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ABSTRACT. We prove that the real-valued electric potential q P Lmaxp2,3n{5q
pΩq of the Dirichlet Laplacian

´∆` q acting in a bounded domain Ω Ă Rn, n ě 3, is uniquely determined by the asymptotics of the eigen-
pairs formed by the eigenvalues and the boundary observation of the normal derivative of the eigenfunctions.

1. INTRODUCTION

1.1. Statement of the main result. Let Ω Ă Rn, n ě 3, be a bounded domain with C2 boundary Γ “

BΩ. Let q P Qc :“
 

q P Lmaxp2,3n{5qpΩ,Rq s. t. qpxq ě ´c, x P Ω
(

, where c is an a priori fixed positive
constant. We consider the perturbed Dirichlet Laplacian Aq “ ´∆ ` q in L2pΩq, i.e., the self-adjoint
operator generated in L2pΩq by the closed Hermitian form

aqpu, vq “

ż

Ω
p∇u ¨∇v ` quvq dx, u, v P Dpaqq :“ H1

0 pΩq, (1.1)

see Appendix A . Since the embeddingH1
0 pΩq Ă L2pΩq is compact, the operatorAq has a compact resolvent

and there exist a sequence of eigenfunctions φk P DpAqq “ tu P H1
0 pΩq, p´∆ ` qqu P L2pΩqu which

form an orthonormal basis of L2pΩq, and a sequence of eigenvalues

´8 ă λ1 ď λ2 ď . . . ď λk ď λk`1 ď . . .

satisfying limkÑ`8 λk “ `8 and
Aqφk “ λkφk, k ě 1. (1.2)

For k ě 1, we set ψk :“ pBνφkq|Γ, where ν denotes the outward unit vector to Γ.

In the present paper we examine the inverse spectral problem of knowing whether knowledge of the
asymptotic behavior (with respect to k) of the boundary spectral data tpλk, ψkq, k ě 1u uniquely determines
q.

The study of inverse spectral problems goes back at least to 1929 and Ambarsumian’s pioneer article [2].
Later on, Borg [3], Levinson [20], and Gel’fand and Levitan [14] proved that knowledge of the spectrum and
additional spectral data uniquely determines the electric potential of one dimensional Schrödinger operators.

Gel’fand and Levitan’s result was adapted to the multi-dimensional case by Nachman, Sylvester and
Uhlmann in [21], where the potential was identified through the eigenpairs formed by the eigenvalues and the
boundary measurement of the normal derivative of the eigenfunctions of the Dirichlet Laplacian. While full
knowledge of the boundary spectral data was requested by [21], Isozaki retrieved the potential in [17] when
finitely many eigenpairs remain unknown. Further downsizing the data, Choulli and Stefanov established in
[11] that asymptotic knowledge of the boundary spectral data is enough to recover the potential. This result
was improved by [18, 24] upon weakening the condition imposed on the asymptotic spectral data. The
analysis carried out in [18, 24] was extended to magnetic Schrödinger operators in [19] and to Riemannian
manifolds in [4]. In the above mentioned articles, the measurement of the Neumann data is performed on
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the entire boundary of the domain. We refer the reader to [7] for a Borg-Levinson theorem with partial
boundary measurement of the normal derivative of the eigenfunctions.

The stability issue in the inverse problem of determining the electric potential from boundary spectral
data was first treated by Alessandrini and Sylvester in [1]. We refer the reader to [9, 5, 6, 8, 11, 18] for the
analysis of this problem under various conditions on both the unknown potential and the boundary spectral
data.

All the above mentioned results were obtained for Schrödinger operators with regular coefficients. Actu-
ally, there is only a small number of mathematical papers studying inverse spectral problems with singular
coefficients. In [22], Pävarinta and Serov retrieved unknown potentials in LppΩ,Rq, p ą n{2, from the full
boundary spectral data. Later on, in [23], Pohjola showed unique determination of the electric potential in
Ln{2pΩ,Rq from either full boundary spectral data when n “ 3 or incomplete boundary spectral data when
n ě 4, and of an unknown potential in LppΩ,Rq with p ą n{2 and n “ 3, from incomplete boundary spec-
tral data. More recently, the same problem was examined in [10] for the multidimensional Laplace operator
endowed with Robin boundary conditions instead of the Dirichlet ones. As far as we know, there is no result
available in the mathematical literature dealing with the identification of a singular potential by asymptotic
knowledge of boundary spectral data similar to the ones used in [4, 10, 11, 18, 19].

1.2. Main result. The main result of this article is as follows.

Theorem 1.1. Let qj P Qc, j “ 1, 2, for some constant c ą 0. Denote by tpλj,k, ψj,kq, k ě 1u the boundary
spectral data of the operator Aqj and assume that

lim
kÑ8

pλ1,k ´ λ2,kq “ 0 and
`8
ÿ

k“1

}ψ1,k ´ ψ2,k}
2
L2pΓq ă 8. (1.3)

Then, we have q1 “ q2.

To the best of our knowledge, Theorem 1.1 contains the first Borg-Levinson identification result of a
singular potential by asymptotic knowledge of the boundary spectral data. Notice that (1.3) is the exact
same condition requested by [18, 24] on the boundary spectral data, in the identification of a bounded
electric potential. It turns out that this condition still applies to the determination of a singular potential
lying in L3n{5pΩq when n ě 4 or in L2pΩq when n “ 3. Actually, Theorem 1.1 goes one step further than
[23] in downsizing the boundary spectral used for recovering a singular potential, but this is at the expense
of greater regularity for the admissible unknown coefficient (L2pΩq instead of LppΩq where p ą 3{2 when
n “ 3 and L3n{5pΩq instead of Ln{2pΩq when n ě 4). This higher regularity assumption is requested by
the analysis conducted in the present article to establish Theorem 1.1, and we refer the reader to Remarks
4.1 and 4.2 below for a more detailed explanation of this technical point.

There are two main ingredients in the proof of Theorem 1.1. The first one is a suitable L2pΓq-estimate
of the normal derivative of any H1pΩq-solution to the Laplace equation. It is given in Proposition 2.2 and
generalizes a classical elliptic regularity result to the case of L3n{5pΩq-potentials. The second one is an
adaptation of Isozaki’s representation formula, presented in [17], to the framework of singular potentials
lying in Qc.

