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Abstract. We investigate the inverse problem of retrieving the magnetic potential of an

Iwatsuka Hamiltonian by knowledge of the second component of the quantum velocity. We

show that knowledge of the quantum currents carried by a suitable set of states with energy

concentration within the first spectral band of the Schrödinger operator, uniquely determines

the magnetic field.

1. Introduction: Iwatsuka Hamiltonians, edge currents and magnetic inverse

problems

Quantum Hall Hamiltonians describe the motion of a charged particle constrained to a

bounded or unbounded subdomain of the plane, subject to a constant transverse magnetic field

with strength b ≥ 0. Confined quantum Hall systems, such as motion in a half-plane or a strip

are particularly interesting as a current flowing along an edge is created. Confinement may

be obtained by Dirichlet boundary conditions (hard edge) or an electrostatic potential barrier

(soft edge), but in any case the edges of the confinement induce edge currents. These edge

currents are carried by states with energy localized between any two Landau levels (2n− 1)b,

n = 1, 2, . . ., see e.g. [7, 12, 14, 15].

In the present article we are interested in edge currents created by purely magnetic bar-

riers. Namely, we consider a two-dimensional Schrödinger operator with a non-constant mag-

netic field b(x, y) = b(x), (x, y) ∈ R2, depending only on x. When the real-valued function b

is bounded and has different limits as x goes to ±∞, it was shown in [18] by Iwatsuka that

the spectrum is absolutely continuous. Later on, the transport properties of these so-called

Iwatsuka Hamiltonians were investigated in [24] by physicists Reijniers and Peeters. When

b(x) assumes constant value b± for ±x > 0, 0 < b− < b+ < ∞, they argued that this discon-

tinuity in the magnetic field at x = 0 creates an effective edge and that currents flow along

the edge. This is the magnetic analog of the barriers created by Dirichlet boundary conditions

along x = 0 or a confining electrostatic potential filling the half-space x < 0 described in the

paragraph above.
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Besides, when 0 < b− ≤ b(x) ≤ b+ for x ∈ (−ε, ε), where ε ∈ [0, b
−1/2
− ), and b(x) = b±

for ±x > ε, the existence of currents flowing in the y-direction was rigorously established in

[16]. These currents are carried by states with energy concentration in the energy bands of

the Iwatsuka Hamiltonian, and they are well-localized in x to a region of size b
−1/2
− , centered

at x = 0. The study of the case of a jump in the magnetic field at x = 0 corresponding to

ε = 0 in [16], was extended to b+ = −b− = b > 0 in [10]. It shows that the magnetic field

creates an effective barrier near x = 0 that causes edge currents to flow along it consistent with

the heuristic approach conducted in [24]. Moreover, partially motivated by [24], Dombrowski,

Germinet and Raikov studied the edge conductance for generalized Iwatsuka models in [9].

In this article we examine the inverse problem of determining the vector potentialA(x, y) =

(0, a(x)), where a(x) =
∫ x
0 b(s)ds, x ∈ R, of the Iwatsuka Hamiltonian defined on the dense

domain C∞0 (R2) ⊂ L2(R2) by (−i∇ − A)2, from knowledge of the edge currents carried by

quantum states with energy localized in the first band (b−, b+). More precisely, these edge

currents are generated upon triggering the dynamic quantum system governed by the Iwatsuka

Hamiltonian, by a suitable set of initial states with energy concentration within (b−, b+).

Inverse coefficient problems for the magnetic Schrödinger operator have attracted a great

deal of attention over the last years. For instance, in [8], using the Bukhgeim-Klibanov method,

see [4], the time-independent divergence-free magnetic potential was Lipschitz stably retrieved

from a finite number of partial boundary observations (over the entire course of time) of the

solution. The authors proceed by suitably changing the initial state of the corresponding

dynamic Schrödinger equation and then measuring the solution on a sub-boundary fulfilling

the geometric optics condition for the observability derived by Bardos, Lebeau and Rauch in

[1]. The case of non-zero divergence magnetic vectors was treated with the same approach in

[17].

In [11, 25] the magnetic field of the Schrödinger operator was identified by the Dirichlet-

to-Neumann map. These results are based on a different approach using geometric optics

solutions. The stability issue in the same problem was treated in [3] but for dynamic magnetic

Schrödinger equation in a bounded domain, and in [2] for the same equation on a Riemannian

manifold. As for the determination of the magnetic vector potential of the Schrödinger operator

by spectral data, it was established in [20]. All the above mentioned inverse results were derived

for magnetic Schrödinger systems in a bounded domain, and we refer the reader to [5] for the
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study of the inverse problem of retrieving the magnetic field of the Schrödinger equation in an

unbounded cylindrical domain.

It is worth noticing that the analysis of the inverse problem under study in this manuscript

is fundamentally different from the ones used for solving the magnetic inverse problems of

[2, 3, 4, 5, 8, 11, 20, 25]. This is mostly due to the fact that our data are not naturally

related to the Neumann boundary data or the spectral data used by [2, 3, 4, 5, 8, 11, 20, 25].

Nevertheless, due to its translational invariance in the y direction, the Iwatsuka Hamiltonian

admits a fiber decomposition. The fibers are Sturm-Liouville operators with a zero-th order

perturbation expressed in terms of the unknown function a. But despite of this, and since

the fibers are defined on the real line here, it is still unclear whether the analysis conducted

in [22, Chapter 2, Section 3] on the half-line could be adapted to the inverse problem under

investigation in this manuscript. for inverse spectral problems for one-dimensional Schrödinger

operators defined either on the real-line or on the half-line, we refer the reader to [13] and the

references therein, where the continuous and bounded from below real-valued electric potential

was identified by the Krein spectral shift function.

The remaining part of the text is structured as follows. Section 2 contains the main

definitions and results of this article. In Section 3 we rigorously define the data used for

solving the inverse problem under examination in this article, and we briefly comment on

them. Finally, in Section 4, we give the proof of the main results stated below in Theorems

2.1 and 2.2, and in Corollary 2.3.

