
HEAT TRACE ASYMPTOTICS AND BOUNDEDNESS IN H2 OF ISOSPECTRAL

POTENTIALS FOR THE DIRICHLET LAPLACIAN

MOURAD CHOULLI§, LAURENT KAYSER¶, YAVAR KIAN†, AND ERIC SOCCORSI‡

Abstract. Let Ω be a C∞-smooth bounded domain of Rn, n ≥ 1, and let the matrix a ∈ C∞(Ω;Rn2
)

be symmetric and uniformly elliptic. We consider the L2(Ω)-realization A of the operator −div(a∇·) with

Dirichlet boundary conditions. We perturb A by some real valued potential V ∈ C∞0 (Ω) and note AV =

A+V . We compute the asymptotic expansion of tr
(
e−tAV − e−tA

)
as t ↓ 0 for any matrix a with constant

coefficients. In the particular case where A is the Dirichlet Laplacian in Ω, that is when a is the identity of

Rn2
, we make the four main terms appearing in the asymptotic expansion formula explicit and prove that

L∞-bounded sets of isospectral potentials of A are bounded in H2(Ω).
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1. Introduction

In the present paper we investigate the compactness issue for isospectral potentials sets of the Dirichlet
Laplacian by means of heat kernels asymptotics.

1.1. Second order strongly elliptic operator. Let a = (aij)1≤i,j≤nn ≥ 1, be a symmetric matrix, with
coefficients in C∞(Rn). We assume that a is uniformly elliptic, in the sense that there is a constant µ ≥ 1
such that the estimate

(1.1) µ−1 ≤ a(x) ≤ µ,

holds for all x ∈ Rn in the sense of quadratic forms on Rn.
1
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We consider a bounded domain Ω ⊂ Rn, with C∞ boundary ∂Ω and introduce the self-adjoint operator
A generated in L2(Ω) by the closed quadratic form

(1.2) a[u] =

∫
Ω

a(x)∇u(x) · ∇u(x)dx, u ∈ D(a) = H1
0 (Ω),

where H1
0 (Ω) is the closure of C∞0 (Ω) in the topology of the standard first-order Sobolev space H1(Ω). Here

∇ stands for the gradient operator on Rn. By straightforward computations we find out that A acts on its
domain D(A) = H2(Ω) ∩H1

0 (Ω), as

(1.3) A = −div(a(x)∇ · ) = −
n∑

i,j=1

∂j(aij(x)∂i · ).

Let V ∈ C∞0 (Rn) be real-valued. We define the perturbed operator AV = A + V as a sum in the sense of
quadratic forms. Then we have D(AV ) = D(A) by [RS2, Theorem X.12, page 162].

1.2. Main results. Put

(1.4) ZVΩ (t) = tr
(
e−tAV − e−tA

)
, t > 0.

Much of the technical work developed in this paper is devoted to proving the existence of real coefficients
ck(V ), k ≥ 1, depending only on V , such that following symptotic expansion

(1.5) ZVΩ (t) = t−n/2
(
tc1(V ) + t2c2(V ) + . . .+ tpcp(V ) +O

(
tp+1

))
, t ↓ 0,

holds for a constant. Moreover we shall see that (1.4)-(1.5) remain valid upon replacing Ω by Rn in the
definition of A (and subsequently H1

0 (Ω) by H1(Rn) in (1.2)).
Since Ω is bounded then the injection H1

0 (Ω) ↪→ L2(Ω) is compact. Thus the resolvent of AV is a compact
operator and AV has a pure point spectrum. Let {λVj , j ∈ N∗} be the non-decreasing sequence of the
eigenvalues of AV , repeated according to their multiplicities. We define the isospectral set associated with
the potential V ∈ C∞0 (Ω) by

Is(V ) = {W ∈ C∞0 (Ω); λVk = λWk , k ∈ N∗}.
The computation carried out in section 5.2 of the coefficients cj(V ) appearing in (1.5), for j = 1, 2, 3, 4, leads
to the following result.

Theorem 1.1. Let a be the identity of Rn2

. Then for all V ∈ C∞0 (Ω) and any bounded subset B ⊂ L∞(Ω),
the set Is(V ) ∩ B is bounded in H2(Ω).

Since H2(Ω) is compactly embedded in Hs(Ω), for any s < 2, Theorem 1.1 entails the:

Corollary 1.1. Under the conditions of Theorem 1.1, the set Is(V ) ∩ B is compact in Hs(Ω) for each
s ∈ (−∞, 2).

It is worth mentioning that the method developed to calculate the first coefficients of the expansion

formula (1.5) when a is the identity of Rn2

may be generalized to the case of a constant matrix a at the
expense of heavier computations. Nevertheless, for the sake of computational simplicity, this specific part of
the analysis was restricted to the case of the Laplace operator.

1.3. What is known so far. It turns out that the famous problem addressed by M. Kac in [Ka], as whether
one can hear the shape of drum, is closely related to the following asymptotic expansion formula for the
trace of et∆g on a compact Riemannian manifold (M, g):

(1.6) tr
(
et∆g

)
= t−n/2

(
e0 + te1 + t2e2 + . . .+ tkek +O

(
tk+1

))
.

Here ∆g is the Laplace-Beltrami operator associated with the metric g and the coefficients ek, k ≥ 0, are
Riemannian invariants depending on the curvature tensor and its covariant derivatives. There is a wide
mathematical literature about (1.6), with many authors focusing more specifically on the explicit calculation
of ek, k ≥ 0. This is due to the fact that these coefficients actually provide useful information on g and
consequently on the geometry of the manifold M . The key point in the proof of (1.6) is the construction of
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a parametrix for the heat equation ∂t − ∆g, which was initiated by S. Minakshisudaram and Å. Pleijel in
[MP].