1.3. Outline. This paper is organized as follows. In Section 2, we establish several technical results which
are useful for the proof of Theorem 1.1. In Section 3 we adapt the celebrated Isozaki’s representation
formula to the case of singular potentials. Finally, Section 4 contains to the proof of Theorem 1.1 and the
Appendix is devoted to the definition of Aq.
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2. PRELIMINARIES

Let q P L3n{5pΩq be real-valued. For λ P C and f P H3{2pΓq, we consider the following boundary value
problem (BVP)

$

&

%

p´∆` q ´ λqu “ 0 in Ω

u “ f on Γ.
(2.4)

As will appear in the remaining part of this article, taking f in H3{2pΓq is enough for the purpose of this
work and we point out that unlike in [23], where more exotic Dirichlet data were considered, there is no
need to go this way in the present paper.

With reference to [23, Lemma 2.3 and Corollary 2.4], there exists λ0 ą 0 such that for all λ P Czp´λ0,`8q,
the BVP (2.4) admits a unique solution u P W 2,ppΩq, where p “ 2n{pn ` 2q. Moreover, u satisfies the
estimate

}u}W 2,ppΩq ď Cλ}f}H3{2pΓq (2.5)

for some positive constant Cλ which depends on λ.

In this section we aim to study the influence of either the potential q or the spectral parameter λ, on the
solution u to (2.4). More precisely, bearing in mind that the trace operator

τ1 : W 2,ppΩq ÝÑ W 1´1{p,ppΓq

u ÞÝÑ Bνu,
(2.6)

is continuous, we shall first examine the dependence of Bνu with respect to the electric potential when λ is
sent to ´8, and, in a second time, with respect to the spectral parameter when the potential q is fixed.

2.1. Influence of the potential in the asymptotic regime λ Ñ ´8. The result that we have in mind is
inspired by [18, Lemma 2.5] and [24, Lemma 2.3]. For any two potentials qj P Qc, j “ 1, 2, where c ą 0 is
fixed, it indicates that the two solutions to (2.4) associated with either q “ q1 or q “ q2 are close as λ goes
to ´8.

Lemma 2.1. Put p :“ 2n{pn ` 2q, let f P H3{2pΓq and pick qj P Qc, j “ 1, 2, for some c ą 0. For
λ P RzpSppAq1q Y SppAq2qq, denote by uj,λ the solution to the BVP (2.4) with q “ qj . Then, we have

lim
λÑ´8

}Bνu1,λ ´ Bνu2,λ}LppΓq “ 0. (2.7)

Proof. Since the function uλ “ u1,λ ´ u2,λ solves
$

&

%

p´∆` q1 ´ λquλ “ pq2 ´ q1qu2,λ in Ω

uλ “ 0 on Γ,

we deduce from [15, Theorem 2.3.3.6] that

}uλ}W 2,ppΩq ď C}pq2 ´ q1qu2,λ}LppΩq. (2.8)

Here and in the remaining part of this proof, C denotes a positive constant that may change from line to line,
but which is always independent of λ.

Further, from the continuity of the trace operator τ1 defined in (2.6), we get for all ε P p0, 1´ 1{pq that

}Bνuλ}
W

1´ 1
p´ε,ppΓq

ď C}uλ}W 2´ε,ppΩq
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ď C}uλ}
ε
2

LppΩq}uλ}
1´ ε

2

W 2,ppΩq
, (2.9)

upon interpolating between LppΩq and W 2,ppΩq. On the other hand, we have

}u2,λ}
L

2n
n´2 pΩq

ď C}f}
H

3
2 pΓq

(2.10)

from [23, Lemma 3.2.].

Moreover, we have }uλ}LppΩq ď C
|λ|}pq2 ´ q1qu2,λ}LppΩq by virtue of [23, Lemma 3.1], and hence

}uλ}LppΩq ď
C

|λ|
}q2 ´ q1}L

n
2 pΩq

}u2,λ}
L

2n
n´2 pΩq

ď
C

|λ|
}q2 ´ q1}

L
3n
5 pΩq

}u2,λ}
L

2n
n´2 pΩq

from [15, Theorem 2.3.1.5] and the Hölder inequality. From this and (2.10), it then follows that

}uλ}LppΩq ď
C

|λ|
. (2.11)

Similarly, using (2.8) we get that

}uλ}W 2,ppΩq ď C}q2 ´ q1}L
n
2 pΩq

}u2,λ}
L

2n
n´2 pΩq

ď C}q2 ´ q1}
L

3n
5 pΩq

}u2,λ}
L

2n
n´2 pΩq

,

and consequently }uλ}W 2,ppΩq ď C by (2.10). Putting this together with (2.9) and (2.11), we find that

}Bνuλ}
W

1´ 1
p´ε,ppΓq

ď
C

|λ|
ε
2

for all ε P p0, 1´ 1{pq, which immediately entails that

lim
λÑ´8

}Bνuλ}
W

1´ 1
p´ε,ppΓq

“ 0. (2.12)

Since W 1´1{p´ε,ppΓq is continuously embedded into LppΓq (this is a straightforward consequence of the
definition of the space W 1´1{p´ε,ppΓq, see, e.g., [15, Definition 1.3.3.2]), the desired result follows readily
from (2.12). �

Lemma 2.1 establishes that, in some sense, the influence of the potential is dimmed when the spectral
parameter λ is sent to ´8. Having seen this, we turn now to the representation of the solution to (2.4) in
terms of λ and the boundary spectral data tpλk, ψkq, k ě 1u of the operator Aq.

2.2. A representation formula. Let uµ denote the solution to (2.4) associated with spectral parameter
λ “ µ P CzSppAqq. In this section, we aim to express Bνpuλ ´ uµq in terms of λ, µ and the boundary
spectral data of Aq. Prior to doing that, we will establish that all the ψk’s lie in L2pΓq. This technical result,
which is a byproduct of Proposition 2.2 below, is a key-point in the derivation of the representation formula
of Bνpuλ ´ uµq given in Lemma 2.4.

Let F P L2pΩq. For q P L8pΩq, we recall from the classical elliptic regularity theory (see, e.g., [13,
Section 6.3, Theorem 4]) that any solution u P H1pΩq of the BVP

$

&

%

p´∆` qqu “ F in Ω

u “ 0 on Γ
(2.13)
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lies in H2pΩq and satisfies
}u}H2pΩq ď Cp}u}H1pΩq ` }F }L2pΩqq

for some positive constant C which depends only on Ω and }q}L8pΩq. This yields Bνu P L2pΓq and the
following estimate

}Bνu}L2pΓq ď Cp}u}L2pΩq ` }F }L2pΩqq, (2.14)
where C is another positive constant depending only on Ω and }q}L8pΩq.

However, if q is unbounded, in general there is no such thing as a H2pΩq-solution to (2.13). Hence the
L2pΓq-regularity of the normal derivative Bνu and consequently the energy estimate (2.14) are no longer
guaranteed by the standard theory of elliptic PDEs. Nevertheless, we shall establish in the following propo-
sition that these two properties remain valid provided q is taken in L3n{5pΩq.