2. Definitions and results

2.1. Iwatsuka Hamiltonians. Let b ∈ L∞(R) be a non-decreasing function satisfying

lim
x→±∞

b(x) = b±, (2.1)

where b± are two positive real numbers such that

0 < b− < b+ < 3b−. (2.2)

Notice for further use that (2.1)-(2.2) yields

b− ≤ b(x) ≤ b+, x ∈ R. (2.3)

Next, we put

a(x) :=

∫ x

0
b(s)ds, x ∈ R, (2.4)
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and we introduce the magnetic potential A(x) = (A1(x), A2(x)) with A1(x) = 0 and A2(x) =

a(x). In the present article we consider the two-dimensional magnetic Hamiltonian (−i∇−A)2,

defined on C∞0 (R2) by

H := −∂2x + (−i∂y − a)2. (2.5)

Since A ∈ L4
loc(R2,R2) and b = ∂xA2 − ∂yA1 ∈ L2

loc(R2,R), the operator H is essentially

self-adjoint on the dense domain C∞0 (R2) ⊂ L2(R2) by [21, Theorems 1 and 2], and we still

denote by H its unique self-adjoint extension in L2(R2).

2.2. Reduction to one-dimensional operators. The Schrödinger operator defined in (2.5)

being invariant with respect to translations in the y-direction, it decomposes into a family of

parameterized Hamiltonians on L2(R). Let F denote the partial Fourier transform with respect

to y, i.e.

(Fu)(x, ξ) = û(x, ξ) := (2π)−1/2
∫
R
e−iξyu(x, y)dy, u ∈ L2(R2), (x, ξ) ∈ R2.

The Hilbert space L2(R2) can be expressed as a constant fiber direct integral over R with fibers

L2(R), i.e. L2(R2) =
∫ ⊕
R L2(R)dξ, and the operator H admits a partial Fourier decomposition

with respect to the y-variable, with

FHF∗ =

∫ ⊕
R
h(ξ)dξ,

where each h(ξ), ξ ∈ R, is self-adjoint in L2(R) with domain D(h(ξ)) which is independent of ξ,

i.e. D(h(ξ)) = D(h(0)), according to [18, Lemma 2.3]. Moreover, we have h(ξ) = − d2

dx2
+q(x, ξ)

on C∞0 (R), where q(x, ξ) := v(x, ξ)2/4 and v(x, ξ) := 2(ξ−a(x)) denotes the quantum velocity

at frequency ξ.

In light of (2.1), the potential q(·, ξ), ξ ∈ R, is unbounded as |x| goes to infinity, hence

h(ξ) has a compact resolvent. Let {λj(ξ), j ∈ N}, be the non decreasing sequence of the

eigenvalues of the operator h(ξ), ξ ∈ R. Since all the eigenvalues λj(ξ) are simple (see [14,

Proposition A2] or [18, Lemma 2.3]), we have for all j ≥ 3,

λ1(ξ) < λ2(ξ) < . . . < λj(ξ) < λj+1(ξ) < . . .

and the functions ξ 7→ λj(ξ), j ≥ 1, are real analytic by the Kato perturbation theory, see [19,

Chap. VII]. Moreover we have

(2j − 1)b− ≤ λj(ξ) ≤ (2j − 1)b+, ξ ∈ R, j ∈ N, (2.6)
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and

lim
ξ→±∞

λj(ξ) = (2j − 1)b±, j ∈ N, (2.7)

from [9, Proposition 3.1]. As a consequence the spectrum of H is purely absolutely continuous

(see, e.g. [23, Theorem XIII.86]) and

σ(H) =
∞⋃
j=1

[(2j − 1)b−, (2j − 1)b+].

Therefore, σ(H) has a band structure and it follows from (2.2) that the first band [b−, b+] does

not overlap with the remaining part of the spectrum ∪∞j=2[(2j − 1)b−, (2j − 1)b+].

2.3. Quantum velocity. In light of [18, Lemma 2.3], there exists a L2(R)-orthonormal basis

{ϕj(·, ξ), j ∈ N} is of eigenfunctions of h(ξ), ξ ∈ R, such that

h(ξ)ϕj(·, ξ) = λj(ξ)ϕj(·, ξ), j ∈ N.

Moreover, ϕj(·, ξ) ∈ D(h(0)) = {u ∈ H1(R), −u′′+a2u ∈ L2(R)}, j ∈ N, depends analytically

on ξ ∈ R with respect to the graph norm of h(0), defined by

‖u‖D(h(0)) :=
(
‖u‖22 + ‖h(0)u‖22

)1/2
, u ∈ D(h(0)),

where ‖ · ‖2 denotes the usual norm in L2(R). In what follows, all the eigenfunctions ϕj(·, ξ),

j ∈ R, are chosen to be real-valued, and since ϕ1(·, ξ) is non-degenerate, we will always assume

that

ϕ1(x, ξ) > 0, x ∈ R.

This being said, we introduce the current operator ϑ as

ϑ(χ) :=

∫
R
χ(ξ)2〈v(·, ξ)ϕ1(·, ξ), ϕ1(·, ξ)〉2dξ, χ ∈ C∞0 (R) := C∞0 (R,R), (2.8)

where 〈·, ·〉2 is the usual scalar product in L2(R). We shall see in Section 3.2, that ϑ(χ) is

the expectation of the second component of the velocity operator 2(i∂y + a) expressed in the

quantum state e−itHu0,χ, t ∈ [0,+∞), where

u0,χ := F∗ψχ, ψχ(x, ξ) := χ(ξ)ϕ1(x, ξ), (x, ξ) ∈ R2, (2.9)

that is to say the quantum current current carried by e−itHu0,χ. Since it is time-independent

according to (2.8), we rather call it quantum current carried by u0,χ in the sequel.

In the present article we investigate the inverse problem to know whether knowledge of the

transport properties of the Iwatsuka Hamiltonian H, expressed through its current operator

ϑ, uniquely determine the magnetic potential a of H.
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2.4. Main results. We denote by B the (convex) set of Iwatsuka magnetic fields, i.e. the set

of non-decreasing functions b ∈ L∞(R) satisfying the condition (2.1). Given b and b̃ in B, we

introduce

bε := (1− ε)b+ εb̃, ε ∈ (0, 1).