A survey on isospectral manifolds can be found in [GPS]. This problem is still at the center of the attention
of geometers. As a matter of fact Dryden, Gordon, Greenwald and Webb recently calculated the asymptotic
expansion of the heat kernel for orbifolds in [DGGW]. In the same spirit, the heat trace asymptotics for
general connections has been expressed by Beneventano, Gilkey, Kirsten and Santangelo in [BGKS].

Since the present work is not directly related to the analysis of the asymptotic expansion formula (1.6),
we shall not go into that matter further and we refer to [BGM, Ch, Gi2, Ka, MS] for more details.

The asymptotic expansion formula (1.5), for the Laplacian in the whole space, was proved by Y. Colin
de Verdière in [Co] by adapting (1.6). An alternative proof, based on the Fourier transform, was given in
[BB] by R. Bañuelos and A. Sá Barreto. The approach developed in this text is rather different in the sense
that (1.5) is obtained by linking the heat kernel of e−tAV to the one of e−tA through Duhamel’s formula.
The asymptotic expansion formulae (1.5) and (1.6) are nevertheless quite similar, but, here, the coefficients
ck, k ≥ 1, are given as integrals over Ω of polynomial functions in V and its derivatives. This situation is
reminiscent of [BB, Theorem 2.1, page 2154] where the same coefficients are expressed in terms of the tensor

products V̂ ⊗ . . . ⊗ V̂ , where V̂ is the Fourier transform of the potential V . Let us finally mention that
Colin de Verdière obtained a semi-classical trace formula for heat kernels of magnetic Schrödinger operators
in [Co2]

As will appear in section 5, the proof of the compactness Theorem 1.1 boils down to the calculation of
the four main terms in the asymptotic expansion formula (1.5). This follows from the basic identity∑

k≥1

e−λ
V
k t = tr

(
e−tAV

)
= tr

(
e−tA

)
+ ZVΩ (t),

linking the isospectral sets of AV to the heat trace of A. Compactness results for isospectral potentials
associated with the operator ∆g + V were already obtained by Brüning in [Br, Theorem 3, page 696] for
a compact Riemannian manifold with dimension no greater than 3, and further improved by Donnelly in
[Don]. Their approach is based on trace asymptotics borrowed to [Gi1, Theorem 4.3, page 230]. Our strategy
is rather similar but the heat kernels asymptotics needed in this text are explicitly computed in the first
part of the article.

1.4. Outline. Section 2 gathers several definitions and auxiliary results on heat kernels and trace asymp-
totics needed in the remaining part of the article. The asymptotic formula (1.5) is established in Section 3.
Finally section 5 contains the proof of Theorem 1.1.

2. Preliminaries

In this section we introduce some notations used throughout this text and derive auxiliary results needed
in the remaining part of this paper.

2.1. Heat kernels and trace asymptotics. With reference to the definitions and notations introduced in
section 1 we first recall from [Ou, Chapter 4, page 102] that the operator −AV , where V ∈ C∞0 (Ω), generates
an analytic semi-group e−tAV on L2(Ω). We denote KV the heat kernel associated with e−tAV , in such a
way that the identity

(2.1)
(
e−tAV f

)
(x) =

∫
Ω

KV (t, x, y)f(y)dy, t > 0, x ∈ Ω,

holds for every f ∈ L2(Ω). Let MV be the multiplication operator induced by V . Then we have

e−tAV = e−tA −
∫ t

0

e−(t−s)AMV e
−sAV ds, t > 0,
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from Duhamel’s formula. From this and (2.1) then follows that

(2.2) KV (t, x, y) = K(t, x, y)−
∫ t

0

∫
Ω

K(t− s, x, z)V (z)KV (s, z, y)dzds, t > 0, x, y ∈ Ω,

where K denotes the heat kernel of e−tA. Upon solving the integral equation (2.2) with the unknown function
KV by the successive approximation method, we obtain that

(2.3) KV (t, x, y) =
∑
j≥0

KV
j (t, x, y), t > 0, x, y ∈ Ω,

with

(2.4) KV
0 (t, x, y) = K(t, x, y) and KV

j+1(t, x, y) = −
∫ t

0

∫
Ω

K(t− s, x, z)V (z)KV
j (s, z, y)dsdz for all j ∈ N.

Thus, for each t > 0 and x, y ∈ Ω, we get by induction on j ∈ N∗ that

KV
j (t, x, y) = (−1)j

∫
Ωn

∫ t

0

∫ t1

0

. . .

∫ tj−1

0

[
j∏
i=1

K(ti−1 − ti, zi−1, zi)V (zi)

]
K(tj , zj , y)dzjdtj ,

where t0 = t, z0 = x, and duj = du1 . . . duj for u = z, t. From this, the following reproducing property

(2.5)

∫
Ω

K(t− s, x, z)K(s, z, y)dz = K(t, x, y), t > 0, s ∈ (0, t), x, y ∈ Ω,

and the estimate K ≥ 0, arising from [Fr], then follows that

(2.6) |KV
j (t, x, y)| ≤ ‖V ‖

j
∞t

j

j!
K(t, x, y), t > 0, x, y ∈ Ω, j ∈ N.

Therefore, for any fixed x, y ∈ Ω, the series in the right hand side of (2.3) converges uniformly in t > 0.
Having said that we consider the fundamental solution Γ to the equation

∂t − div(a(x)∇ · ) = ∂t −
n∑

i,j=1

∂j(aij(x)∂i , · ) = 0 in Rn.

Then there is a constant c > 0, depending only on n and µ, such that we have

(2.7) Γ(t, x, y) ≤ (ct)−n/2e−c|x−y|
2/t, t > 0, x, y ∈ Rn,

according to [FS]. Further, arguing as in the proof of Lemma 2.1 below, it follows from the maximum
principle that

(2.8) 0 ≤ K(t, x, y) ≤ Γ(t, x, y), t > 0, x, y ∈ Ω.

