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Abstract

The theoretic capacity of a communication system constituted of several trans-

mitting/receiving elements is determined by the singular values of its transfer

matrix. Results based on an independent identically distributed channel model,

representing an idealized rich propagation environment, state that the capacity is

directly proportional to the number of antennas. Nevertheless there is growing

experimental evidence that the capacity gain can at best scale at a sub-linear rate

with the system size. In this short paper, we show under appropriate assumptions

on the transfer matrix of the system, that the theoretic information-capacity of

multi-antenna systems is upper bounded by a sub-linear function of the number

of transmitting/receiving links.

Keywords. Capacity, channel model, transfer matrix, singular value, spec-
tral counting function.

1 Introduction

Some wireless telecommunication systems are made of several antennas work-
ing simultaneously both at the transmit and the receive link sides. This tech-
nology named by the acronym MIMO for multiple-input-multiple-output,
aims to increase the capacity of the system, i.e. the throughput of infor-
mation, expressed in bits per second, being transmitted without error for a
given frequency band width.
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du CNRS et des Universités Aix-Marseille I, Aix-Marseille II et de l’ Université du Sud
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1.1 Capacity

An exact expression of the capacity of MIMO systems, generalizing the Shan-
non capacity of SISO (for single-input-single -ouput) systems has been de-
rived by G. Foschini and M. Gans in [1] when both transmit (Tx) and received
(Rx) signals are harmonic signals, i.e. signals associated to a fixed frequency.
In this case, the transmit signal at the jth Tx antenna, j = 1, . . . , N , for
N ∈ N∗, together with the received signal at the ith Rx antenna, i = 1, . . . ,M ,
for M ∈ N∗, are simply described by their respective complex amplitudes tj
and ri. In presence of noise n = (n1, . . . , nM)t ∈ CM , the received signals
r = (r1, . . . , rM)t ∈ CM are related to the transmit signals t = (t1, . . . , tN)t ∈
CN through the identity

r = Ht+ n, (1.1)

where H ∈ MM,N(C) is the transfer matrix of the system, and MM,N(C)
denotes the set of M -by-N matrices with complex elements. When M = N
we write MN(C) instead of MN,N(C).

If n is a symmetric Gaussian noise with covariance matrix proportional to
the identity, i.e. E(nn∗) = ν0IM for some ν0 > 0, the Foschini-Gans capacity
CM of the system is defined by [1] as

CM := log2 det

(
1 +

ES
ν0M

HH∗
)
, (1.2)

where ES denotes the total power sent by the emitters. Setting κ := ES/ν0,
CM can be expressed in terms of the singular values {µi}Mi=1 of H as

CM =
M∑
i=1

log2

(
1 +

κ

M
µ2
i

)
. (1.3)

Hence the MIMO capacity of the system is the sum of the Shannon ca-
pacities of M individual SISO channels with respective power gain µ2

i , for
i = 1, . . . ,M (see [2, 3]).

1.2 Transfer matrix modeling

The transfer matrix of the system is fully determined by the spatial position
of the antennas (in the present paper we consider one dimensional uniform
linear arrays of M = N ∈ N∗ antennas at both transmitter and receiver) and
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the scattering properties of the propagation medium. Unfortunately there is
no effective method describing the structure of H in a realistic rich scattering
environment. Moreover there is only a very small number of experimental or
numerical data of transfer matrices available. For all these reasons several
types of theoretical models for H have been developed in both the physical
and the mathematical literatures.

Based on the spectral theory of random matrices (see e.g. [4, 5, 6, 7, 8])
many capacity calculations (see [1, 9, 10, 11, 12, 13, 14, 15]) are carried out
using a priori probabilistic assumptions on the transfer matrix. Most of these
probabilistic models ([1, 9, 12, 13, 14]) assume that H consists of independent,
identically distributed Gaussian random variables. These independent fad-
ing models describe a rich idealized scattering environment whose capacity
gain turns out to be directly proportional to the number of transmit/receive
antenna elements. Further, for independent non-identically distributed ran-
dom entries, the results of [8] indicate that the theoretic information capacity
remains asymptotically proportional to the number of antennas. Similarly
[11, 10] show that the correlated fading capacity increases linearly with the
number of antennas, but less rapidly than in independent fading.