Evidently, bε ∈ B for all ε ∈ (0, 1) and we denote by ϑε the current operator associated with

bε. Otherwise stated, ϑε(χ), ε ∈ (0, 1) and χ ∈ C∞0 (R), is the quantum current carried by the

state u0,ε,χ, characterized by

û0,ε,χ(·, ξ) = χ(ξ)ϕε,1(·, ξ), ξ ∈ R.

Here, {ϕε,j(·, ξ), j ∈ N} is a L2(R)-orthonormal basis of eigenfunctions of the operator

hε(ξ) := − d2

dx2
+ qε(·, ξ), ξ ∈ R, (2.10)

where qε(·, ξ) := vε(·, ξ)2/4, vε(x, ξ) := 2(ξ − aε(x)) and aε(x) :=
∫ x
0 bε(s)ds.

Our first identification result is as follows.

Theorem 2.1. Let b ∈ B and b̃ ∈ B be such that

∃r ∈ (0, r0), supp (ã− a) ⊂ [−r, r], r0 :=
(3b− − b+)1/2

2b+
, (2.11)

where ã(x) :=
∫ x
0 b̃(s)ds for all x ∈ R.

Then, if 0 is an accumulation point of {ε ∈ (0, 1], ϑε = ϑ}, we have ã = a.

In contrast to Theorem 2.1 where an infinite number of current operators ϑε, ε ∈ (0, 1], are

supposed to be known, the following result assumes knowledge of one current operator only,

but additional spectral data is needed for the identification of the Iwatsuka Hamiltonian. More

precisely, Theorem 2.2, below, aims to recover the unknown magnetic field b̃ ∈ B from combined

knowledge of 1) the quantum current ϑ̃(χ) carried by the state ũ0,χ(x, y) = F∗(χϕ̃1(x, ·))(y),

(x, y) ∈ R2, for all χ ∈ C∞0 (R), where {ϕ̃j(·, ξ), j ∈ N} is a L2(R)-orthonormal basis of

eigenfunctions of the operator

h̃(ξ) := − d2

dx2
+ (ξ − ã(x))2, ξ ∈ R,

and, 2) ϕ̃1(·,±ξ0) for some arbitrarily fixed ξ0 ∈ (0,∞).

Theorem 2.2. Let b ∈ B and b̃ ∈ B be such that supp (ã− a) is compact. Assume that

∀χ ∈ C∞0 (R), ϑ(χ) = ϑ̃(χ), (2.12)
6



and that

∃ξ0 ∈ (0,∞),∀x ∈ R, ϕ1(x,±ξ0) = ϕ̃1(x,±ξ0). (2.13)

Then, we have ã = a.

The following statement is a byproduct of Theorem 2.2, obtained upon replacing (2.13)

by a more natural condition that can be checked through direct observation of the quantum

state of the system governed by H̃ := −∂2x + (−i∂y − ã(x))2.

Corollary 2.3. Let b and b̃ be as in Theorem 2.2. Assume (2.12) and suppose that

∀χ ∈ C∞0 (R), ∀x ∈ R, e−it0Hu0,χ(x, y0) = e−it0H̃ ũ0,χ(x, y0), (2.14)

for some (y0, t0) ∈ R× (0, T ). Then, we have ã = a.

Notice that since ϑ̃(χ) is the net quantum current (carried by ũ0,χ) flowing across the

horizontal line y = y0, it can be measured at the exact same place (and at the same time t0)

where the quantum state e−it0H̃ ũ0,χ(·, y0) appearing in Corollary 2.3 is observed.

3. Preliminaries: definition of the current operator ϑ

In this section we study the transport properties of quantum devices described by the

system  (−i∂t +H)u(x, y, t) = 0, (x, y, t) ∈ R2 × (0,∞)

u(x, y, 0) = u0(x, y), (x, y) ∈ R2,
(3.1)

where H is the self-adjoint realization introduced in Section 2.1 of the Iwatsuka Hamiltonian

defined by (2.5) on C∞0 (R2), and u0 is taken in D(H), the domain of H. More precisely, we

aim to relate the current operator ϑ defined in (2.9) to the second component of the quantum

velocity operator associated with H.

3.1. The forward problem: Energy concentration and fast decaying property. For

all u ∈ L2(R2), we have

û(x, ξ) =

∞∑
j=1

uj(ξ)ϕj(x, ξ), (x, ξ) ∈ R2,

where uj(ξ) := 〈û(·, ξ), ϕj(·, ξ)〉2, since {ϕj(·, ξ), j ∈ N}, ξ ∈ R, is an orthonormal basis of

L2(R). Thus, for all λ ∈ (0,∞) and all u ∈ D(H), it holds true that

‖(λ+ iH)u‖2L2(R2) =

∞∑
j=1

∫
R
|λ+ iλj(ξ)|2 |uj(ξ)|2 dξ
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=
∞∑
j=1

∫
R

(λ2 + λj(ξ)
2) |uj(ξ)|2 dξ

≥ λ2‖u‖2L2(R2),

and hence the operator −iH is dissipative in L2(R2). Further, λ + iH = i(H − iλ) being

surjective since the spectrum of H is embedded in [b−,∞), the operator −iH is maximally

dissipative in L2(R2). Therefore, (3.1) admits a unique solution u ∈ C0([0,∞), D(H)) ∩

C1([0,∞), L2(R2)), which is expressed as

u(x, y, t) = e−itHu0(x, y), (x, y) ∈ R2, t ∈ [0,∞), (3.2)

from [6, Lemma 2.1].

For χ ∈ C∞0 (R), let u0,χ be the same as in (2.9). Then we have û0,χ ∈ D(h(ξ)) for all

ξ ∈ R, and ∫
R

(
‖û0,χ(·, ξ)‖22 + ‖h(ξ)û0,χ(·, ξ)‖22

)
dξ =

∫
R

(
1 + λ1(ξ)

2
)
χ(ξ)2dξ <∞,

whence u0,χ ∈ D(H) by [23, Section XIII.16]. Therefore, it follows from (3.2) that

uχ(x, y, t) := e−itHu0,χ(x, y), (x, y) ∈ R2, t ∈ [0,∞), (3.3)

is well-defined.