Thus, by (2.6)-(2.7), for all fixed t > 0, the series in the right hand side of (2.3) converges uniformly with
respect to x and y in Ω, and we have

(2.9)

∫
Ω

KV (t, x, x)dx =
∑
j≥0

AVj (t) where AVj (t) =

∫
Ω

KV
j (t, x, x)dx, j ∈ N.

As λVk scales like k2/n by [Kav, Lemma 3.1, page 229] then we have
∑∞
k=1 e

−tλVk <∞, hence e−tAV is trace

class since σ(e−tAV ) \ {0} = {e−tλVk , k ≥ 1} from the spectral theorem (see e.g. [EnNa1, Corollary 3.2,
page 289] or [EnNa2, Corollary 2.10, page 183]). On the other hand, e−tAV being an integral operator with
smooth kernel (see e.g. [Da]), we have

(2.10) tr
(
e−tAV

)
=

∫
Ω

KV (t, x, x)dx =
∑
k≥1

e−tλ
V
k , t > 0.

Notice that the right identity in (2.10) is a direct consequence of Mercer’s theorem (see e.g. [Ho]), entailing

KV (t, x, y) =
∑
k≥1

e−tλ
V
k φVk (x)× φVk (y), t > 0, x, y ∈ Ω,
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where {φVk , k ∈ N∗} is an orthonormal basis of eigenfunctions φVk of AV , associated with the eigenvalue λVk .
Finally, putting (1.4) and (2.9)-(2.10) together, we find out that

(2.11) ZVΩ (t) =
∑
j≥1

AVj (t), t > 0.

2.2. Estimation of Green functions. We start with the following useful comparison result:

Lemma 2.1. For δ > 0 put Ωδ = {x ∈ Ω; dist(x, ∂Ω) > δ}. Then we have

0 ≤ Γ(t, x, y)−K(t, x, y) ≤ (ct)−n/2e−cδ
2/t, 0 < t ≤ 2cδ2

n
, x ∈ Ω, y ∈ Ωδ,

where c is the constant appearing in the right hand side of (2.7).

Proof. Fix y ∈ Ωδ. Then uy(t, x) = Γ(t, x, y)−K(t, x, y) being the solution to the following initial boundary
value problem 

∂tuy(t, x)−
∑n
i,j=1 ∂j(aij∂iuy(t, x)) = 0, t > 0, x ∈ Ω,

uy(0, x) = 0, x ∈ Ω,
uy(t, x) = Γ(t, x, y), t > 0, x ∈ ∂Ω,

we get from the parabolic maximum principle (see e.g. [Fr]) that uy(t, x) ≤ max z∈∂Ω
0<s≤t

Γ(s, z, y). Therefore

we have

uy(t, x) ≤ max
z∈∂Ω
0<s≤t

(cs)−n/2e−c|z−y|
2/s ≤ max

0<s≤t
(cs)−n/2e−cδ

2/s, t > 0, x ∈ Ω,

by (2.7). Now the desired result follows readily from this and (2.8) upon noticing that s 7→ (cs)−n/2e−cδ
2/s

is non-decreasing on (0, 2cδ2/n). �

Remark 2.1. a) The functions K(t, ·, ·) and Γ(t, ·, ·) being symmetric for all t > 0, the statement of Lemma
2.1 remains valid for x ∈ Ωδ and y ∈ Ω as well.
b) A result similar to Lemma 2.1 can be found in [Mi] for the Dirichlet Laplacian, which corresponds to
the operator A in the particular case where a is the identity matrix. This claim, which was actually first
proved by H. Weyl in [We], is a cornerstone in the derivation of the classical Weyl’s asymptotic formula for
the eigenvalues counting function (see e.g. [Dod]).
c) We refer to [Co] for an alternative proof of Lemma 2.1 that is based on the classical Feynman-Kac formula
(see e.g. [SV]) instead of the maximum principle.

Let us extend V ∈ C∞0 (Ω) to Rn by setting V (x) = 0 for all x ∈ Rn \Ω, and, with reference to (2.3)-(2.4),
put

(2.12) ΓV0 (t, x, y) = Γ(t, x, y) and ΓVj+1(t, x, y) = −
∫ t

0

∫
Rn

Γ(t− s, x, z)V (z)ΓVj (s, z, y)dsdz, j ∈ N,

for all t > 0 and x, y ∈ Rn. Armed with Lemma 2.1 we may now relate the asymptotic behavior of AVj (t) as
t ↓ 0 to the one of

(2.13) BVj (t) =

∫
Ω

ΓVj (t, x, x)dx, t > 0, j ∈ N.

Proposition 2.1. Let j ∈ N∗. Then for each k ∈ N we have AVj (t) = BVj (t) +O(tk) as t ↓ 0.

Proof. Choose δ > 0 so small that supp(V ) ⊂ Ωδ, where Ωδ is the same as in Lemma 2.1, and pick
t ∈ (0, 2cδ2/n). Then, for all x, y ∈ Ω, we have

|ΓV1 (t, x, y)−KV
1 (t, x, y)| ≤

∫ t

0

∫
Ωδ

Γ(t− s, x, z)|V (z)|[Γ(s, z, y)−K(s, z, y)]dzds

+

∫ t

0

∫
Ωδ

[Γ(t− s, x, z)−K(t− s, x, z)]|V (z)|K(s, z, y)dzds,
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by (2.4) and (2.12). This, together with Lemma 2.1 and part a) in Remark 2.1, yields

(2.14) |ΓV1 (t, x, y)−KV
1 (t, x, y)| ≤ ‖V ‖∞(ct)−n/2e−cδ

2/t

(∫ t

0

∫
Rn

Γ(s, x, z)dzds+

∫ t

0

∫
Rn

Γ(s, z, y)dzds

)
,

for all t > 0 and a.e. x, y ∈ Ω. Here we used the estimate 0 ≤ K ≤ Γ and the fact that the function

s 7→ (cs)−n/2e−cδ
2/s is non-decreasing on (−∞, 2cδ2/n]. Further, due to (2.7), there is a positive constant