Another approach is to define H by modeling the scattering characteris-
tics of the propagation channels. The corresponding models, based on the
geometrical optics approximation and the derived ray tracing theory, are de-
fined by a set of scattering paths P corresponding to scatterers distributed
within the propagation medium. In these scattering models, the transmitter
and receiver are coupled via propagation along the path p ∈ P with ΩT,p and
ΩR,p as the spatial angles seen by transmitter and receiver, and βp(ΩR,p,ΩT,p)
as the corresponding fading gain. The total gain hi,j, where hi,j denotes the
element in the ith row and jth column of H, for the wavelength of propagation
λ > 0 is defined (see e.g. [16, 17, 3, 18, 19]) as

hi,j =
∑
p∈P

βp(ΩR,p,ΩT,p)e
i 2π
λ
〈ΩT,p,xT,j〉ei

2π
λ
〈ΩR,p,xR,i〉, (1.4)

xT,j and xR,i being the respective positions of the transmitter sj and the
receiver ri. The transfer matrix of the system (1.4) is thus directly defined
from the transmitter and receiver positions together with the physical char-
acteristics of the propagation medium.
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1.3 Framework and main result

In this paper we adopt the scattering model point of view by imposing struc-
ture on H, based on simulation results obtained with an efficient 3D ray
propagation model in some reference urban outdoor environment, for one di-
mensional uniform linear arrays of M antennas at both transmit and receive
links. More precisely, computations of the transfer matrix are carried out
for numerous values of M ∈ N∗, using the (1.4)-based propagation model
GRIMM developed by France Telecom (see [20, 21]). A careful analysis of
these data shows that the fading matrix F of the system,

F := M−2UMHH
∗U−1

M ∈MM(C), (1.5)

where UM denotes the unitary change of basis matrix from the canonical basis
of CM to the Fourier basis {Φk}Mk=1, defined in [16] as the virtual channel
representation,

Φk :=
1

M1/2
(1, ei2πk/M , . . . , ei2π(M−1)k/M)t, k = 1, . . . ,M,

has the two following properties:

(i) for all i = 1, . . . ,M − 1, the off-diagonal terms fk,j, j > k ≥ i, of F ,
are small as compared with the diagonal term fi,i;

(ii) {fi,i}Mi=1 can be reordered into a decreasing sequence.

To avoid the inadequate expense of the size of this article we refer to [22] for
both the justification and the interpretation of (i)-(ii). These two properties
(or, more exactly, their corresponding appropriate mathematical statement,
formulated as assumptions (A1)-(A2) in Section 2) provide useful spectral
information on F . Namely they enable a precise localization of the eigenval-
ues of F , involving that the capacity CM of the system is upper bounded by
a sub-linear function of the system size, M . This is the main result of this
paper.

1.4 Contents

The paper is organized as follows. In Section 2 we introduce some basic
notations and auxiliary results, state the assumptions (A1)-(A2) made on
the fading matrix F , formulate the main results of this paper and briefly
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comment on them. Section 3 contains the proof, based on an appropriate
block-decomposition of F , of these results. The main technical estimate
needed to conclude the proof in Section 3 (this estimate actually holds true for
any Hermitian matrix independently of the assumptions (A1)-(A2) intrinsic
to the model of Section 2) is given in Section 3.2.

2 Main results

2.1 Notations and settings

In this section we introduce some notations used throughout the article and
recall basic auxiliary estimates needed in the proofs.

Let A = (ai,j)1≤i,j≤n ∈ Mn(C), n ≥ 1, be an Hermitian matrix. We
denote by PI(A) the spectral projection of A corresponding to the open
interval I ⊂ R and set

N(x;A) := rank P(x,+∞)(A), x ∈ R.

