (θw̃)(x, ·)‖L2(R) ≤

C

γµN
‖w̃(x, ·)‖HN (−3T0,3T0), x ∈ Ω3 \ Ω2,

(4.34)
for some constant C > 0 depending neither on x nor on γ. Thus, bearing in mind that θ(t) = 1 for each
t ∈ [−T0/2, T0/2], we get upon squaring and integrating both sides of (4.34) with respect to x over Ω3 \Ω2,
that

‖w̃ − wγ‖L2((Ω3\Ω2)×(−T0/2,T0/2)) ≤
C

γµN
, γ ∈ (1,+∞). (4.35)

Here we used (4.18) to bound from above the L2(Ω3 \Ω2, H
N (−3T0, 3T0))-norm of the function w̃(x, t) =

w(x, T/(3T0)t), uniformly in γ ∈ (0, 1).
Further, we proceed in the same way as in the derivation of (4.35), and obtain that

‖∇x′w̃ −∇x′wγ‖L2((Ω3\Ω2)×(−T0/2,T0/2)) ≤
C

γµN
.

From this, (4.35) and Lemma 4.3, it follows for all γ ∈ [γ0,+∞) that

‖w̃‖2L2((Ω3\Ω2)×(−T0/2,T0/2)) + ‖∇x′w̃‖2L2((Ω3\Ω2)×(−T0/2,T0/2))

≤ C

γ2µN
+ ‖wγ‖2L2((Ω3\Ω2)×(−T0/2,T0/2)) + ‖∇x′wγ‖2L2((Ω3\Ω2)×(−T0/2,T0/2))

≤ C

(
1

γ2µN
+ eδ5γ‖∂νw̃‖2L2(Γ∗×(−3T0,3T0))

)
,

provided T0 is sufficiently large. As a consequence we have

‖w‖2L2((Ω2\Ω3)×(−hT0/2,hT0/2)) + ‖∇x′w‖2L2((Ω2\Ω3)×(−hT0/2,hT0/2))

≤ C

(
1

γ2µN
+ eδ5γ‖∂νw‖2L2(Γ∗×(−3hT0,3hT0))

)
, (4.36)

since w̃(·, t) = w(·, ht) for every t ∈ R. Finally, bearing in mind that h = T/(3T0) and recalling from
(4.16) that w(x, t) = χ(x′)v(x, t) = v(x, t) for every (x, t) ∈ (Ω3 \Ω2)× (−T, T ), we end up getting from
(4.36) that

‖v‖2L2((Ω2\Ω3)×(−T/6,T/6)) + ‖∇x′v‖2L2((Ω2\Ω3)×(−T/6,T/6)) ≤ C
(

1

γ2µN
+ eδ5γ‖∂νv‖2L2(Γ∗×(−T,T ))

)
.

This yields (4.31) with T1 = T/6. �

Armed with Lemma 4.4, we are now in position to complete the proof of Lemma 2.2. This can be done
upon applying (4.31) with γ = |log ‖∂νv‖∗| /δ5, which is permitted when ‖∂νv‖∗ ∈ (0, e−δ5γ0 ], in such a
way that γ ≥ γ0. We find that

‖v‖2L2((Ω2\Ω3)×(−T1,T1)) + ‖∇x′v‖2L2((Ω2\Ω3)×(−T1,T1))
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≤ C
(
|log ‖∂νv‖∗|

−2µN + ‖∂νv‖∗
)
≤ C ′ |log ‖∂νv‖∗|

−2µN , (4.37)

where C ′ is a suitable positive constant. On the other hand, when ‖∂νv‖∗ > e−δ5γ0 , it is clear from the
estimate ‖v‖L2(−T,T ;H1(Ω)) ≤ 2C‖u0‖H2(N+1)(Ω), arising from (4.1), that

‖v‖2L2((Ω2\Ω3)×(−T1,T1)) + ‖∇x′v‖2L2((Ω2\Ω3)×(−T1,T1)) ≤ C ‖∂νv‖
2µN
∗ ,

so we get (2.9) directly from this and from (4.37).