C, independent of t, such that∫ t

0

∫
Rn

Γ(s, x, z)dzds+

∫ t

0

∫
Rn

Γ(s, z, y)dzds ≤ Ct, t > 0, x, y ∈ Ω,

so we obtain

|ΓV1 (t, x, y)−KV
1 (t, x, y)| ≤ C‖V ‖∞t(ct)−n/2e−cδ

2/t, t > 0, x, y ∈ Ω,

by (2.14). Similarly, using (2.6) and arguing as above, we get

|ΓVj (t, x, y)−KV
j (t, x, y)| ≤ (C‖V ‖∞)j

tj

j!
(ct)−n/2e−cδ

2/t, t > 0, x, y ∈ Ω,

by induction on j ∈ N∗. Now the result follows from this, (2.9) and (2.13). �

2.3. The case of a constant metric. We now express the function (t, x) ∈ R∗+×Rn 7→ ΓVj (t, x, x), j ∈ N∗,
defined by (2.12), in terms of the heat kernel Γ and the perturbation V , in the particular case where a is
constant. Since a is regular (i.e. invertible) by (1.1) then Γ(t, x, y) is explicitly known and coincides with
the following Gaussian kernel

(2.15) G(t, x− y) = (4πt)−n/2
(
deta−1

)−1/2
e−a

−1(x−y)·(x−y)/(4t), t > 0, x, y ∈ Rn,

where a−1 is the inverse matrix of a. The result is as follows.

Lemma 2.2. Assume that a is constant and fix j ∈ N∗. Then we have

ΓVj (t, x, x) = (−1)jtj−n/2
∫

(Rn)j

∫ 1

0

∫ s1

0

. . .

∫ sj−1

0

[
j∏
i=1

G(si−1 − si, wi−1 − wi)V (x+
√
twi)

]
×G(sj , wj)ds

jdwj ,

for all t > 0 and x ∈ Rn, where G is defined by (2.15). Here we have set s0 = 1, w0 = 0 and duj = du1 . . . duj
for u = s, w.

Proof. The main benefit of dealing with a constant matrix a is the following property:

Γ(ts, x, y) = t−n/2Γ

(
s,

x√
t
,
y√
t

)
, t, s > 0, x, y ∈ Rn.

From this and the following identity arising from (2.12) for all t > 0 and x, y ∈ Rn,

ΓVj (t, x, y) = (−1)jtj
∫

(Rn)j

∫ 1

0

∫ s1

0

. . .

∫ sj−1

0

[
j∏
i=1

Γ(t(si−1 − si), zi−1, zi)V (zi)

]
Γ(tsj , zj , y)dsjdzj ,

with z0 = x, then follows that

ΓVj (t, x, y)

= (−1)jtj−(j+1)n/2

∫
(Rn)j

∫ 1

0

∫ s1

0

. . .

∫ sj−1

0

[
j∏
i=1

Γ

(
si−1 − si,

zi−1√
t
,
zi√
t

)
V (zi)

]
Γ

(
sj ,

zj√
t
,
y√
t

)
dsjdzj .
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Thus, by performing the change of variables (z1, . . . zj) =
√
t(w1, . . . wj) + (x, . . . , x) in the above integral,

we find out that

ΓVj (t, x, y) = (−1)jtj−n/2
∫

(Rn)j

∫ 1

0

∫ s1

0

. . .

∫ sj−1

0

[
j∏
i=1

Γ

(
si−1 − si,

x√
t

+ wi−1,
x√
t

+ wi

)
V
(
x+
√
twi

)]

×Γ

(
sj ,

x√
t

+ wj ,
y√
t

)
dsjdwj .

Finally, we obtain the desired result upon taking y = x in the above identity and recalling that Γ verifies

Γ

(
t,
x√
t

+ z,
x√
t

+ w

)
= Γ(t, z, w) = G(t, z − w),

for all t > 0 and x, z, w in Rn. �

3. Asymptotic expansion formulae

In this section we establish the asymptotic expansion formula (1.5). The strategy of the proof is, first, to
establish (1.5) where

(3.1) ZV (t) = tr(e−tHV − e−tH), t > 0,

is substituted for ZVΩ (t), and, second, to relate the asymptotics of ZVΩ (t) as t ↓ 0 to the one of ZV (t).
Here H is the self-adjoint operator generated in L2(Rn) by the closed quadratic form

h[u] =

∫
Rn

a(x)∇u(x) · ∇u(x)dx, u ∈ D(h) = H1(Rn),

and HV = H + V as a sum in the sense of quadratic forms. It is easy to check that H acts on its domain
D(H) = H2(Rn), the second-order Sobolev space on Rn, as the right hand side of (1.3). Moreover we have
D(HV ) = D(H) since V ∈ L∞(Rn). In other words H (resp., HV ) may be seen as the extension of the
operator A (resp., AV ) acting in L2(Rn), and, due to (2.12) and (3.1), we have

(3.2) ZV (t) =
∑
j≥1

HV
j (t), t > 0, where HV

j (t) =

∫
Rn

ΓVj (t, x, x)dx, j ∈ N.

In light of this and Lemma 2.2, we apply Taylor’s formula to V ∈ C∞0 (Ω), getting for all j ≥ 1 and p ≥ 1,

(3.3)

j∏
k=1

V (x+ twk) =

p−1∑
`=0

t`

 ∑
|α1|+...|αj |=`

1

α1! . . . αj !

j∏
k=1

∂αkV (x)wαkk

+ tpRpj (t, x, w1 . . . , wj),

where

(3.4) Rpj (t, x, w1 . . . , wj) =
∑

|α1|+...|αj |=p

p

α1! . . . αj !