Otherwise stated N(x;A) denotes the number of eigenvalues of A counted
with the multiplicities and greater than x. N(.;A) is called the eigenvalue
counting function of A.

In the sequel we write σ(A) (resp. ρ(A) := C − σ(A)) the spectrum
(resp. resolvent set) of A, and AD (resp. AO := A−AD) the diagonal (resp.
off-diagonal) part of A.

Further, noting ‖A‖ the matrix norm of A associated to the Hermitian
norm in Cn, we have (see (I.4.14) and (I.4.16) in [23]) that

‖A‖ ≤ max
i=1,...,n

τi(A), (2.1)

where
τi(A) :=

∑
j=1,...,n

|ai,j|. (2.2)

Finally we recall from the standard perturbation theory (see [23]) that
the eigenvalues {µi(A)}ni=1 of A may be labeled in such a way that the Bauer-
Fike’s Theorem holds true:

|µi(A)− aii| ≤ ‖AO‖, i = 1, . . . , n. (2.3)
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2.2 Structure of the fading matrix

Evidently, the diagonal terms fi := fi,i, for i = 1, . . . ,M , of the matrix F de-
fined in (1.5) are nonnegative, and we may assume without loss of generality
that they are arranged in decreasing order:

0 ≤ fM ≤ . . . ≤ f2 ≤ f1. (2.4)

In light of the properties (i)-(ii) mentioned in Section 1.3, we make the two
following assumptions on the fading matrix F .

Assumption 1. Our first assumption expresses for each i = 1, . . . ,M − 1,
that the total weight of the off-diagonal terms fk,j, for j > k ≥ i, is bounded,
up to a multiplicative constant α > 0, by the diagonal element fi:

∃α > 0, ∀M ≥ 1,
∑
j>k≥i

|fk,j| ≤ αfi, i = 1, . . . ,M − 1. (A1)

As proved in Lemma 3.1 below, (A1) yields that the (M − i0)-square matrix

F̃ (i0) := (fi,j)i0+1≤i,j≤M ∈MM−i0(C), i0 = 0, . . . ,M − 1, (2.5)

obtained from F by suppressing its i0 first rows and columns, satisfies:

‖F̃ (i0)
O ‖ ≤ αfi0+1, i0 = 0, . . . ,M − 1. (2.6)

Assumption 2. Further, we impose that the function i 7→ fi decreases
sufficiently fast with i on {1, . . . ,M}. More precisely we consider a power-
like decay and require that the power decay rate be greater than one:

∃(f+, γ) ∈ (0,+∞)× (1,+∞), ∀M ≥ 1, fi ≤ f+i
−γ, i = 1, . . . ,M. (A2)

Notice for further reference that (A2) entails

]{i = 1, . . . ,M s.t. fi ∈ (x,+∞)} ≤ min
(
M, fγ

−1

+ x−γ
−1
)
, x ∈ (0,∞),

(2.7)
where ]S denotes the cardinality of any subset S of N.
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2.3 Statement of the main results

By (1.5), the fading matrix F is a nonnegative Hermitian matrix. Thus
the eigenvalue counting function N(x;F ) of F is a non increasing right-
continuous function of x ∈ R, such that

N(x;F ) = M, x < 0, and N(x;F ) = 0, x ≥ ρ, (2.8)

where ρ := maxi=1,...,M λi is the spectral radius of F . The first result of this
paper is a convenient upper bound on N(x;F ):

Theorem 2.1 Let M ∈ N∗ and F satisfy (A1)-(A2). Then we have

N(x;F ) ≤ min
(
M,ργ

−1

+ x−γ
−1
)
, x ∈ (0,+∞), (2.9)

where
ρ+ := (1 + α)f+ ≥ ρ. (2.10)

As a corollary we obtain under the same conditions that for γ > 1, the
Foschini-Gans capacity growths sub-linearly with the system size M :

Theorem 2.2 Let F be as in Theorem 2.1. Then the capacity CM of the
system is bounded as

CM ≤
(κρ+)γ

−1

ln 2
Mγ−1

(
γ

γ − 1
+ ln(1 + κρ+M)

)
,

the constant ρ+ being defined by (2.10).