For further reference we shall establish that, 1) the quantum state uχ(·, ·, t), t ∈ [0,∞),

has energy concentration in the first spectral band (b−, b+), of H, and 2) ∂kt u(·, ·, t), k = 0, 1,

together with its partial derivatives with respect to y, decay faster than any polynomials in

the y-direction. For this purpose we introduce the Schwartz space Sy(R, L2
x(R)) of smooth

functions y 7→ f(·, y) from R into L2(R), whose derivatives are rapidly decreasing, as:

Sy(R, L2
x(R)) := {f ∈ C∞y (R, L2

x(R)), ∀(m,n) ∈ N2
0, sup

y∈R
|y|m ‖∂ny f(·, y)‖2 <∞}.

Here and below, we set N0 := N ∪ {0}, where, as usual, N := {1, 2, 3, . . .} is the set of positive

integers. Next, we recall that the spectral projection of H associated with a Borel set I ⊂ R,

reads

PIw(x, y) = F∗
 ∞∑
j=1

1λ−1
j (I)wjϕj(x, ·)

 (y), w ∈ L2(R2), (3.4)

where 1I is the characteristic function of I and wj(ξ) := 〈ŵ(·, ξ), ϕj(·, ξ)〉2. Then, the expected

result is as follows.
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Lemma 3.1. Let uχ, χ ∈ C∞0 (R), be defined by (3.3), where u0,χ is as in (2.9). Then, we

have

uχ ∈ C1([0,∞),Sy(R, L2
x(R))) (3.5)

and

P(b−,b+)uχ(·, ·, t) = uχ(·, ·, t), t ∈ [0,∞). (3.6)

Proof. We start by proving (3.5). To this end, we infer from (2.9) and (3.3) that

ûχ(x, ξ, t) = e−itλ1(ξ)χ(ξ)ϕ1(x, ξ), (x, ξ) ∈ R2, t ∈ [0,∞).

Thus, using that ‖ϕ1(·, ξ)‖2 = 1 for all ξ ∈ R, we have ‖ûχ(·, ξ, t)‖2 = |χ(ξ)| and ‖∂tûχ(·, ξ, t)‖2 =

λ1(ξ) |χ(ξ)| for all t ∈ [0,∞). As a consequence we have

ûχ ∈ C1([0,∞),Sξ(R, L2
x(R))),

and (3.5) follows from this since the partial Fourier transform F is an automorphism of the

Schwartz space S(R). As for (3.6), this a straightforward consequence of (2.9) and (3.3)- (3.4),

because we have λ−11 (b−, b+) = R by virtue of (2.6)-(2.7). �

3.2. Quantum velocity. Let u be given by (3.2). Assume moreover that

u ∈ C1([0,∞),Sy(R, L2
x(R))).

Then, the expectation of the y-component of the velocity operator of the system in the quantum

state u is (well-) defined by

υ(u0, t) :=
d

dt
〈yu(·, t), u(·, t)〉L2(R2), t ∈ [0,∞),

where 〈·, ·〉L2(R2) is the usual scalar product in L2(R2) and the notation y stands for the

multiplication operator by y. Otherwise stated, υ(u0, t) is the velocity, i.e. the first time

derivative, of the quantum realization in the state e−itHu0, of the second component y of the

position observable. Hence υ(u0, t) can be interpreted as the quantum current flowing in the

y-direction, that is carried by the state e−itHu0. We refer the reader to [9, 10, 16] and the

references therein, for an extensive mathematical study of the transport properties of Iwatsuka

Hamiltonians.

Further, since u = e−itHu0 ∈ C1([0,∞),Sy(R, L2
x(R))) yields that

Hu ∈ C0([0,∞),Sy(R, L2
x(R))), (3.7)
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we see that

υ(u0, t) =
d

dt
〈ye−itHu0, e−itHu0〉L2(R2)

= −i
(
〈yHe−itHu0, e−itHu0〉L2(R2) − 〈ye−itHu0, He−itHu0〉L2(R2)

)
= −i〈[y,H]e−itHu0, e

−itHu0〉L2(R2),

where [y,H] denotes the commutator of y with H. Next, using that [y,H] = [y, (−i∂y − a)2]

and that [y, (−i∂y − a)] = i, we find that [y,H] = 2i(−i∂y − a), and hence that

υ(u0, t) = 2〈(−i∂y − a)e−itHu0, e
−itHu0〉L2(R2), t ∈ [0,∞). (3.8)

Notice from (3.7) that (−i∂y−a)e−itHu0 ∈ L2(R2) and hence that the right-hand side of (3.8)

is well-defined, as we have

‖∂xe−itHu0‖2L2(R2) + ‖(−i∂y − a)e−itHu0‖2L2(R2) = 〈He−itHu0, e−itHu0〉L2(R2).

Now, the transform F being unitary in L2(R2), we deduce from the identity

2F(−i∂y − a(x))F∗ = 2(ξ − a(x)) = v(x, ξ), (x, ξ) ∈ R2,

and from (3.8) that

υ(u0, t) = 〈vF(e−itHu0),F(e−itHu0)〉L2(R2), t ∈ [0,∞). (3.9)

Let us now express υ(u0, t) when u0 ∈ PI(L2(R2)) for some I ⊂ R, that is to say when

u0 = PIu0. In this case, we have

F(e−itHu0)(x, ξ) =

∞∑
j=1

1λ−1
j (I)(ξ)e

−itλj(ξ)u0,j(ξ)ϕj(x, ξ), (x, ξ) ∈ R2,

from (3.4), where u0,j(ξ) := 〈û0(·, ξ), ϕj(·, ξ)〉2. Putting this into (3.9), we obtain that

υ(u0, t) =
∞∑

j,k=1

∫
λ−1
j (I)∩λ−1

k (I)
e−it(λj(ξ)−λk(ξ))u0,j(ξ)u0,k(ξ)〈v(·, ξ)ϕj(·, ξ), ϕk(·, ξ)〉2dξ. (3.10)

Now, suppose that I ⊂ (b−, b+), in such a way that we have

λ−1j (I) = ∅, j > 2,

by virtue of (2.2) and (2.6). Then, it follows from (3.10) that

υ(u0, t) =

∫
λ−1
1 (I)

|u0,1(ξ)|2 〈v(·, ξ)ϕ1(·, ξ), ϕ1(·, ξ)〉2dξ. (3.11)
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Therefore, the quantum current υ(u0, t) carried by a state u0 with energy concentration in

I ⊂ (b−, b+), is independent of t. For the sake of notational simplicity, we write υ(u0) instead

of υ(u0, t) in the following.