∫ 1

0

(1− s)p−1

j∏
k=1

∂αkV (x+ stwk)wαkk ds.

For the sake of notational simplicity we note

(3.5) αj = (αj1, . . . , α
j
j) ∈ (Nn)j , αj ! =

j∏
k=1

αjk! and Wαj

j =

j∏
k=1

w
αjk
k ,

so that (3.3)-(3.4) may be reformulated as

(3.6)

j∏
k=1

V (x+ twk) =

p−1∑
`=0

t`

 ∑
|αj |=`

Wαj

j

αj !

j∏
k=1

∂α
j
kV (x)

+ tpRpj (t, x, w1 . . . , wj),

with

(3.7) Rpj (t, x, w1 . . . , wj) =
∑
|αj |=p

pWαj

j

αj !

∫ 1

0

(1− s)p−1

j∏
k=1

∂αkV (x+ stwk)ds, j, p ∈ N∗.
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Next, with reference to (3.5) we define for further use

(3.8) cαj =
1

αj !

∫
(Rn)j

∫ 1

0

∫ s1

0

. . .

∫ sj−1

0

Wαj

j

[
j∏
i=1

G(si−1 − si, wi−1 − wi)

]
G(sj , wj)ds

jdwj ,

where, as usual, s0 = 1, w0 = 0, and duj stands for du1 . . . duj with u = s, w. Putting

(3.9) Pαj (V ) =

∫
Ω

j∏
k=1

∂α
j
kV (x)dx, j ∈ N∗,

we may now state the main result of this section.

Proposition 3.1. For any p ∈ N∗, the asymptotics of ZV (t) and ZVΩ (t) as t ↓ 0 have the expression

p∑
`=1

t`P2`(V ) +O(tp+1),

where

(3.10) P`(V ) =
∑

1≤j≤`/2

(−1)j
∑

|αj |=`−2j

cαjPαj (V ),

the coefficients cαj and Pαj (V ) being defined by (3.8)-(3.9).

Proof. In view of (2.13), Lemma 2.2 and (3.9) we have

tnBVj (t2) = (−1)j
p−1∑
`=0

t`+2j
∑
|αj |=`

cαjPαj (V ) +O(tp+2j), t > 0, j ∈ N∗,

and hence

tnBVj (t2) = (−1)j
p−1∑
`=2j

t`
∑

|αj |=`−2j

cαjPαj (V ) +O(tp), t > 0, j ∈ N∗.

Summing up the above identity over all integers j between 1 and (p− 1)/2, we find that

tn
∑

1≤j≤(p−1)/2

BVj (t2) =
∑

1≤j≤(p−1)/2

(−1)j
p−1∑
`=2j

t`
∑

|αj |=`−2j

cαjPαj (V ) +O(tp)

and hence

tn
∑

1≤j≤(p−1)/2

BVj (t2) =

p−1∑
`=2

t`
∑

1≤j≤`/2

(−1)j
∑

|αj |=`−2j

cαjPαj (V ) +O(tp).

As a consequence we have tn
∑

1≤j≤(p−1)/2B
V
j (t2) =

∑p−1
`=2 t

`P`(V ) +O(tp), hence

(3.11) tn
∑
j≥1

BVj (t2) =

p−1∑
`=2

t`P`(V ) +O(tp).

Now, upon performing the change of variables (w1, . . . , wj) −→ (−w1, . . . ,−wj) in the right hand side of

(3.8) we get that cαj = (−1)|α
j |cαj . Therefore cαj = 0 for |αj | odd. As a consequence we have

P2`+1(V ) =
∑

1≤j≤`

(−1)j
∑

|αj |=2(`−j)+1

cαjPαj (V ) = 0.

Thus, applying (3.11) where 2(p+ 1) is substituted for p, we find out that

tn
∑
j≥1

BVj (t2) =

2p+1∑
`=2

t`P`(V ) +O(t2(p+1)) =

p∑
`=1

t2`P2`(V ) +O(t2(p+1)),
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which, in turn, yields

(3.12) tn/2
∑
j≥1

BVj (t) =

p∑
`=1

t`P2`(V ) +O(tp+1).

Next, bearing in mind that V is supported in Ω, we see that Pαj (V ) =
∫
Rn
∏j
k=1 ∂

αjkV (x)dx for all j ∈ N∗.
This entails

(3.13) tn/2
∑
j≥1

HV
j (t) =

p∑
`=1

t`P2`(V ) +O(tp+1).

upon substituting (3.2) for (2.13) in the above reasoning. Finally, putting (2.11), (3.12) and Proposition 2.1
(resp. (3.2) and (3.13)) together we obtain the result for ZVΩ (resp. ZV ). �

Proposition 3.1 immediately entails the:

Corollary 3.1. Let V0 ∈ C∞0 (Ω). Then, under the conditions of Proposition 3.1, each V ∈ Is(V0) verifies

P`(V ) = P`(V0), ` ≥ 2.

Remark 3.1. It is clear that the asymptotic formula stated in Proposition 3.1 for ZV remains valid if V is
taken in the Schwartz class S (Rn).

4. Two parameter integrals

In this section we collect useful properties of two parameter integrals appearing in the proof of Theorem
1.1, presented in section 5. As a preamble we consider the integral

(4.1) In(f) =

∫
Rn

∫
Rn

∫ 1

0

∫ s1

0

f(w1, w2)G(1− s1, w1)G(s1 − s2, w1 − w2)G(s2, w2)dw1dw2ds1ds2,

where f ∈ C∞(Rn × Rn) and G is defined by (2.15). For all σ ∈ σn, the set of permutations of {1, . . . , n},
and all z = (z1, . . . , zn) ∈ Rn, we write σz = (zσ(1), . . . , zσ(n)). Similarly, for every w1, w2 ∈ Rn, we note
σ(w1, w2) = (σw1, σw2) and f ◦ σ(w1, w2) = f(σ(w1, w2)). The following result gathers several properties of
In that are required in the remaining part of this section.