5. APPENDIX

In this appendix we prove the parabolic Carleman estimate stated in Lemma 4.1. Incidentally we make
precise the dependence with respect to λ and h, of the constant C0 appearing in the right hand side of (4.7).

We stick with the notations of Section 4 and start by gathering several useful straightforward properties
of the weight functions ϕ0 and α, defined by (4.4)-(4.5), in the coming lemma.

Lemma 5.1. We may find three constants λ0 ≥ 1, c > 0 and c′ > 0, all of them depending only on ω0, such
that for each λ ≥ λ0 and all (x′, τ) ∈ ω0 × (−1, 1), the following estimates hold simultaneously:

D2
x′α(∇x′α,∇x′α)(x′, τ) ≥ cλ4ϕ0(x′, τ)3, (5.1)∣∣∆x′α(x′, τ)

∣∣ ≤ c′λ2ϕ0(x′, τ)2, (5.2)∣∣∆2
x′α(x′, τ)

∣∣ ≤ c′λ4ϕ0(x′, τ)3, (5.3)∣∣(∂τα)(∆x′α)(x′, τ)
∣∣ ≤ c′λ2ϕ0(x′, τ)3, (5.4)∣∣∂2

τα(x′, τ)
∣∣ ≤ c′ϕ0(x′, τ)3, (5.5)∣∣∇x′(∂τα)(x′, τ) · ∇x′α(x′, τ)
∣∣ ≤ c′λ2ϕ0(x′, τ)3, (5.6)

D2
x′α(ξ′, ξ′)(x′, τ) ≥ −cλϕ0

∣∣ξ′∣∣2 , ξ′ ∈ Rn−1. (5.7)

In the sequel C denotes a generic positive constant which depends only on ω0, whose value can change
from line to line.

Put z := eσαw and notice for further reference from (4.4)-(4.5) that

z(x,±1) = 0, x ∈ Ω0 = ω0 × R. (5.8)

Next, setting fσ := eσα(h−1∂τ −∆)w, we find through direct computation that

L1z + L2z = gσ := fσ − σ(∆x′α)z, (5.9)

where

L1z := h−1∂τz + 2σ∇x′α · ∇x′z, (5.10)

L2z := −∆z − σ
(
h−1(∂τα) + σ |∇x′α|2

)
z. (5.11)

Due to (5.9), we have the identity∑
j=1,2

‖Ljz‖2L2(Ω0×(−1,1)) + 2Re

(∫ 1

−1

∫
Ω0

L1zL2zdxdτ

)
= ‖gσ‖2L2(Ω0×(−1,1)), (5.12)

so we are left with the task of estimating the L2(Ω0× (−1, 1))-scalar product of L1z and L2z, appearing in
the left hand side of (5.12). To do that, we notice from (5.10)-(5.11) that

2

∫ 1

−1

∫
Ω0

L1zL2zdxdτ =
∑

j=1,2,3

Ij , (5.13)
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where

I1 := 2h−1

∫ 1

−1

∫
Ω0

∂τz
(
−∆z − σ

(
h−1(∂τα) + σ |∇x′α|2

)
z
)
dxdτ, (5.14)

I2 := −4σ

∫ 1

−1

∫
Ω0

(∇x′α · ∇x′z) ∆zdxdτ, (5.15)

I3 := −4σ2

∫ 1

−1

∫
Ω0

(∇x′α · ∇x′z)
(
h−1(∂τα) + σ |∇x′α|2

)
zdxdτ. (5.16)

Bearing in mind that z|∂Ω0×(−1,1) = 0 from the very definition of z (since the same is true for the function
w, according to (4.17)), we integrate by parts with respect to x in (5.14), and obtain that

Re (I1) = h−1

∫ 1

−1

∫
Ω0

(
∂τ |∇z|2 − σ(h−1∂τα+ σ |∇x′α|2)∂τ |z|2

)
dxdτ.