Now, with reference to Lemma 3.1, we deduce from (2.9) and (3.11) that ϑ(χ) is the

quantum current carried by e−itHu0,χ, t ∈ [0,∞), or equivalently by u0,χ:

ϑ(χ) = υ(u0,χ), χ ∈ C∞0 (R).

3.3. Comments on the data ϑ and the formulation of the inverse problem. It might

seem surprising at first sight that we probe the system (3.1) with the frequency profile χ of the

initial state u0,χ, rather than with the initial state itself. But there are at least two reasons why

the current operator ϑ should not be defined as a function of the initial states u0, the first one

being that this would be physically irrelevant. Indeed, since any initial state of the quantum

system (3.1) governed by the Iwatsuka Hamiltonian H, with energy concentration between

b− and b+, is expressed as F∗(χϕ1(x, ·))(y), (x, y) ∈ R2, for some suitable L2(R)-function χ,

and since all the ground states ϕ1(·, ξ), ξ ∈ R, are determined by H, it is clear that only the

frequency profile χ can be prescribed.

Secondly, it turns out that from a mathematical viewpoint, the inverse problem of re-

covering the magnetic potential a by triggering the system (3.1) with a suitable set of initial

states u0, is pointless. This can be understood (upon using Proposition 4.1 below) from the

following lines.

Given two magnetic fields b and b̃ in B, we aim to compare the quantum currents υ(u0)

and υ̃(u0) induced by (3.1) associated with, respectively, b and b̃, and endowed with a non-zero

initial state u0 ∈ U , where U := P(b−,b+)(L
2(R2)) ∩ P̃(b−,b+)(L

2(R2)). Here, P̃(b−,b+) denotes

the spectral projection on (b−, b+) of the Iwatsuka Hamiltonian H̃ obtained upon substituting

b̃ for b in (2.4)-(2.5). If such a state exists, that is to say if there exists u0 ∈ L2(R2) \ {0} such

that

u0 = P(b−,b+)u0 = P̃(b−,b+)u0,

then we have

û0(x, ξ) = u0,1(ξ)ϕ1(x, ξ) = ũ0,1(ξ)ϕ̃1(x, ξ), (x, ξ) ∈ R2, (3.12)

where u0,1(ξ) := 〈û0(·, ξ), ϕ1(·, ξ)〉2, ũ0,1(ξ) := 〈û0(·, ξ), ϕ̃1(·, ξ)〉2, and ϕ̃1(·, ξ) is defined as in

Therorem 2.2. Thus, upon squaring both sides of (3.12) and then integrating with respect to
11



x over R, we get that u0,1(ξ)
2 = ũ0,1(ξ)

2 for a.e. ξ ∈ R, and hence that |u0,1(ξ)| = |ũ0,1(ξ)|.

Therefore, the set

N (u0) := u−10,1({0}) = {ξ ∈ R, u0,1(ξ) = 0}

can be equivalently defined as N (u0) := ũ−10,1({0}) = {ξ ∈ R, ũ0,1(ξ) = 0}, and it holds true

that |ϕ1(·, ξ)| = |ϕ̃1(·, ξ)| a.e. in R, whenever ξ ∈ R \ N (u0). As a consequence we have

ϕ1(x, ξ) = ϕ̃1(x, ξ), (x, ξ) ∈ R× (R \ N (u0)), (3.13)

since ϕ1(·, ξ) and ϕ̃1(·, ξ) are positive functions for all ξ ∈ R.

Let us now assume for a while that the function

F (ξ) := ‖ϕ1(·, ξ)− ϕ̃1(·, ξ)‖2L2(R) , ξ ∈ R,

is not identically zero. Since F is real analytic and the Lebesgue measure of the zero set of a

non-trivial real analytic function is zero, the Lebesgue measure of R \ N (u0) should be zero,

according to (3.13). This would mean that u0,1(ξ) = 0 for a.e. ξ ∈ R, and hence that û0 = 0

in L2(R2), according to (3.12), which is contradiction the fact that u0 is non-zero. Therefore,

we have F (ξ) = 0 for all ξ ∈ R, and consequently ϕ1(·, ξ) = ϕ̃1(·, ξ) in L2(R) for all ξ ∈ R.

Summing up, we have proved that the following equivalence holds:

U 6= {0} ⇐⇒ ∀ξ ∈ R, ϕ1(·, ξ) = ϕ̃1(·, ξ) in L2(R). (3.14)

Having seen this, let us suppose that U 6= {0}, and assume in addition that

υ(u0) = υ̃(u0), u0 ∈ U.

Then, we have ϕ1(·, ξ) = ϕ̃1(·, ξ) for all ξ ∈ R, from (3.14), and it is clear for all χ ∈ C∞0 (R)

that u0(x, y) = (F∗(χϕ1(x, ·)) (y) = (F∗(χϕ̃1(x, ·)) (y) ∈ U . Moreover, since υ(u0) = ϑ(χ) and

υ̃(u0) = ϑ̃(χ), where ϑ̃ is the same as in Theorem 2.2, we get that

ϑ(χ) = ϑ̃(χ), χ ∈ C∞0 (R).

Therefore, we have λ1 = λ̃1 by Proposition 4.1, whence(
(ξ − ã(x))2 − (ξ − a(x))2

)
ϕ1(x, ξ) = 0, (x, ξ) ∈ R2.

Since ϕ1(·, ξ) is positive for all ξ ∈ R, this entails that

(ξ − ã(x))2 = (ξ − a(x))2, (x, ξ) ∈ R2.