Therefore the capacity CM growths at most like Mγ−1
lnM . For γ > 1,

it is thus upper bounded by a sub-linear function of M , at least for M
sufficiently large. This behavior is different from the one predicted by [1,
9, 12, 13, 14, 11, 10] for probabilistic models, where a point-to-point link
utilizing M transmitting and receiving antennas can achieve a capacity as
high as M times that of a single-antenna link. Nevertheless it is in accordance
with the results of [14, 24], where similar sub-linear capacity scalings are
derived for multi-path scattering models. Moreover the upper bound given in
Theorem 2.2 is corroborated by the simulation results obtained in [25] and the
experimental evidence of [26, 27]. This indicates that the assumptions (A1)-
(A2) can be considered a valuable alternative to pure probabilistic models,
in the study of MIMO-systems theoretic capacity.
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2.4 Comments

In view of Theorems 2.1-2.2, we make the three following remarks:

(i) In this paper, in common with works such as [9, 1], but unlike [13, 14],
we do not assume a normalization which ensures that the total receive
power is the same as the total transmit power, that is

M∑
i,j=1

|hi,j|2 = M.

Such a normalization condition would imply ‖H‖ ≤ M1/2 and hence
‖F‖ ≤ M−1 by (1.5), enabling us to carry out all the computations of
Section 3 with the constant ρ+, defined in (3.1), equal to M−1. Never-
theless it is quite easy to check that this would not significantly change
the conclusions of Theorems 2.1-2.2.

(ii) As already mentioned in Section 2.2 (see (2.6)), assumption (A1) im-
plies:

∃α > 0, ∀M ≥ 1, ‖F̃ (i0)
O ‖ ≤ αfi, i = 1, . . . ,M − 1, (A1′)

the matrix F̃ (i0), i0 = 1, . . . ,M − 1, being defined in (2.5). Actually it
is not hard to check from the proofs of Section 3 that Theorems 2.1-
2.2 remain true by substituting the weaker (but less explicit) condition
(A1’) for (A1).

(iii) Similarly, assumption (A2) is a particular case of the more general
condition{

There exists f : [1,+∞)→ R+, continuous and decreasing,
s.t. ∀M ≥ 1, fi ≤ f(i), i = 1, . . . ,M,

(A2′)

and it is easy to see that Theorem 2.1 generalizes to

N(x;F ) ≤ min
(
M, f−1((1 + α)−1x)

)
, x ∈ (0,+∞),

where f−1 denotes the inverse function of f , for every F satisfying
(A1)-(A2’) (or (A1’)-(A2’), according to point (ii)).
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For instance, if we strengthen (A2) by taking f(x) = f+e
−γ(x−1), for

some (f+, γ) ∈ (0,+∞)2, and thus imposing that the diagonal elements
of F decrease exponentially fast,

∀M ≥ 1, fi ≤ f+e
−γ(i−1), i = 1, . . . ,M,

then the capacity of the corresponding system is upper-bounded by a
polynomial function in lnM :

CM ≤
γ−1 + ln(1 + κρ+M) + γ−1 ln(1 + κρ+M)2

ln 2
.

This estimate can be easily obtained by mimicking the proof of Theorem
2.2.

3 Analysis of the capacity

3.1 Proof of Theorem 2.1

The proof of Theorem 2.1 consists of the two following lemmas.