Recalling (5.8), we next integrate by parts with respect to τ , and find that

Re (I1) = σh−1

∫ 1

−1

∫
Ω0

(
h−1(∂2

τα) |z|2 + 2σ∇x′(∂τα) · ∇x′α
)
|z|2dxdτ. (5.17)

The second term, I2, is handled in a similar way. Namely, we integrate by parts with respect to x in the right
hand side of (5.15), use the identity∇z = (∂νz)ν on ∂Ω0 × (−1, 1), and get

Re (I2) = 4σ

∫ 1

−1

∫
Ω0

D2
x′α(∇x′z,∇x′z)dxdτ + 2σ

∫ 1

−1

∫
Ω0

∇α · ∇|∇z|2dxdτ

−4σ

∫ 1

−1

∫
∂Ω0

(∂να) |∂νz|2 dxdτ.

Therefore, taking into account that∫ 1

−1

∫
Ω0

∇α · ∇|∇z|2dxdτ = −
∫ 1

−1

∫
Ω0

(∆α)|∇z|2dxdτ +

∫ 1

−1

∫
∂Ω0

(∂να) |∂νz|2 dxdτ,

we see that

Re (I2) = 4σ

∫ 1

−1

∫
Ω0

D2
x′α(∇x′z,∇x′z)dxdτ − 2σ

∫ 1

−1

∫
Ω0

(∆α)|∇z|2dxdτ

−2σ

∫ 1

−1

∫
∂Ω0

(∂να) |∂νz|2 dxdτ. (5.18)

Let us now compute the real part of I3. To this end, we notice upon integrating by parts with respect to x,
that

2Re

(∫ 1

−1

∫
Ω0

|∇x′α|2 (∇x′α · ∇x′z)zdxdτ
)

= −
∫ 1

−1

∫
Ω0

(
|∇x′α|2 ∆x′α+ 2D2

x′α(∇x′α,∇x′α)
)
|z|2dxdτ, (5.19)

and that

2Re

(∫ 1

−1

∫
Ω0

(∂τα)(∇x′α · ∇x′z)zdxdτ
)

= −
∫ 1

−1

∫
Ω0

((∂τα)(∆x′α) + (∇x′(∂τα) · ∇x′α)) |z|2 dxdτ.
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It follows from this, (5.16) and (5.19) that

Re (I3) = 2σ3

∫ 1

−1

∫
Ω0

(
|∇x′α|2 (∆x′α) + 2D2

x′α(∇x′α,∇x′α)
)
|z|2 dxdτ

+2σ2h−1

∫ 1

−1

∫
Ω0

((∂τα)(∆x′α) +∇x′(∂τα) · ∇x′α) |z|2 dxdτ. (5.20)

Finally, putting (5.13), (5.17)-(5.18) and (5.20) together, we end up getting that

2Re

(∫ 1

−1

∫
Ω0

L1zL2zdxdτ

)
= −2σ

∫ 1

−1

∫
Ω0

(∆x′α)
(
|∇z|2 − σ2 |∇x′α|2 |z|2

)
dxdτ

+4σ

∫ 1

−1

∫
Ω0

D2
x′α(∇x′z,∇x′z)dxdτ +

∑
j=1,2,3

Jj , (5.21)

where have set

J1 := 4σ3

∫ 1

−1

∫
Ω0

D2
x′α(∇x′α,∇x′α) |z|2 dxdτ, (5.22)

J2 := −2σ

∫ 1

−1

∫
∂Ω0

(∂να) |∂νz|2 dxdτ, (5.23)

J3 := 2σ2h−1

∫ 1

−1

∫
Ω0

(2∇x′(∂τα) · ∇x′α+ (∂τα)∆x′α) |z|2 dxdτ

+σh−2

∫ 1

−1

∫
Ω0

(∂2
τα) |z|2 dxdτ. (5.24)

The next step of the proof is to bound from below each of the three terms Jj , j = 1, 2, 3, appearing in the
right hand side of (5.21). In view of (5.1), J1 is easily treated by (5.22), as we have