Proposition 2.2. Let F P L2pΩq and let q P Qc for some c ą 0. Let u P H1pΩq be a solution to (2.13).
Then, we have Bνu P L2pΓq and the estimate (2.14) holds for some positive constant C depending only on
Ω and q.

Proof. Without loss of generality we assume that F is real-valued in such a way that the solution u to (2.13)
is real-valued as well.

Since q ` c ě 0 by assumption, there exists a sequence pq`q`ě1 P C8pΩq of non-negative functions, such
that

lim
`Ñ`8

}q` ´ pq ` cq}L3n{5pΩq “ 0, (2.15)

and for each ` ě 1, we consider the solution u` P H2pΩq XH1
0 pΩq to the following BVP:

$

&

%

p´∆` q`qu` “ cu` F in Ω

u` “ 0 on Γ.
(2.16)

The derivation of Proposition 2.2 being quite lengthy, we split the rest of the proof into four steps. In the
first one we establish that the sequence pu`q`ě1 is bounded in H1pΩq. The second step is to prove that
pu`q`ě1 converges to u in the W 2,ppΩq-norm, where p “ 2n{pn` 2q. In the third step we show that pu`q`ě1

is bounded in W 2,p1pΩq, with p1 “ 6n{p3n ` 4q. Finally, the fourth step contains the end of the proof of
Proposition 2.2.

Step 1: pu`q`ě1 is bounded in H1pΩq. Let ` P N be fixed. We multiply the first equation of (2.16) by u` and
integrate over Ω. We get that

ż

Ω
|∇u`|2dx`

ż

Ω
q`|u`|

2dx “

ż

Ω
pcu` F qu`dx,

by applying the Green formula. Adding
ş

Ωpq ` cq|u`|
2dx on both sides of the above equality then yields

ż

Ω
|∇u`|2dx`

ż

Ω
pq ` cq|u`|

2dx “

ż

Ω
Gu`dx´

ż

Ω
pq` ´ pq ` cqq|u`|

2dx, (2.17)

where G “ cu`F . Since q` c ě 0 in Ω and u` P H1
0 pΩq, we infer from (2.17) and the Poincaré inequality

that

}u`}
2
H1pΩq ď C0

ˆ
ż

Ω
|q` ´ pq ` cq||u`|

2dx`

ż

Ω
|G||u`|dx

˙

,

where C0 is a positive constant depending only on Ω. Therefore, for all ε ą 0 we get

}u`}
2
H1pΩq ď C0

ˆ

}q` ´ pq ` cq}
L

3n
5 pΩq

}u`}
2

L
6n

3n´5 pΩq
`
ε

2
}u`}

2
L2pΩq `

ε´1

2
}G}2L2pΩq

˙
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from Hölder’s inequality, and hence

}u`}
2
H1pΩq ď C0

ˆ

}q` ´ pq ` cq}L3n{5pΩq}u`}
2
H1pΩq `

ε

2
}u`}

2
L2pΩq `

ε´1

2
}G}2L2pΩq

˙

. (2.18)

by the Sobolev embedding theorem.

Now, with reference to (2.15), we pick `0 ě 1 such that }q`´pq` cq}L3n{5pΩq ď
ε
2 for all ` ě `0. In light

of (2.18), this leads to

}u`}
2
H1pΩq ď C0

´

ε}u`}
2
H1pΩq ` ε

´1}G}2L2pΩq

¯

, ` ě `0,

so by choosing ε “ 1
2C0

ą 0 in this inequality, we find (upon substituting
?

2C0 for C0) that

}u`}H1pΩq ď C0}G}L2pΩq, ` ě `0.

This together with the identity G “ cu` F then yields

}u`}H1pΩq ď C
`

}u}L2pΩq ` }F }L2pΩq

˘

, ` ě 1, (2.19)

where, from now on, C denotes a positive constant depending only on Ω and q, which may change from line
to line.

Step 2: The sequence pu`q`ě1 converges to u in W 2,ppΩq. For ` ě 1 fixed, we see that the function
v` :“ u´ u` P H

1pΩq solves
$

&

%

´∆v` ` pq ` cqv` “ pq` ´ pq ` cqqu` in Ω

v` “ 0 on Γ,
(2.20)

and since q ` c ě 0, this immediately entails that

}v`}H1pΩq ď C}pq` ´ pq ` cqqu`}H´1pΩq. (2.21)

Next, the space H1
0 pΩq being continuously embedded in L2n{pn´2qpΩq according to the Sobolev embedding

theorem, then, by duality, the space LppΩq where p “ 2n{pn` 2q, is continuously embedded into H´1pΩq.
Thus, it follows from (2.21) that

}v`}H1pΩq ď C}pq` ´ pq ` cqqu`}LppΩq. (2.22)

Further, we have
$

&

%

´∆v` “ ´pq ` cqv` ` pq` ´ pq ` cqqu` in Ω

v` “ 0 on Γ,
(2.23)

by virtue of (2.20), and consequently

}v`}W 2,ppΩq ď C0p}pq ` cqv`}LppΩq ` }pq` ´ pq ` cqqu`}LppΩqq, (2.24)

from [15, Theorem 2.4.2.5]. Here and in the remaining part of this proof, C0 denotes a generic positive
constant depending only on Ω, which may change from line to line.

Moreover, since

}pq ` cqv`}LppΩq ď }q ` c}L
n
2 pΩq

}v`}
L

2n
n´2 pΩq

ď C}v`}H1pΩq,

by Hölder’s inequality and Sobolev embedding theorem, we deduce from (2.22) and (2.24) that

}v`}W 2,ppΩq ď C}pq` ´ pq ` cqqu`}LppΩq.
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Thus, applying the Hölder inequality and the Sobolev embedding theorem once more, we find that

}v`}W 2,ppΩq ď C}q` ´ pq ` cq}L3n{5}u`}H1pΩq.

From this, (2.15), (2.19) and (2.21) it then follows that

lim
`Ñ`8

}u` ´ u}W 2,ppΩq “ 0.