Lemma 4.1. Let f ∈ C∞(Rn × Rn). Then it holds true that:

i) In(f) = In(Sf), where S denotes the “mirror symmetry” operator acting as Sf(w1, w2) = f(w2, w1);
ii) In(f) = In(f ◦ σ) for all σ ∈ σn;

iii) If there are fk ∈ C∞(R× R), k = 1, . . . , n, such that

f(w1, w2) =

n∏
k=1

fk(wk1 , w
k
2 ), wi = (w1

i , . . . , w
n
i ), i = 1, 2,

and if any of the fk is an odd function of (wk1 , w
k
2 ), then we have In(f) = 0.

Proof. i) Upon performing successively the two changes of variables τ1 = 1− s1 and τ2 = 1− s2 in the right
hand side of (4.1), we get that

In(f) =

∫
Rn

∫
Rn

∫ 1

0

∫ 1

τ1

f(w1, w2)G(τ1, w1)G(τ2 − τ1, w1 − w2)G(1− τ2, w2)dw1dw2dτ2dτ1

=

∫
Rn

∫
Rn

∫ 1

0

∫ τ2

0

f(w1, w2)G(τ1, w1)G(τ2 − τ1, w1 − w2)G(1− τ2, w2)dw1dw2dτ1dτ2,

so the result follows by relabelling (w1, w2) as (w2, w1).
ii) In light of (2.15) we have G(t, w) = G(t, σ−1w) for all t > 0, w ∈ Rn and σ ∈ σn, hence In(f) is equal to∫

Rn

∫
Rn

∫ 1

0

∫ s1

0

f(w1, w2)G(1− s1, σ
−1w1)G(s1 − s2, σ

−1w1 − σ−1w2)G(s2, σ
−1w2)dw1dw2ds1ds2,
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according to (4.1). The result follows readily from this upon performing the change of variable (w̃1, w̃2) =
σ−1(w1, w2).
iii) This point is a direct consequence of the obvious identity In(f) =

∏n
k=1 I1(fk), arising from (2.15) and

(4.1). �

We turn now to evaluating integrals of the form

(4.2) Iα,β = Iα,β(s1, s2) =

∫
R

∫
R
xαyβg(1− s1, x)g(s1 − s2, x− y)g(s2, y)dxdy, α, β ∈ N, s1, s2 ∈ R,

where g denotes the one-dimensional Gaussian kernel defined by (2.15) in the particular case where n = 1.
This can be achieved upon using the following result.

Lemma 4.2. Let α, β ∈ N. If α + β is odd we have Iα,β = 0 and if α + β is even, it holds true for all
s1, s2 ∈ R that

i) I1,1(s1, s2) = 2(4π)−1/2(1− s1)s2;

ii) Iα,β(s1, s2) = 2(1− s1)s2 [2(α− 1)(β − 1)(s1 − s2)Iα−2,β−2(s1, s2) + (α+ β − 1)Iα−1,β−1(s1, s2)];

iii) Iα,β(s1, s2) = 2(1− s1) [(α− 1)s1Iα−2,β(s1, s2) + βs2Iα−1,β−1(s1, s2)];

iv) Iα,β(s1, s2) = 2(1− s1) [(α+ β − 1)s1Iα−2,β(s1, s2)− 2β(β − 1)s2(s1 − s2)Iα−2,β−2(s1, s2)];

v) I2α,0(s1, s2) = (4π)−1/2(2α)!/(α!)sα1 (1− s1)α;

vi) I0,2α(s1, s2) = (4π)−1/2(2α)!/(α!)sα2 (1− s2)α.

Proof. a) In light of the basic identity

(4.3) zg(t, z) = −2t∂zg(t, z), t > 0, z ∈ R,

we have ∫
R

∫
R
xyg(1− s1, x)g(s1 − s2, x− y)g(s2, y)dxdy

= −2(1− s1)

∫
R

∫
R
y∂xg(1− s1, x)g(s1 − s2, x− y)g(s2, y)dxdy

= 2(1− s1)

∫
R

∫
R
yg(1− s1, x)∂xg(s1 − s2, x− y)g(s2, y)dxdy,

by integrating by parts. Thus, applying (4.3) once more, we obtain that∫
R

∫
R
xyg(1− s1, x)g(s1 − s2, x− y)g(s2, y)dxdy

= −2(1− s1)

∫
R

∫
R
yg(1− s1, x)∂yg(s1 − s2, x− y)g(s2, y)dxdy

= 2(1− s1)

∫
R

∫
R
yg(1− s1, x)g(s1 − s2, x− y)∂yg(s2, y)dxdy + 2(1− s1)(4π)−1/2

= 2(1− s1)

∫
R
yg(1− s2, y)∂yg(s2, y)dy + 2(1− s1)(4π)−1/2,(4.4)

with the help of the reproducing property. On the other hand, an integration by parts gives∫
R
yg(1− s2, y)∂yg(s2, y)dy = −

∫
R
g(1− s2, y)g(s2, y)dy −

∫
R
y∂yg(1− s2, y)g(s2, y)dy

= −(4π)−1/2 − s2

1− s2

∫
R
yg(1− s2, y)∂yg(s2, y)dy,
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and we get that
∫
R yg(1− s2, y)∂yg(s2, y)dy = −(4π)−1/2(1− s2). Thus Part i) follows from this and (4.4).

b) Applying (4.3) with z = x and t = 1− s1 we find that

Iα,β(s1, s2) = −2(1− s1)

∫
R

∫
R
xα−1yβ∂xg(1− s1, x)g(s1 − s2, x− y)g(s2, y)dxdy

= 2(α− 1)(1− s1)

∫
R

∫
R
xα−2yβg(1− s1, x)g(s1 − s2, x− y)g(s2, y)dxdy

− 2(1− s1)

2(s1 − s2)

∫
R

∫
R
xα−1yβ(x− y)g(1− s1, x)g(s1 − s2, x− y)g(s2, y)dxdy,

by integrating by parts wrt x, so we get

(4.5) (1− s2)Iα,β(s1, s2) = 2(α− 1)(1− s1)(s1 − s2)Iα−2,β(s1, s2) + (1− s1)Iα−1,β+1(s1, s2).