Upon differentiating the above identity with respect to ξ, we get that ξ − ã(x) = ξ − a(x) for

all (x, ξ) ∈ R2, and hence that a = ã in R.
12



4. Analysis of the inverse problem

We start with a technical result needed by the proof of Theorems 2.1 and 2.2.

4.1. Preliminaries. We aim to establish that knowledge of the current operator uniquely

determines the first band function. With reference to the notations of Section 2.4, the corre-

sponding result can be stated as follows.

Proposition 4.1. Let b and b̃ be in B. Assume (2.12), i.e. assume that ϑ(χ) = ϑ̃(χ) for all

χ ∈ C∞0 (R). Then, we have

λ1(ξ) = λ̃1(ξ), ξ ∈ R.

Proof. Applying (3.11) with I = (b−, b+) and u0,1 = χ, we obtain that

ϑ(χ) =

∫
R
χ(ξ)2〈v(·, ξ)ϕ1(·, ξ), ϕ1(·, ξ)〉2dξ,

from (2.6)-(2.7). Further, since v(·, ξ) = 2(ξ−a) is the (formal) derivative of h(ξ) with respect

to ξ, we have

〈v(·, ξ)ϕ1(·, ξ), ϕ1(·, ξ)〉2 = λ′1(ξ), ξ ∈ R,

by the Feynman-Hellmann theorem (see, e.g. [19, Chapter VII, Problem 4.19]), and hence

ϑ(χ) =

∫
R
χ(ξ)2λ′1(ξ)dξ.

Similarly, we have ϑ̃(χ) =
∫
R χ(ξ)2λ̃′1(ξ)dξ, and consequently∫
R

(λ1 − λ̃1)′(ξ)χ(ξ)2dξ = 0, χ ∈ C∞0 (R), (4.1)

from (2.12).

Having seen this, we will prove by contradiction that (λ1−λ̃1)′ is identically zero in R. For

this purpose we assume existence of ξ0 ∈ R such that (λ1− λ̃1)′(ξ0) 6= 0. Since λ1 and λ̃1 play

symmetric roles here, we may assume without loss of generality that δ := (λ1 − λ̃1)′(ξ0) > 0.

Thus, by continuity of ξ 7→ (λ1− λ̃1)′(ξ) at ξ0, there exists ε > 0 such that (λ1− λ̃1)′(ξ) ≥ δ/2

whenever |ξ − ξ0| ≤ ε. As a consequence we have∫
R

(λ1 − λ̃1)′(ξ)χ2(ξ)dξ ≥ δ

2

∫
R
χ(ξ)2dξ > 0,

for all χ ∈ C∞0 (R) \ {0} that is supported in (ξ0 − ε, ξ0 + ε). This contradicts (4.1) and shows

that (λ1 − λ̃1)′(ξ) = 0 for all ξ ∈ R. Therefore, there exists C ∈ R such that

λ1(ξ) = λ̃1(ξ) + C, ξ ∈ R.
13



Now, since λ1 and λ̃1 fulfill (2.7), we get that C = 0 upon sending ξ to infinity in the above

identity, and the result follows. �

4.2. Proof of Theorem 2.1. The proof being quite lengthy, we split it into six steps.

Step 1: Spectral projections. Let us denote by rξ, ξ ∈ R, the resolvent operator of h(ξ), i.e.,

rξ(z) := (h(ξ)− z)−1, z ∈ C \ {λj(ξ), j ∈ N}.

Then, the spectral projection of h(ξ) associated with λ1(ξ) can be expressed as

p1(ξ) = − 1

2iπ

∫
C(λ1(ξ),ρ)

rξ(z)dz, (4.2)

where ρ is arbitrarily fixed in (0, 3b−− b+) and C(λ1(ξ), ρ) := {λ1(ξ) +ρeiθ, θ ∈ [0, 2π)} is the

circle centered at λ1(ξ) with radius ρ, oriented counterclockwise, see e.g., [19, Section VII.3,

Eq. 1.3].

With reference to (2.11) and the notations introduced in the following line, we have

qε(x, ξ) = q(x, ξ) + `ε(x, ξ) for all (x, ξ) ∈ R2, where

`ε(x, ξ) := εω(x, ξ) + ε2w(x)2, ω(x, ξ) := −v(x, ξ)w(x) and w(x) := ã(x)− a(x). (4.3)

Thus, putting δ := ‖ã− a‖L∞(R) and M(ξ) := ‖v(·, ξ)‖L∞(K) = 2 ‖ξ − a‖L∞(K) < ∞, where

K := [−r, r], we infer from (4.3) that

‖`ε(·, ξ)‖L∞(R) ≤ εC(ξ), C(ξ) := δ(M(ξ) + δ), ε ∈ (0, 1), ξ ∈ R. (4.4)

From this and the MinMax principle, it then follows that

|λ1(ξ)− λε,1(ξ)| 6 εC(ξ), ε ∈ (0, 1), ξ ∈ R, (4.5)

where λε,j(ξ), j ∈ N, denotes the j-th eigenvalue of the operator hε(ξ). Therefore, taking

ε ∈ (0, 1) so small that εC(ξ) < 3b− − b+ − ρ, we deduce from (4.5) that

D(λ1(ξ), ρ) ∩ {λε,j(ξ), j ∈ N} = {λε,1(ξ)}, (4.6)

where D(λ1(ξ), ρ) := {z ∈ C, |z − λ1(ξ)| 6 ρ}.