Step 3: The sequence pu`q`ě1 is bounded in W 2,p1pΩq, where p1 “ 6n{p3n` 4q. Let us recall from (2.16)
that for all natural number `, the function u` solves

$

&

%

´∆u` “ ´q`u` `G in Ω

u` “ 0 on Γ,
(2.25)

where G “ cu ` F . Thus, by applying [15, Theorem 2.4.2.5] and taking into account that L2pΩq is
continuously embedded in Lp1pΩq, we obtain that

}u`}W 2,p1 pΩq ď C0p}q`u`}Lp1 pΩq ` }G}L2pΩqq. (2.26)

Further, we have

}q`u`}Lp1 pΩq ď }q`}L
6n
10 pΩq

}u`}
L

6n
3n´6 pΩq

ď C0}q`}
L

3n
5 pΩq

}u`}H1pΩq,

from Hölder’s inequality and the Sobolev embedding theorem, and consequently

}q`u`}Lp1 pΩq ď Cp}u}L2pΩq ` }F }L2pΩqq,

from (2.15) and (2.19). Putting this with (2.26), we find that

}u`}W 2,p1 pΩq ď Cp}u}L2pΩq ` }F }L2pΩqq. (2.27)

Step 4: End of the proof. We aim to show that for all ` ě 1, we have

}Bνu`}L2pΓq ď Cp}u}L2pΩq ` }F }L2pΩqq. (2.28)

For this purpose we introduce a vector field γ P C1pΩ,Rnq such that γ|Γ “ ν. Then, we multiply the first
line of (2.16) by γ ¨∇u`, integrate over Ω, and get

ż

Ω
p´∆u`qγ ¨∇u`dx`

ż

Ω
q` u`γ ¨∇u`dx “

ż

Ω
c uγ ¨∇u`dx`

ż

Ω
Fγ ¨∇u`dx. (2.29)

The first term on the left-hand side of (2.29) is treated by the divergence formula:
ż

Ω
p∆u`qγ ¨∇u`dx “

ż

Γ
|Bνu`|

2dσ ´

ż

Ω
∇pγ ¨∇u`q ¨∇u`dx. (2.30)

Next, writing γ “ pγ1, . . . , γnq
T , we get through direct computation that

∇pγ ¨∇u`q ¨∇u` “

n
ÿ

i,j“1

pBi pγjBju`qq Biu`

“

n
ÿ

i,j“1

ppBiγjqBju` ` γjBiBju`q Biu`

“

n
ÿ

i,j“1

pBiγjqpBju`qBiu` `
1

2
γ ¨∇|∇u`|2. (2.31)
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Further, taking into account that γ ¨ ν “ 1 on Γ and |∇u`| “ |Bνu`| on Γ, we have
ş

Ω γ ¨ ∇|∇u`|
2dx “

}Bνu`}
2
L2pΓq ´

ş

Ωp∇ ¨ γq|∇u`|
2dx, and (2.30)-(2.31) then yield

ż

Ω
∆u`pγ ¨∇u`qdx “

1

2
}Bνu`}

2
L2pΓq `

ż

Ω
Hpxq∇u`pxqdx,

where

HpxqX “ ´

n
ÿ

i,j“1

pBiγjqpxqXjXi `
1

2
p∇ ¨ γpxqq |X|2, X “ pX1, . . . , Xnq P Rn, x P Ω.

From this and (2.29) it then follows that

1

2
}Bνu`}

2
L2pΓq “ ´

ż

Ω
Hpxq∇u`pxqdx`

ż

Ω
q`u` γ ¨∇u`dx´

ż

Ω
G γ ¨∇u`dx. (2.32)

By Hölder’s inequality, the second term on the right hand side of (2.32) is bounded as
ˇ

ˇ

ˇ

ˇ

ż

Ω
q` u` γ ¨∇u`dx

ˇ

ˇ

ˇ

ˇ

ď }γ}L8pΩqn}q`}L
6n
10 pΩq

}u`}
L

6n
3n´8 pΩq

}∇u`}
L

6n
3n´2 pΩq

ď C}q`}
L

3n
5 pΩq

}u`}
L

6n
3n´8 pΩq

}u`}
W

1, 6n
3n´2 pΩq

.

Thus, we have
ˇ

ˇ

ş

Ω q` u` γ ¨∇u`dx
ˇ

ˇ ď C}q`}
L

3n
5 pΩq

}u`}
2
W 2,p1 pΩq

from the Sobolev embedding theorem (see,

e.g., [15, Theorem 1.4.4.1]), and consequently
ˇ

ˇ

ˇ

ˇ

ż

Ω
q` u` γ ¨∇u`dx

ˇ

ˇ

ˇ

ˇ

ď C
`

}u}L2pΩq ` }F }L2pΩq

˘2
,

from (2.27). Putting this together with (2.19) and (2.32), we obtain that

}Bνu`}
2
L2pΓq ď C

`

}u}L2pΩq ` }F }L2pΩq

˘2
. (2.33)

Therefore, the sequence pBνu`q`ě1 is weakly convergent inL2pΓq, by Banach-Alaoglu’s theorem. We denote
by w its weak limit in L2pΓq. On the other hand, pu`q`ě1 converges to u in the norm-topology of W 2,ppΩq
according to Step 2, hence pBνu`q`ě1 strongly converges to Bνu in LppΓq. Now, since pBνu`q` ě1 converges
to w and to Bνu inD1pΓq, the space of distributions on Γ, we have Bνu “ w P L2pΓq from the uniqueness of
the limit, which proves the first claim of the result. Finally, (2.14) follows readily from (2.33) and the weak
convergence of pBνu`q`ě1 to Bνu in the Hilbert space L2pΓq. �

Remark 2.3. Proposition 2.2 ensures us for all q P Qc, c ą 0, that all functions u P DpAqq have a normal
derivative Bνu P L2pΓq satisfying

}Bνu}L2pΓq ď C}u}DpAqq, (2.34)

where C is a positive constant depending only on Ω and q. Here, } ¨ }DpAqq is the graph norm on DpAqq
defined by

}u}2DpAqq “ }u}
2
L2pΩq ` }Aqu}

2
L2pΩq

or equivalently by

}u}2DpAqq “
8
ÿ

k“1

p1` λ2
kq| xu, φkyL2pΩq |

2,

for all u P DpAqq. The operator Aq being self-adjoint and every self-adjoint operator being closed, the
space DpAqq is Hilbertian under the graph norm } ¨ }DpAqq, see, e.g., [16, Section 4.1].
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In particular, since all the eigenfunctions φk, k ě 1, lie in DpAqq, we deduce from Remark 2.3 that
ψk P L

2pΓq and that
}ψk}L2pΓq ď Cp1` |λk|q. (2.35)

This nice features will prove to be useful for relating the normal derivative of the difference of two solutions
to (2.4) associated with two arbitrary spectral parameters taken in the resolvent set of Aq, to the boundary
spectral data of Aq.

Lemma 2.4. Let q P Qc, for some c ą 0. Pick λ and µ in CzSppAqq, and for f P H
3
2 pΓq, denote by uλ

(resp., uµ) the H1pΩq-solution to (2.4) associated with λ (resp., µ). Then, we have

Bνpuλ ´ uµq “ pµ´ λq
`8
ÿ

k“1

xf, ψkyL2pΓq

pλ´ λkqpµ´ λkq
ψk, (2.36)

the series being convergent in L2pΓq.