Lemma 3.1 Assume (A1). Then for all M ∈ N∗ and i0 = 0, . . . ,M −1, the
(M − i0)-square matrix F̃ (i0) defined in (2.5) satisfies

‖F̃ (i0)
O ‖ ≤ αfi0+1 and ‖F̃ (i0)‖ ≤ (α + 1)fi0+1. (3.1)

Proof.
For all i = i0 + 1, . . . ,M , we have

τi(F̃
(i0)
O ) =

∑
j=i0+1,...,i−1

|fi,j|+
∑

j=i+1,...,M

|fi,j|, (3.2)

according to (2.2), the first (resp. second) term in the righthand side of (3.2)
being taken equal to zero if i = i0 + 1 (resp. i = M). The matrix F being
Hermitian symmetric by (1.5), (3.2) becomes

τi(F̃
(i0)
O ) =

∑
j=i0+1,...,i−1

|fj,i|+
∑

j=i+1,...,M

|fi,j| ≤
∑

j>k≥i0+1

|fk,j|,

9



whence
τi(F̃

(i0)
O ) ≤ αfi0+1, i = i0 + 1, . . . ,M. (3.3)

from (A1). This combined with (2.2) and (2.4) yields

τi(F̃
(i0)) = τi(F̃

(i0)
O ) + αfi ≤ (α + 1)fi0+1, i = i0 + 1, . . . ,M. (3.4)

Now the first (resp. second) part of (3.1) follows from (2.1) and (3.3) (resp.
(2.1) and (3.4)).

Lemma 3.2 Let M be in N∗. If the fading matrix F satisfies (A1) then it
holds true that

N(x;F ) ≤ N((1 + α)−1x;FD),

for all x ∈ [0,+∞).

Proof.
For all x ∈ [0,+∞) set n(x) = N((1+α)−1x;FD), so that n(x) ∈ {0, 1, . . . ,M}.
The result being obviously true if n(x) = M , we assume that n(x) < M ,
which entails

fn(x)+1 ≤
x

1 + α
. (3.5)

Further F decomposes uniquely into

F :=

(
A(x) C(x)
C(x)∗ B(x)

)
,

where B(x) is the matrix F (n(x)) ∈MM−n(x)(C) defined in Lemma 3.1. Since

‖BO(x)‖ ≤ αfn(x)+1,

by the first part of (3.1), then each eigenvalue βj, j = n(x) + 1, . . . ,M , of
B(x), satisfies

βj ≤ fj + ‖BO(x)‖ ≤ (1 + α)fn(x)+1 ≤ x,

according to (2.3), (2.4), and (3.5). This yields N(x;B(x)) = 0 so the result
follows from the inequality

N(x;F ) ≤ n(x) +N(x;B(x)), (3.6)

whose proof is postponed to Section 3.2 below.

Bearing in mind that

N(x;FD) = ]{i = 1, . . . ,M s.t. fi ∈ (x,+∞)}, x ∈ (0,+∞),

Theorem 2.1 follows immediately from this, (2.7) and Lemma 3.2.
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3.2 Proof of inequality (3.6)

Inequality (3.6) follows from Lemma 3.3 below, which is in turn a consequence
of a result known as the Cauchy interlacing Theorem (see [28]).

Lemma 3.3 Let nA, nB be positive integers. Given A = A∗ ∈ MnA(C),
B = B∗ ∈ MnB(C) and C ∈ MnA,nB(C), let M be the partitioned (nA +
nB)× (nA + nB) matrix defined by

M :=

(
A C
C∗ B

)
.

Then we have
N(x;M) ≤ nA +N(x;B) (3.7)

for all real x.

Proof.
Given an Hermitian matrix H, and a real number x, let Ñ(x;H) denote the
number of eigenvalues, counted with multiplicity, less than or equal to x.
With this notation we obviously have

N(x;M) + Ñ(x;M) = nA + nB and N(x;B) + Ñ(x;B) = nB,

for all real x, whence (3.7) is equivalent to the inequality

Ñ(x;B) ≤ Ñ(x;M), x ∈ R. (3.8)

Thus it suffices to establish (3.8). To this purpose we write {λj}nA+nB
j=1 (resp.

{βj}nBj=1) the eigenvalues of M (resp. B) arranged in nondecreasing order,
and repeated according to multiplicity. The Cauchy interlacing Theorem
states that we have

λj ≤ βj ≤ λnB−j, j = 1, 2, . . . , nB.