Set rε,ξ(z) := (hε(ξ) − z)−1 for all z ∈ C \ {λε,j(ξ), j ∈ N}, and put ε∗ := ε∗(ξ, ρ) =

min(1, C(ξ)−1(3b− − b+ − ρ)). Then, with reference to (4.6) and the path independence of

contour integration of the meromorphic function z 7→ rε,ξ(z) around λε,1(ξ), the spectral

projection of hε(ξ) associated with λε,1(ξ),

pε,1(ξ) = − 1

2iπ

∫
C(λε,1(ξ),ρ)

rε,ξ(z)dz,
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can be equivalently rewritten as

pε,1(ξ) = − 1

2iπ

∫
C(λ1(ξ),ρ)

rε,ξ(z)dz, ξ ∈ R, ε ∈ (0, ε∗). (4.7)

Step 2: Relating λε,1 to λ1. Having established (4.7), we turn now to relating λε,1(ξ) to λ1(ξ)

with the aid the identity hε(ξ) = h(ξ) + `ε(·, ξ). To do that, we start from the eigenvalue

equality hε(ξ)pε,1(ξ)ϕ1(·, ξ) = λ1,ε(ξ)pε,1(ξ)ϕ1(·, ξ), recall that the operators h(ξ) and `ε(·, ξ)

are self-adjoint in L2(R), and obtain for all ξ ∈ R and all ε ∈ (0, 1), that

λ1,ε(ξ)〈pε,1(ξ)ϕ1(·, ξ), ϕ1(·, ξ)〉2

= 〈hε(ξ)pε,1(ξ)ϕ1(·, ξ), ϕ1(·, ξ)〉2

= 〈h(ξ)pε,1(ξ)ϕ1(·, ξ), ϕ1(·, ξ)〉2 + 〈`ε(ξ)pε,1(ξ)ϕ1(·, ξ), ϕ1(·, ξ)〉2

= 〈pε,1(ξ)ϕ1(·, ξ), h(ξ)ϕ1(·, ξ)〉2 + 〈pε,1(ξ)ϕ1(·, ξ), `ε(ξ)ϕ1(·, ξ)〉2

= λ1(ξ)〈pε,1(ξ)ϕ1(·, ξ), ϕ1(·, ξ)〉2 + 〈pε,1(ξ)ϕ1(·, ξ), `ε(ξ)ϕ1(·, ξ)〉2.

Therefore, for all ξ ∈ R and all ε ∈ (0, 1), we have

Fξ(ε) := 〈pε,1(ξ)ϕ1(·, ξ), `ε(ξ)ϕ1(·, ξ)〉2

= (λ1,ε(ξ)− λ1(ξ))〈pε,1(ξ)ϕ1(·, ξ), ϕ1(·, ξ)〉2. (4.8)

Step 3: Resolvent formula. With reference to the second resolvent formula, we have

rε,ξ(z) = rξ(z)− rξ(z)`ε(·, ξ)rε,ξ(z), ε ∈ (0, ε∗), ξ ∈ R, z ∈ C(λ1(ξ), ρ). (4.9)

Notice that for all ξ ∈ R and all z ∈ C(λ1(ξ), ρ), we have

dist (z, {λj(ξ), j ∈ N}) = min(|λ1(ξ)− z| , |λ2(ξ)− z|) ≥ min(ρ, 3b− − b+ − ρ),

whence

‖`ε(·, ξ)rξ(z)‖B(L2(R)) ≤ ‖`ε(·, ξ)‖L∞(R) ‖rξ(z)‖B(L2(R))

≤ εC(ξ)

min(ρ, 3b− − b+ − ρ)
,

from (4.4), where B(L2(R) denotes the space of linear bounded operators in L2(R). Therefore,

we get that ‖`ε(·, ξ)rξ(z)‖B(L2(R)) < 1 for all ξ ∈ R and all z ∈ C(λ1(ξ), ρ), provided that

ε ∈ (0, ε?), ε? = ε?(ξ, ρ) := min(ε∗, C(ξ)−1ρ).
15



Thus, by iterating (4.9) we get for all ξ ∈ R and all z ∈ C(λ1(ξ), ρ), that

rε,ξ(z) =
∞∑
n=0

(−1)nrξ(z) (`ε(·, ξ)rξ(z))n , ε ∈ (0, ε?),

where the series converges in B(L2(R)). In view of (4.3), this leads to

rε,ξ(z) =
∞∑
n=0

(−1)nθn,ξ(z)ε
n, ξ ∈ R, ε ∈ (0, ε?), (4.10)

the series being convergent in B(L2(R)), uniformly in z ∈ C(λ1(ξ), ρ). Here, each θn,ξ(z) ∈

B(L2(R)), n ∈ N ∪ {0}, can be expressed in terms of rξ(z), ω(·, ξ) and w only. For instance,

we get through elementary computations that

θ0,ξ(z) = rξ(z), θ1,ξ(z) = rξ(z)ω(·, ξ)rξ(z) and θ2,ξ(z) = rξ(z)(w
2rξ(z)− (ω(·, ξ)rξ(z))2).

(4.11)

Step 4: Analytic expansion of Fξ. By inserting (4.10) into (4.7), we obtain with the aid of

(4.2) that

pε,1(ξ) =
∞∑
n=0

(−1)n+1

2iπ

(∫
C(λ1(ξ),ρ)

θn,ξ(z)dz

)
εn

= p1(ξ) +
∞∑
n=1

(−1)n+1

2iπ

(∫
C(λ1(ξ),ρ)

θn,ξ(z)dz

)
εn, ξ ∈ R, ε ∈ (0, ε?).

It follows readily from this and (4.3) that the function Fξ defined in (4.8) can be brought into

the form

Fξ(ε) =
∞∑
n=1

An(ξ)εn, ξ ∈ R, ε ∈ (0, ε?), (4.12)

where each An : R → C, n ∈ N, is independent of ε. As a matter of fact, in the special case

when n = 2, we find with the aid of (4.11) by elementary calculation, that for all ξ ∈ R,

A2(ξ) = 〈p1(ξ)ϕ1(·, ξ), w2ϕ1(·, ξ)〉2

+
1

2iπ

∫
C(λ1(ξ),ρ)

〈rξ(z)ω(·, ξ)rξ(z)ϕ1(·, ξ), ω(·, ξ)ϕ1(·, ξ)〉2dz

= ‖wϕ1(·, ξ)‖22 +
1

2iπ

∫
C(λ1(ξ),ρ)

〈(ω(·, ξ)rξ(z))2ϕ1(·, ξ), ϕ1(·, ξ)〉2dz. (4.13)

In light of (4.12), each Fξ, where ξ ∈ R is fixed, can be extended to a real-analytic function at

ε = 0. Moreover, by assumption, ε = 0 is an accumulation point of the zeros of Fξ. Therefore,

the function Fξ is necessarily identically zero by the principle of isolated zeros, and we have

An(ξ) = 0, ξ ∈ R, n ∈ N, (4.14)
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according to (4.12).