Proof. Putting vλ,µ :“ uλ ´ uµ, it is easy to check that
$

&

%

p´∆` q ´ λqvλ,µ “ pλ´ µquµ in Ω

vλ,µ “ 0 on Γ.
(2.37)

Since uµ P L2pΩq and λ is in the resolvent set of Aq, we have vλ,µ “ pλ´ µqpAq ´ λq´1uµ, i.e.

vλ,µ “ pλ´ µq
`8
ÿ

k“1

xuµ, φkyL2pΩq

λk ´ λ
φk.

Next, taking k0 P N so large that λk ě 2|λ| ` 1 whenever k ě k0 ` 1, we see that
`8
ÿ

k“1

p1` λ2
kq

ˇ

ˇ

ˇ

ˇ

xuµ, φkyL2pΩq

λk ´ λ

ˇ

ˇ

ˇ

ˇ

2

“

k0
ÿ

k“1

p1` λ2
kq

ˇ

ˇ

ˇ

ˇ

xuµ, φkyL2pΩq

λk ´ λ

ˇ

ˇ

ˇ

ˇ

2

`

`8
ÿ

k“k0`1

p1` λ2
kq

ˇ

ˇ

ˇ

ˇ

xuµ, φkyL2pΩq

λk ´ λ

ˇ

ˇ

ˇ

ˇ

2

ď

k0
ÿ

k“1

p1` λ2
kq

ˇ

ˇ

ˇ

ˇ

xuµ, φkyL2pΩq

λk ´ λ

ˇ

ˇ

ˇ

ˇ

2

`

`8
ÿ

k“k0`1

p1` λ2
kq

ˇ

ˇ

ˇ

ˇ

ˇ

xuµ, φkyL2pΩq

λk`1
2

ˇ

ˇ

ˇ

ˇ

ˇ

2

ď

k0
ÿ

k“1

p1` λ2
kq

ˇ

ˇ

ˇ

ˇ

xuµ, φkyL2pΩq

λk ´ λ

ˇ

ˇ

ˇ

ˇ

2

` 4
`8
ÿ

k“k0`1

ˇ

ˇxuµ, φkyL2pΩq

ˇ

ˇ

2
ă 8,

which establishes that the series
ř

kě1

xuµ,φkyL2pΩq

λk´λ
φk converges in DpAqq. By continuity of the mapping

w ÞÑ Bνw from DpAqq into L2pΓq expressed in (2.34), the series
ř`8
k“1

xuµ,φkyL2pΓq

λk´λ
ψk then converges in

L2pΓq and it holds true that

Bνvλ,µ “ pλ´ µq
`8
ÿ

k“1

xuµ, φkyL2pΩq

λk ´ λ
ψk. (2.38)

Further, by multiplying by φk the first equation of (2.37) with λ “ λk, integrating over Ω and applying the
Green formula, we get in a similar fashion to [18, Lemma 2.3] or [19, Lemma 2.1] that xuµ, φkyL2pΩq “

´
xf,ψkyL2pΓq

λk´µ
. Finally, (2.36) follows directly from this and (2.38). �
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3. ISOZAKI’S ASYMPTOTIC REPRESENTATION FORMULA

In this section we aim to relate the Fourier transform of the difference q1 ´ q2 of two potentials qj ,
j “ 1, 2, to the boundary spectral data of the Schrödinger operators Aqj . This will be achieved by probing
(2.4) with appropriately designed Dirichlet boundary data f and collecting the Neumann response of the
system. This idea, which is borrowed from the Born approximation method in scattering theory, was first
applied to multidimensional inverse spectral analysis by Isozaki in [17]. This seminal article paved the way
for numerous authors investigating inverse spectral problems (see, e.g., [4, 11, 18, 19, 23, 24]) but in the
context of this work, we shall essentially rely on [23], where Isozaki’s approach was adapted to the frame-
work of unbounded potentials.

3.0.1. Test functions. Let ξ P Rn. For all τ ě |ξ|, we seek two test functions f˘τ satisfying

p´∆´ λ˘τ qf
˘
τ “ 0 in Ω, (3.39)

where λ˘τ “ pτ ˘ iq
2, and such that

lim
τÑ`8

f`τ pxqf
´
τ pxq “ e´iξ¨x, x P Ω, (3.40)

sup
τě|ξ|

}f˘τ }L8pΩq ă 8. (3.41)

For this purpose we pick η P Sn´1 such that ξ ¨ η “ 0 and for all τ ě |ξ|
2 we put

βτ “

c

1´
|ξ|2

4τ2
and η˘τ “ βτη ¯

ξ

2τ
,

in such a way that |η˘τ | “ 1. Then, it is easy to check that the two functions

f˘τ pxq :“ eipτ˘iqη
˘
τ ¨x, x P Ω,

satisfy the conditions (3.39) and (3.40). Moreover, since |f˘τ pxq| ď e|x| for all x P Ω, we have

}f˘τ }LrpXq ď |X|
1{r sup

xPΩ

e|x|, X “ Ω, BΩ, (3.42)

whenever r P r2,`8q or r “ `8. Notice that (3.42) with r “ `8 yields (3.41).

Let q P Qc. Then, for all τ ě |ξ| we have qf˘τ P L
2pΩq by (3.42), and the estimate

}qf˘τ }L2pΩq ď C}q}Lmaxp2,3n{5qpΩq, (3.43)

where C is a positive constant which is independent of τ . As a matter of fact we have }qf˘τ }L2pΩq ď

}q}L2pΩq}f
˘
τ }L8pΩq ď C}q}L2pΩq when n “ 3 and }qf˘τ }L2pΩq ď }q}L3n{5pΩq}f

˘
τ }

L
6n

3n´10 pΩq
ď C}q}L3n{5pΩq

when n ě 4.