Evidently the lefthand inequality yields (3.8), proving the result.
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3.3 Proof of Theorem 2.2

In light of (1.2)-(1.3), the Foschini-Gans capacity of the system associated to
the fading matrix FM can be expressed in terms of the eigenvalues {λi}Mi=1

of F , as

CM =
M∑
i=1

log2 (1 + κMλi) . (3.9)

The remaining part of this section involves relating the capacity CM to the
eigenvalue counting function N(.;F ) of the matrix F . To this end, we use
the distributional equality dN(x;F ) = −

∑M
i=1 δ(x− λi) to rewrite (3.9) as

CM =

∫ ρ+

0

log2 (1 + κMx) (−dN(x;F )). (3.10)

Integrating by parts in (3.10) and bearing in mind (2.8), we obtain

CM =
κM

ln 2

∫ ρ+

0

N(x;F )

1 + κMx
dx,

whence

CM =
1

ln 2

∫ κρ+M

0

N((κM)−1x;F )

1 + x
dx

by an obvious change of integration variable. This combined with Theorem
2.1 yields

CM ≤
(κρ+)γ

−1

ln 2
Mγ−1

∫ κρ+M

0

x−γ
−1

1 + x
dx. (3.11)

If κρ+M > 1 then the integral domain in the righthand side of (3.11) can be
partitioned into (0, 1) and (1, κρ+M). Since γ > 1, the integral over (0, 1)
is easily bounded by γ/(γ − 1), while the one over (1, κρ+M) is majorized
by ln(1 + κρ+M). In the case where κρ+M ≤ 1 then the integral in the
righthand side of (3.11) is evidently bounded by γ/(γ − 1). This completes
the proof.
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Inst. H. Poincaré, 42 (2006), 649-670.

[9] I. E. Telatar, Capacity of multiantenna Gaussian channels, Eur.
Trans. Comm. 10, 6 (1999), 585-595.

13



[10] D. Shui, G. Foschini, M. Gans, J. Kahn, Fading correlation and its
effect on the capacity of multielement antenna systems, IEEE Trans.
on Information Theory 48, 3 (2000), 502-513.

[11] C. Chuah, D. Tse, J. M. Kahn, R. A. Valenzuela, Capacity scaling
in MIMO wireless systems under correlated fading, IEEE Trans. on
Information Theory 48, 3 (2002), 637-650.

[12] A. Burr, Evaluation of capacity of indoor wireless MIMO channel
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[19] L.-M. Aubert, B. Ugen, F. Tchoffo-Talom, Deterministic Simulation
of MIMO-UWB transmission channel, C.R.A.S.-Series IV-Physics 7
(2006), 751-761.

[20] J.-P. Rossi, Y. Gabillet, Wideband evaluation of the ray model
“GRIMM” in cellular environment, Millenium Conference on An-
tennas and Propagation, Davos, Switzerland, 9-14 April 2000.

14



[21] J.-P. Rossi, Y Gabillet, A mixed ray lauching/tracing method for
3-D UHF propagartion modelling and comparison with data wide-
band measurements, IEEE Trans. on Antennas and Propagation 50,
4 (2002).

[22] F. Bentosela, E. Soccorsi, Capacity estimates for MIMO channels,
IEEE Trans. on Information Theory, submitted.

[23] T. Kato, Perturbation theory for linear operators, Classics in Math.,
Springer Verlag (1995).

[24] V. Raghavan, A. M. Sayeed, Role of channel power in the sub-linear
capacity scaling of MIMO channels, Proc. 42nd Annual Alberton
Conference on Communication, Control and Computation, Monti-
cello, IL, Sept. 29-Oct. 1, 2004.

[25] G. German, Q. H. Spencer, A. L. Swindlehurst, R. A. Valenzuela
Wireless indoor channel modeling : statistical agreement of ray trac-
ing simulations and channel souding measurements, Proc. IEEE Int.
Conf. Acoustics, ICASSP, 4 (2001), 2501-2504.

[26] A. Molisch, M. Steinbauer, M. Toeltsch, E. Bonek, R. Thomä, Ca-
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