Doing the same with z = y and t = s2 we obtain that

(4.6) s1Iα,β(s1, s2) = 2(β − 1)(s1 − s2)s2Iα,β−2(s1, s2) + s2Iα+1,β−1(s1, s2).

Thus, upon successively substituting (α− 1, β + 1) and (α− 2, β) for (α, β) in (4.6), we find that

(4.7) s1Iα−1,β+1(s1, s2) = 2βs2(s1 − s2)Iα−1,β−1(s1, s2) + s2Iα,β(s1, s2)

and

(4.8) s1Iα−2,β(s1, s2) = 2(β − 1)(s1 − s2)Iα−2,β−2(s1, s2) + s2Iα−1,β−1(s1, s2).

Plugging (4.7)-(4.8) in (4.5) we end up getting part ii). Further we obtain part iii) by following the same
lines as in the derivation of part ii), and part iv) is a direct consequence of parts ii) and iii).
c) Arguing as in the derivation of part i) in a), we establish for any α ≥ 2 that

Iα,0(s1, s2) = 2(α− 1)s1(1− s1)Iα−2,0(s1, s2).

This and the obvious identity I0,0(s1, s2) = (4π)−1/2 yields part v) upon proceeding by induction on α.
Finally, part vi) follows from part v) upon noticing from (4.2) that I0,α(s1, s2) = Iα,0(1− s2, 1− s1). �

Further, for all α = (αk)1≤k≤n and β = (βk)1≤k≤n in Nn, we put

(4.9) I (α, β) =

∫ 1

0

∫ s1

0

(∫
Rn

∫
Rn
xαyβG(1− s1, x)G(s1 − s2, x− y)G(s2, y)dxdy

)
ds1ds2,

and establish the:

Lemma 4.3. For each α = (αk)1≤k≤n and β = (βk)1≤k≤n in Nn we have:

i) I (α, β) =
∫ 1

0

∫ s1
0

∏n
k=1 Iαk,βk(s1, s2)ds1ds2.

ii) J (α, β) = J (β, α).
iii) J (α, β) = 0 if any of the sums αk + βk for 1 ≤ k ≤ n, is odd.

Proof. Part i) follows readily from the identity G(s, z) =
∏n
k=1 g(s, zk) arising from (2.15) for all s ∈ R∗ and

all z = (zk)1≤k≤n ∈ Rn, and from the very definitions (4.2) and (4.9). Next, part ii) is a direct consequence
of the first assertion of Lemma 4.1, while part iii) follows from the third point of Lemma 4.1. �

5. Proof of Theorem 1.1

We start by establishing two identities which are useful for the proof of Theorem 1.1.
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5.1. Two useful identities. They are collected in the following:

Proposition 5.1. Let V ∈ C∞0 (Ω) be real-valued and assume that a = I. Then, with reference to the
definitions (3.9)-(3.10), we have

(5.1) (4π)n/2
∑
|α2|=2

cα2Pα2(V ) = − 1

12

∫
Ω

|∇V |2dx

and

(5.2) (4π)n/2
∑
|α2|=4

cα2Pα2(V ) =
1

120

∑
k

∫
Ω

(
∂2
kkV

)2
dx+

13

360

∑
k 6=`

∫
Ω

(
∂2
k`V

)2
dx.

Proof. Since

(5.3) cα2 =
I (α2

1, α
2
2)

α2!
, α2 = (α2

1, α
2
2),

by (3.8) and (4.9), we know from the two last points in Lemma 4.3 that

(5.4) cα2 = 0 if the sum (α2
1)k + (α2

2)k is odd for any k ∈ {1, . . . , n},
and

(5.5) cα2 = cα̃2 for α̃2 = (α2
2, α

2
1).

We first compute
∑
|α2|=4 cα2Pα2(V ). In what follows we note (0, . . . , β

k
, . . . , 0), 1 ≤ k ≤ n, β ∈ R, the vector

(βj)1≤j≤n ∈ Rn such that βj = 0 for all 1 ≤ j 6= k ≤ n and βk = β. In view of (5.3) we apply the first point
in Lemma 4.3 for α2 = ((0, . . . 2

k
, . . . 0), (0, . . . , 0)), 1 ≤ k ≤ n, getting

(5.6)

cα2 =

∫ 1

0

∫ s1

0

I0,0(s1, s2)n−1I2,0(s1, s2)ds1ds2 =
(4π)−(n−1)/2

2

∫ 1

0

∫ s1

0

I2,0(s1, s2)ds1ds2 =
(4π)−n/2

12
,

with the aid of part v) in Lemma 4.2. Similarly, for α2 = ((0, . . . , 1
k
, . . . , 0), (0, . . . , 1

k
, . . . , 0)), 1 ≤ k ≤ n, we

use the first part of Lemma 4.2 and obtain that

(5.7) cα2 = (4π)−(n−1)/2

∫ 1

0

∫ s1

0

I1,1(s1, s2)ds1ds2 =
(4π)−n/2

12
.

In light of (5.4)-(5.5) we deduce from (5.6)-(5.7) that∑
|α2|=2

cα2Pα2(V ) =
1

6
(4π)−n/2

∫
Ω

∆V V dx+
1

12
(4π)−n/2

∫
Ω

|∇V |2dx.

Taking into account that
∫

Ω
∆V V dx = −

∫
Ω
|∇V |2dx, we obtain (5.1) from the above line.