3.0.2. Probing the system with f˘τ . For j “ 1, 2, let qj P Qc and let z P CzSppAqj q. We denote by u˘j,z the
W 2,ppΩq-solution to the BVP

$

&

%

p´∆` qj ´ zqu “ 0 in Ω,

u “ f˘τ on Γ.
(3.44)

Since p´∆` qj ´ zqf
˘
τ “ pqj ` λ

˘
τ ´ zqf

˘
τ from (3.39), the function

v˘j,z :“ u˘j,z ´ f
˘
τ (3.45)
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then solves
$

&

%

p´∆` qj ´ zqv “ ´p´∆` qj ´ zqf
˘
τ in Ω

v “ 0 on Γ,

which amounts to saying that

v˘j,z “ ´pAqj ´ zq
´1pqj ` λ

˘
τ ´ zqf

˘
τ . (3.46)

In the special case where z “ λ˘τ , the above identity reads v˘
j,λ˘τ

“ ´pAqj ´λ
˘
τ q
´1pqjf

˘
τ q. Since Im λ˘τ “

˘2τ and }pAqj ´ λ˘τ q
´1}BpL2pΩqq ď minkě1 |λ

˘
τ ´ λj,k|

´1, where BpL2pΩqq denotes the space of linear
bounded operators in L2pΩq, see, e.g., [16, Theorem 5.8] or [23, Eq. (A5)], we deduce from (3.43) that

}v˘
j,λ˘τ

}L2pΩq ď C}qj}Lmaxp2,3n{5qpΩqτ
´1, τ ě |ξ|, (3.47)

where the constant C ą 0 is independent of τ . From this and (3.43) it then follows that |
ş

Ω v
`

j,λ`τ
qjf

´
τ dx| ď

C2}qj}
2
Lmaxp2,3n{5qpΩq

τ´1, which yields that

lim
τÑ`8

ż

Ω
v`
j,λ`τ

qjf
´
τ dx “ 0. (3.48)

Armed with (3.48) we turn now to establish the Isozaki formula for the unbounded potentials qj , j “ 1, 2.

3.0.3. Isozaki’s asymptotic formula. For τ ě |ξ|, we introduce

Sj,τ :“ xBνu
`

j,λ`τ
, f´τ yL2pΓq, j “ 1, 2, (3.49)

where we recall from (3.45)-(3.46) that u`
j,λ`τ

“ v`
j,λ`τ

` f`τ and v`
j,λ`τ

“ ´pAqj ´ λ`τ q
´1pqjf

`
τ q. Notice

that since v`
j,λ`τ

P DpAqj q, we have Bνu`j,λ`τ
P L2pΓq from Remark 2.3, and hence Sj,τ is well-defined.

Having seen this, we can extend the classical Isozaki formula to the case of unbounded potentials.

Proposition 3.1. For c ą 0 fixed, let qj P Qc, j “ 1, 2. Then, for all ξ P Rn, it holds true that

lim
τÑ`8

pS1,τ ´ S2,τ q “

ż

Ω
pq1 ´ q2qe

´iξ¨xdx. (3.50)

Proof. Bearing in mind that
$

&

%

p´∆` qj ´ λ
`
τ qu

`

j,λ`τ
“ 0 in Ω

u`
j,λ`τ

“ f`τ on Γ,
(3.51)

we multiply the first line of (3.51) by f´τ and integrate on Ω. Applying the Green formula, we obtain that

0 “

ż

Ω
p´∆` qj ´ λ

`
τ qu

`

j,λ`τ
f´τ pxqdx

“

ż

Γ
f`τ Bνf

´
τ dσ ´

ż

Γ
pBνu

`

j,λ`τ
qf´τ dσ `

ż

Ω
u`
j,λ`τ

p´∆` qj ´ λ
´
τ qf

´
τ dx

“

ż

Γ
f`τ Bνf

´
τ dσ ´ Sj,τ `

ż

Ω
u`
j,λ`τ

qjf
´
τ dx,

where we used (3.39) and (3.49) in the last line. As a consequence we have

S1,τ ´ S2,τ “

ż

Ω

`

q1u
`

1,λ`τ
´ q2u

`

2,λ`τ

˘

f´τ dx,
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and hence

S1,τ ´ S2,τ “

ż

Ω
pq1 ´ q2qf

`
τ f

´
τ dx`

ż

Ω
q1v

`

1,λ`τ
f´τ dx´

ż

Ω
q2v

`

2,λ`τ
f´τ dx,

from the identities u`
j,λ`τ

“ v`
j,λ`τ

` f`τ , for j “ 1, 2. Taking the limit as τ Ñ `8 in the above line then
yields

lim
τÑ`8

ˆ

S1,τ ´ S2,τ ´

ż

Ω
pq1 ´ q2qf

`
τ f

´
τ dx

˙

“ 0, (3.52)

with the aid of (3.48). Finally, since q1 ´ q2 P L
1pΩq, we have

lim
τÑ`8

ż

Ω
pq1 ´ q2qf

`
τ f

´
τ dx “

ż

Ω
pq1 ´ q2qe

´iξ¨xdx

from (3.40) and the dominated convergence theorem, and the desired result follows from this and (3.52). �

4. PROOF OF THEOREM 1.1

We use the same notations as in Section 3. Namely, for z P CzSppAqj q, j “ 1, 2, we consider the
W 2,ppΩq-solution u`j,z to the BVP (3.44). Since qjfτ P L2pΩq according to (3.43), we have u`j,z ´
f`τ P DpAqj q from (3.45)-(3.46), and hence Bνu`j,z P L2pΓq by Remark 2.3. Therefore, for all µ P

Cz pSppAq1q Y SppAq2qq the normal derivative of v`
j,λ`τ ,µ

:“ u`
j,λ`τ

´ u`j,µ lies in L2pΓq and we have

S1,τ ´ S2,τ “ xBνu
`

1,λ`τ
´ Bνu

`

2,λ`τ
, f´τ yL2pΓq

“ xBνv
`

1,λ`τ ,µ
, f´τ yL2pΓq ´ xBνv

`

2,λ`τ ,µ
, f´τ yL2pΓq ` xBνu

`
1,µ ´ Bνu

`
2,µ, f

´
τ yL2pΓq, (4.53)

according to (3.49). Let us examine the last term on the right-hand-side of (4.53). Applying Hölder’s
inequality, we obtain that

|xBνu
`
1,µ ´ Bνu

`
2,µ, f

´
τ yL2pΓq| ď }Bνu

`
1,µ ´ Bνu

`
2,µ}LppΓq}f

´
τ }Lp1 pΓq,

where p1 “ 2n
n´2 is the Hölder conjugate of p “ 2n

n`2 . Thus, we have limµÑ´8xBνu
`
1,µ´Bνu

`
2,µ, f

´
τ yL2pΓq “

0 by Lemma 2.1, and hence

S1,τ ´ S2,τ “ lim
µÑ´8

xBνv
`

1,λ`τ ,µ
´ Bνv

`

2,λ`τ ,µ
, f´τ yL2pΓq, (4.54)

from (4.53).