J1 ≥ 4cσ3λ4‖ϕ3/2
0 z‖2L2(Ω0×(−1,1)), λ ≥ λ0, (5.25)

where c is the constant defined in Lemma 5.1. Similarly, we deduce from (5.4)–(5.6) and (5.24), that

|J3| ≤ (6σ2h−1 + σh−2)C2λ
2‖ϕ3/2

0 z‖2L2(Ω0×(−1,1)), λ ≥ λ0,

where c′ is the same as in Lemma 5.1. Therefore, for all σ ≥ σ0/h, it follows readily from this and (5.25),
that

J1 + J3 ≥ Cσ3λ4‖ϕ3/2
0 z‖2L2(Ω0×(−1,1)), λ ≥ λ0, (5.26)

for some constant C > 0, depending only on ω0. On the other hand, since ∂να = λ(∂νψ0)ϕ0 on ∂Ω0 ×
(−1, 1) , by (4.4), the identity (5.23) yields

J2 ≥ −2σλ‖ϕ1/2
0 (∂νψ0)1/2∂νz‖2L2(Γ∗×(−1,1).

Now, putting this together with (5.7), (5.21) and (5.26), we obtain for all λ ≥ λ0 and all σ ≥ σ0/h, that

2Re

(∫ 1

−1

∫
Ω0

L1zL2zdxdτ

)
≥ Cσ3λ4‖ϕ3/2

0 z‖2L2(Ω0×(−1,1)) − 4cσλ‖ϕ1/2
0 ∇x′z‖L2(Ω0×(−1,1))

−2σλ‖ϕ1/2
0 (∂νψ0)1/2∂νz‖2L2(Γ∗×(−1,1)) − 2S, (5.27)

where

S := σ

∫ 1

−1

∫
Ω0

(∆x′α)
(
|∇z|2 − σ2 |∇x′α|2 |z|2

)
dxdτ. (5.28)
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The rest of the proof involves bounding S from above. To this purpose we recall from (5.11), that

|∇z|2 − σ2 |∇x′α|2 |z|2 = Re ((L2z)z) +
∆|z|2

2
+ σh−1(∂τα)|z|2,

and then deduce from (5.28) that

S = σ

∫ 1

−1

∫
Ω0

(∆x′α)
(
∆|z|2/2 + Re ((L2z)z) + σh−1(∂τα)|z|2

)
dxdτ

= σ

∫ 1

−1

∫
Ω0

(
(∆2

x′α/2) |z|2 + (∆x′α)
(
Re ((L2z)z) + σh−1(∂τα)|z|2

))
dxdτ.

As a consequence we have

|S| ≤ ‖L2z‖2L2(Q) /4 + ‖|∆2
x′α|1/2z‖2L2(Ω0×(−1,1))

+σ2
(
‖(∆x′α)z‖2L2(Ω0×(−1,1)) + h−1‖ |∂τα| z‖2L2(Ω0×(−1,1))

)
.

This, together with (5.2)-(5.3) and (5.6), yields

|S| ≤ ‖L2z‖2L2(Q) /4 + C
(
σλ4 + σ2λ2(λ2 + h−1)

)
‖ϕ3/2

0 z‖2L2(Ω0×(−1,1)).

It follows from this and (5.27) upon taking σ ≥ σ0/h, that

2Re

(∫ 1

−1

∫
Ω0

L1zL2zdxdτ

)
+
‖L2z‖2L2(Q)

2

≥ σ3λ4‖ϕ3/2
0 z‖2L2(Ω0×(−1,1)) − 4cσ‖ϕ1/2

0 ∇x′z‖
2
L2(Ω0×(−1,1)) − 2σλ‖ϕ1/2

0 (∂νψ0)1/2∂νz‖2L2(Γ∗×(−1,1)).

Having estimated all the contributions depending on h, we proceed as in [20, Appendix], and obtain the
desired result.
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