We now compute
∑
|α2|=4 cα2Pα2(V ). As a preamble we first invoke Lemma 4.2 and get simultaneously

(5.8) I2,2(s1, s2) = 2(1− s1)[s1I0,2(s1, s2) + 2s2I1,1(s1, s2)] = 4(4π)−1/2(1− s1)s2[s1(1− s2) + 2(1− s1)s2],

and

(5.9) I3,1(s1, s2) = 2(1− s1)[2s1I1,1(s1, s2) + s2I2,0(s1, s2)] = 12(4π)−1/2(1− s1)2s1s2,

from part iii), and

(5.10) I4,0(s1, s2) = 12(4π)−1/2s2
1(1− s1)2,

from part v). Thus, for all k ∈ {1, . . . , n} it follows from the first part of Lemma 4.3 and (5.10) upon taking
α2 = ((0, . . . , 4

k
, . . . , 0), (0, . . . , 0)) in (5.3) that

(5.11) cα2 =
(4π)−(n−1)/2

4!

∫ 1

0

∫ s1

0

I4,0(s1, s2)ds1ds2 =
1

120
(4π)−n/2.
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Further, choosing α2 = ((0, . . . , 3
k
, . . . , 0), (0, . . . , 1

k
, . . . , 0)) we deduce in the same way from (5.9) that,

(5.12) cα2 =
(4π)−(n−1)/2

3!

∫ 1

0

∫ s1

0

I3,1(s1, s2)ds1ds2 =
1

60
(4π)−n/2,

and with α2 = ((0, . . . , 2
k
, . . . , 0), (0, . . . , 2

k
, . . . , 0)), we get from (5.8) that

(5.13) cα2 =
(4π)−(n−1)/2

2!2!

∫ 1

0

∫ s1

0

I2,2(s1, s2)ds1ds2 =
1

40
(4π)−n/2.

Finally, upon taking α2 = ((0, . . . , 2
k
, . . . , 0), (0, . . . , 2

`
, . . . , 0)) in (5.3), for 1 ≤ k 6= ` ≤ n, we derive from the

two last parts of Lemma 4.2 that

(5.14) cα2 =
(4π)−(n−2)/2

2!2!

∫ 1

0

∫ s1

0

I2,0(s1, s2)I0,2(s1, s2)ds1ds2 =
1

72
(4π)−n/2,

while the choice α2 = ((0, . . . , 1
k
, . . . , 1

`
, . . . 0), (0, . . . , 1

k
, . . . , 1

`
, . . . , 0)) leads to

(5.15) cα2 = (4π)−(n−2)/2

∫ 1

0

∫ s1

0

I1,1(s1, s2)2ds1ds2 =
1

45
(4π)−n/2,

with the aid of the first part. Putting (5.11)–(5.15) together and recalling (5.4)-(5.5) we end up getting
(5.2). �

Armed with Proposition 5.1 we are now in position to prove Theorem 1.1.

5.2. Completion of the proof. By applying the reproducing property (2.5) to the kernel G, defined in
(2.15), we derive from (3.8) for all j ≥ 1 that

(5.16) cαj=0 =

∫
(Rn)n

∫ 1

0

∫ s1

0

. . .

∫ sj−1

0

G(1− s1, w1)

j∏
k=1

G(sk − sk+1, wk − wk+1)dwjdsj =
(4π)−n/2

j!
,

where sj+1 = wj+1 = 0. In light of (3.10), (5.16) then yields that

(5.17) P2(V ) = −cα1=0Pα1=0(V ) = −(4π)−n/2
∫

Ω

V dx.

Next, bearing in mind that the potential V is compactly supported in Ω, we notice from (3.9) that

(5.18) Pα1(V ) =

∫
Ω

∂α
1

V (x)dx = 0, |α1| ≥ 1.

As a consequence we have

(5.19) P4(V ) = cα2=0Pα2=0(V )−
∑
|α1|=2

cα1Pα1(V ) =
(4π)−n/2

2

∫
Ω

V (x)2dx.

Further, as P6 = −cα3=0Pα3=0(V )+
∑
|α2|=2 cα2Pα2(V )−

∑
|α1|=4 cα1Pα1(V ), it follows from (5.1) and (5.16)

that

(5.20) P6(V ) = − (4π)−n/2

6

(
1

2

∫
Ω

|∇V (x)|2dx+

∫
Ω

V (x)2dx

)
.

Finally, since
∫

Ω
∂2
kmV (x)V (x)2dx = −2

∫
Ω
∂kV (x)∂mV (x)V (x)dx for all natural numbers 1 ≤ k,m ≤ n, by

integrating by parts, we see that there is a constant Cn depending only on n such that we have∣∣∣∣∣∣
∑
|α3|=2

cα3Pα3(V )

∣∣∣∣∣∣ ≤ Cn‖V ‖∞
∫

Ω

|∇V (x)|2dx,
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according to (3.9). This, together with the identity

P8(V ) = cα4=0Pα4=0(V )−
∑
|α3|=2

cα3Pα3(V ) +
∑
|α2|=4

cα2Pα2(V )−
∑
|α1|=6

cα1Pα1(V ),

arising from (3.10), and (5.2), (5.16), (5.18), then yield

(5.21)
∑
|γ|=2

∫
Ω

|∂γV (x)|2dx+

∫
Ω

V (x)4dx ≤ C ′n
(
|P8(V )|+ ‖V ‖∞

∫
Ω

|∇V (x)|2dx.
)
,

for some constant C ′n > 0 depending only on n. In light of (5.20)-(5.21) the set Is(V0) ∩ B is thus bounded
in H2(Ω) from Corollary 3.1.

Acknowledgement. We would like to thank the anonymous referees for their valuable remarks which
enabled us to improve substantially an earlier version of this work.
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CPT UMR 7332, 83957 La Garde, France
E-mail address: yavar.kian@univ-amu.fr
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