Further, applying Lemma 2.4 we get through direct computation that

xBνv
`

1,λ`τ ,µ
´ Bνv

`

2,λ`τ ,µ
, f´τ yL2pΓq “

8
ÿ

k“1

pAkpµ, τq `Bkpµ, τq ` Ckpµ, τqq , (4.55)

where

Akpµ, τq :“
µ´ λ`τ

pλ`τ ´ λ1,kqpµ´ λ1,kq
xf`τ , ψ1,k ´ ψ2,kyL2pΓqxf

´
τ , ψ1,kyL2pΓq,

Bkpµ, τq :“
µ´ λ`τ

pλ`τ ´ λ1,kqpµ´ λ1,kq
xf`τ , ψ2,kyL2pΓqxf

´
τ , ψ1,k ´ ψ2,kyL2pΓq

and

Ckpµ, τq :“

ˆ

µ´ λ`τ
pλ`τ ´ λ1,kqpµ´ λ1,kq

´
µ´ λ`τ

pλ`τ ´ λ2,kqpµ´ λ2,kq

˙

xf`τ , ψ2,kyL2pΓqxf
´
τ , ψ2,kyL2pΓq.
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Let us first examine Akpµ, τq and Bkpµ, τq. For this purpose we recall from (2.35) that the estimate

}ψj,k}L2pΓq ď C p1` |λj,k|q (4.56)

holds for j “ 1, 2 and all k ě 1, where C ą 0 denotes a generic constant which depends only on Ω and qj .
This and (3.42) then yield that

|xf˘τ , ψj,kyL2pΓq| ď C p1` |λj,k|q , k ě 1. (4.57)

Moreover, since supkě1 |λ1,k ´ λ2,k| ă 8 by (1.3), we have

|λ2,k| ď Cp1` |λ1,k|q, k ě 1.

From this, (3.42) and (4.57), it then follows for all µ ď ´p1` cq and all τ ě 1` |ξ|, that

|Akpµ, τq| ` |Bkpµ, τq| ď Cτ }ψ1,k ´ ψ2,k}L2pΓq, k ě 1. (4.58)

Here and below, Cτ is a positive constant independent of k and µ, which possibly depends on τ and may
change from line to line.

Similarly, by rewriting µ´λ`τ
pλ`τ ´λ1,kqpµ´λ1,kq

´
µ´λ`τ

pλ`τ ´λ2,kqpµ´λ2,kq
as λ1,k´λ2,k

pλ`τ ´λ1,kqpλ
`
τ ´λ2,kq

´
λ1,k´λ2,k

pµ´λ1,kqpµ´λ2,kq
, we

obtain for all µ ď ´p1` cq and τ ě 1` |ξ| that

|Ckpµ, τq| ď Cτ

ˇ

ˇ

ˇ

ˇ

ˇ

xf´τ , ψ2,kyL2pΓq

λ´τ ´ λ2,k

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

xf`τ , ψ2,kyL2pΓq

λ`τ ´ λ2,k

ˇ

ˇ

ˇ

ˇ

ˇ

, k ě 1. (4.59)

Here, we took into account that supkě1 |λ1,k ´ λ2,k| ă 8 and we used that |µ´ λj,k| ě Cτ |λ
`
τ ´ λj,k| for

j “ 1, 2, and that |λ`τ ´λ1,k| ě Cτ |λ
`
τ ´λ2,k| and |λ`τ ´λ2,k| “ |λ

´
τ ´λ2,k|. Moreover, remembering that

u˘
j,λ˘τ

is the solution u˘j,z to (3.44) with z “ λ˘τ , we find upon multiplying the first line of the corresponding

BVP by φj,k, integrating over Ω and then applying the Green formula, that

xu˘
j,λ˘τ

, φj,kyL2pΩq “ ´
xf˘τ , ψj,kyL2pΓq

λ˘τ ´ λj,k
, k ě 1.

Parseval’s formula thus yields

`8
ÿ

k“1

ˇ

ˇ

ˇ

ˇ

ˇ

xf˘τ , ψj,kyL2pΓq

λ˘τ ´ λj,k

ˇ

ˇ

ˇ

ˇ

ˇ

2

“ }u˘
j,λ˘τ

}2L2pΩq ă 8, j “ 1, 2. (4.60)

Putting this together with (4.59), and combining (4.58) with (1.3), we infer from (4.55) and the dominated
convergence theorem that

S1,τ ´ S2,τ “ lim
µÑ´8

xBνv
`

1,λ`τ ,µ
´ Bνv

`

2,λ`τ ,µ
, f´τ yL2pΓq “

`8
ÿ

k“1

pA˚kpτq `B
˚
k pτq ` C

˚
k pτqq , (4.61)

where

A˚kpτq :“
1

λ`τ ´ λ1,k
xf`τ , ψ1,k ´ ψ2,kyL2pΓqxf

´
τ , ψ1,kyL2pΓq, (4.62)

B˚k pτq :“
1

λ`τ ´ λ1,k
xf`τ , ψ2,kyL2pΓqxf

´
τ , ψ1,k ´ ψ2,kyL2pΓq (4.63)

and

C˚k pτq :“
λ1,k ´ λ2,k

pλ`τ ´ λ1,kqpλ
`
τ ´ λ2,kq

xf`τ , ψ2,kyL2pΓqxf
´
τ , ψ2,kyL2pΓq. (4.64)
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Further, since Impλ`τ ´ λj,kq “ 2τ for all k ě 1, it follows readily from (4.57) that

|A˚kpτq| ` |B
˚
k pτq| ď Cτ´1}ψ1,k ´ ψ2,k}L2pΓq

`

}ψ1,k}L2pΓq ` }ψ2,k}L2pΓq

˘

(4.65)

and
|C˚k pτq| ď Cτ´2|λ1,k ´ λ2,k|}ψ2,k}

2
L2pΓq, (4.66)

where C is a positive constant which is independent of k and τ . As a consequence we have

lim
τÑ`8

A˚kpτq “ lim
τÑ`8

B˚k pτq “ lim
τÑ`8

C˚k pτq “ 0, k ě 1, (4.67)

which together with (4.61) yields for any natural number N , that

lim
τÑ`8

|S1,τ ´ S2,τ | ď lim sup
τÑ`8

`8
ÿ

k“N

p|A˚kpτq| ` |B
˚
k pτq| ` |C

˚
k pτq|q . (4.68)

On the other hand, applying the Cauchy-Schwarz inequality in (4.62), we get that

`8
ÿ

k“N

|A˚kpτq| ď }f`τ }L2pΩq

¨

˝

`8
ÿ

k“1

ˇ

ˇ

ˇ

ˇ

ˇ

xf´τ , ψ1,kyL2pΓq

λ`τ ´ λ1,k

ˇ

ˇ

ˇ

ˇ

ˇ

2
˛

‚

1
2 ˜ `8

ÿ

k“N

}ψ1,k ´ ψ2,k}
2
L2pΓq

¸
1
2

ď }f`τ }L2pΩq}u
´

1,λ`τ
}L2pΩq

˜

`8
ÿ

k“N

}ψ1,k ´ ψ2,k}
2
L2pΓq

¸
1
2

, (4.69)

from (4.60). Next, since supτě1 }f
`
τ }L2pΩq}u

´

1,λ`τ
}L2pΩq ă 8 by virtue of (3.42), (3.45) and (3.47), it

follows from (4.69) that

lim sup
τÑ`8

`8
ÿ

k“N

|A˚kpτq| ď C

˜

8
ÿ

k“N

}ψ1,k ´ ψ2,k}
2
L2pΓq

¸
1
2

(4.70)

for some constant C ą 0 which is independent of N .

Arguing as before with (4.63) and (4.64) instead of (4.62), we find that

lim sup
τÑ`8

8
ÿ

k“N

|B˚k pτq| ď C

˜

`8
ÿ

k“N

}ψ1,k ´ ψ2,k}
2
L2pΓq

¸
1
2

and that

lim sup
τÑ`8

`8
ÿ

k“N

|C˚k pτq| ď C sup
kěN

|λ1,k ´ λ2,k|,

which together with (4.68) and (4.70) yields

lim sup
τÑ`8

|S1,τ ´ S2,τ | ď C

¨

˝sup
kěN

|λ1,k ´ λ2,k| `

˜

`8
ÿ

k“N

}ψ1,k ´ ψ2,k}
2
L2pΓq

¸
1
2

˛

‚, (4.71)

where C still denotes a positive constant independent of N . With reference to (1.3), we thus get that
limτÑ`8 |S1,τ ´ S2,τ | “ 0 by sending N Ñ `8 in (4.71). This and (3.50) entail that

ż

Ω
e´ix¨ξpq1 ´ q2qdx “ 0. (4.72)

Finally, since q1 ´ q2 P L
1pΩq and since (4.72) holds for all ξ P Rn, we deduce from the injectivity of the

Fourier transform that q1 “ q2. This terminates the proof of Theorem 1.1.
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Remark 4.1. Let us briefly discuss the hypothesis qj P L3n{5pΩ,Rq, j “ 1, 2, that is requested by the
analysis carried out in present article. Indeed, one of the key ingredients to the proof of Theorem 1.1
conducted in the above lines of this section, is the asymptotic property (4.67) arising from (4.65)- (4.66).
These two last estimates are derived from (4.57) upon using that the Neumann traces ψj,k, k P N, are
L2pΓq-functions with a L2pΓq-norm that is bounded in accordance with (4.56). In this regard, it can be seen
from the proof of Proposition 2.2 (see also Remark 2.3) that the assumption qj P L3n{5pΩq is crucial for
proving that the functions ψj,k belong to L2pΓq and satisfy the estimate (4.56).

As a matter of fact, if qj were as in [10, 23], that is to say in LppΩ,Rq with p “ n{2 when n ě 4 and
p ą n{2 when n “ 3, we would only have ψj,k P H´1{2pΓq and the estimate

}ψj,k}H´1{2pΓq ď C p1` |λj,k|q , j “ 1, 2, k P N,

for some positive constant C depending only on Ω and qj . As a consequence, (4.57) should be rewritten as

|xf˘τ , ψj,kyH1{2pΓq,H´1{2pΓq| ď }ψj,k}H´1{2pΓq}f
˘
τ }H1{2pΓq

ď C p1` |λj,k|q τ,

and the inequality (4.65) would be transformed into the following:

|A˚kpτq| ` |B
˚
k pτq| ď C}ψ1,k ´ ψ2,k}L2pΓq

´

}ψ1,k}H´1{2pΓq ` }ψ2,k}H´1{2pΓq

¯

.

As this does not guarantee that A˚kpτq and B˚k pτq converge to zero when τ goes to infinity, as claimed
by (4.67), it is unclear whether our method of derivation of Theorem 1.1 can be adapted to potentials
qj P L

ppΩ,RqzL3n{5pΩ,Rq.

Remark 4.2. In a similar fashion to Remark 4.1, the additional condition qj P L2pΩ,Rq, j “ 1, 2, is
quite natural in the framework of this article, where the operator Aqj is acting in L2pΩq. This can be
understood from the representation formula (3.46) requiring that qjf˘τ is in L2pΩq, which was achieved by
taking qj within the class L2pΩ,Rq. Nevertheless, it is very likely that this condition may be weakened or
even removed, upon extending Aqj into a H´1pΩq-valued operator acting on H1

0 pΩq, but this will come
at the price of greater technical difficulties that will require more machinery. Therefore, for the sake of
simplicity, and in order to avoid the inadequate expense of the size of this article, we rather keep assuming
that qj P L2pΩq.

APPENDIX A. THE PERTURBED DIRICHLET-LAPLACIAN ´∆` q IN L2pΩq

For q P Qc, c ą 0, let aq be the Hermitian form defined in (1.1). Since H1pΩq is continuously embedded
in L

2n
n´2 pΩq from the Sobolev embedding theorem, we have uv P L

n
n´2 pΩq Ă L

3n
3n´5 pΩq for all pu, vq P

Dpaqq ˆDpaqq, and

}uv}
L

3n
3n´5 pΩq

ď C}uv}
L

n
n´2 pΩq

ď C}u}
L

2n
n´2 pΩq

}v}
L

2n
n´2 pΩq

ď C}u}H1pΩq}v}H1pΩq.

Here and below, C denotes a generic positive constant which depends only on n and Ω. Thus, quv P L1pΩq
and

}quv}L1pΩq ď }q}L
3n
5 pΩq

}uv}
L

3n
3n´5 pΩq

ď C}q}
L

3n
5 pΩq

}u}H1pΩq}v}H1pΩq,

by Hölder’s inequality, showing that aq is continuous on Dpaqq ˆDpaqq:

|aqpu, vq| ď }∇u}L2pΩq}∇v}L2pΩq ` }quv}L1pΩq ď

´

1` C}q}
L

3n
5 pΩq

¯

}u}H1pΩq}v}H1pΩq.
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Denote by Aq the unbounded operator generated by aq, acting in L2pΩq on its domain DpAqq :“ tu P
H1

0 pΩq, p´∆` qqu P L2pΩqu. Since aq is Hermitian and

aqpu, uq ` c}u}
2
L2pΩq “ }∇u}L2pΩq ě C}u}H1pΩq, u P Dpaqq,

by the Poincaré inequality, DpAqq is dense in L2pΩq and the operator Aq is self-adjoint in L2pΩq, see, e.g.,
[12, Chap. VI, Section 3.2.5].
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