Step 5: Computation of A2. With reference to (4.13) we start by decomposing ω(·, ξ)rξ(z)ϕ1(·, ξ),

ξ ∈ R, on the L2(R)-orthonormal basis {ϕj(·, ξ), j > 1}. We get that

ω(·, ξ)rξ(z)ϕ1(·, ξ) =
ω(·, ξ)

λ1(ξ)− z
ϕ1(·, ξ) =

1

λ1(ξ)− z

∞∑
j=1

ωj(ξ)ϕj(·, ξ),

where ωj(ξ) := 〈ω(·, ξ)ϕ1(·, ξ), ϕj(·, ξ)〉2. Therefore, we have

〈(ω(·, ξ)rξ(z))2ϕ1(·, ξ), ϕ1(·, ξ)〉2 =
1

λ1(ξ)− z

∞∑
j=1

|ωj(ξ)|2

λj(ξ)− z
,

and (4.13) then yields that

A2(ξ) = ‖wϕ1(·, ξ)‖22 +

∞∑
j=1

|ωj(ξ)|2

2iπ

∫
C(λ1(ξ),ρ)

dz

(λ1(ξ)− z)(λj(ξ)− z)

= ‖wϕ1(·, ξ)‖22 −
∞∑
j=2

|ωj(ξ)|2

λj(ξ)− λ1(ξ)
, ξ ∈ R, (4.15)

by using the residue theorem. The next step is to make the second term on the right-hand

side of (4.15) sufficiently small relative to ‖wϕ1(·, ξ)‖22 by choosing ξ suitably in R.

Step 6: End of the proof. We refer to (2.11) and notice that there exists κ ∈ (0, 1) such that

r < r(κ) := (1− κ)1/2
(3b− − b+)1/2

2b+
.

Further, since |a(x)| ≤ b+ |x| for all x ∈ R, by (2.3)-(2.4), we get that

|v(x, ξ)| ≤ 2(|ξ|+ b+r), x ∈ K, ξ ∈ R,

and hence that

‖v(·, ξ)‖L∞(K) ≤ (1− κ)1/2(3b− − b+)1/2, ξ ∈ [−ξ(κ), ξ(κ)], (4.16)

where ξ(κ) := b+(r(κ)− r). Moreover, we see from (2.6) that

λj(ξ)− λ1(ξ) ≥ (2j − 1)b− − b+ ≥ 3b− − b+, ξ ∈ R, j ≥ 2,

and consequently

∞∑
j=2

|ωj(ξ)|2

λj(ξ)− λ1(ξ)
≤
∞∑
j=2

|ωj(ξ)|2

3b− − b+
≤ ‖ω(·, ξ)ϕ1(·, ξ)‖22

3b− − b+
,
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by the Plancherel formula. It follows from this and the identity ω(·, ξ) = −v(·, ξ)w for all

ξ ∈ R, that
∞∑
j=2

|ωj(ξ)|2

λj(ξ)− λ1(ξ)
≤
‖v(·, ξ)‖2L∞(K)

3b− − b+
‖wϕ1(·, ξ)‖22, ξ ∈ R.

Thus, taking ξ ∈ [−ξ(κ), ξ(κ)] in the above line, we deduce from (4.16) that

∞∑
j=2

|ωj(ξ)|2

λj(ξ)− λ1(ξ)
≤ (1− κ)‖wϕ1(·, ξ)‖22.

Therefore, we get from (4.15) that

A2(ξ) ≥ κ‖wϕ1(·, ξ)‖22, ξ ∈ [−ξ(κ), ξ(κ)],

and then from (4.14) that wϕ1(·, ξ) = 0 in L2(R). Finally, bearing in mind that ϕ1(x, ξ) > 0

for a.e. x ∈ R and all ξ ∈ [−ξ(κ), ξ(κ)], we obtain that w = 0 a.e. in R. This proves the

desired result.

4.3. Proof of Theorem 2.2 and Corollary 2.3. The proof of Theorem 2.2 boils down to

the following lemma.

Lemma 4.2. Assume that supp (ã − a) is compact and that λ1(±ξ0) = λ̃1(±ξ0) for some

ξ0 ∈ (0,+∞). Then, we have q(·,±ξ0) = q̃(·,±ξ0) if and only if ϕ1(·,±ξ0) = ϕ̃1(·,±ξ0).

Proof. For notational convenience we set q(x) := (±ξ0 − a(x))2, q̃(x) := (±ξ0 − ã(x))2, x ∈ R,

λj := λj(±ξ0), ϕj(x) := ϕj(x,±ξ0), j ∈ N, and ϕ̃1(x) = ϕ̃1(x,±ξ0).

We start from the following identity −ϕ′′1+(q−λ1)ϕ1 = −ϕ̃′′1+(q̃−λ1)ϕ̃1, put ϕ := ϕ1−ϕ̃1

and get that

−ϕ′′ + (q − λ1)ϕ = (q̃ − q)ϕ̃1.

Multiplying both sides of this equality by ϕj , j ≥ 1, and integrating over R yields that

−
∫
R
ϕ′′(x)ϕj(x)dx+ 〈(q − λ1)ϕ,ϕj〉2 = 〈(q̃ − q)ϕ̃1, ϕj〉2.

Next, upon integrating by parts twice in the first term, we obtain that

〈ϕ,−ϕ′′j + (q − λ1)ϕj〉2 = 〈(q̃ − q)ϕ̃1, ϕj〉2, j ∈ N.

Taking into account that −ϕ′′j + qϕj = λjϕj , we deduce from the above line that

(λj − λ1)〈ϕ,ϕj〉2 = 〈(q̃ − q)ϕ̃1, ϕj〉2, j ∈ N. (4.17)
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Further, taking into account that 〈ϕ,ϕj〉2 = −〈ϕ̃1, ϕj〉2 for all j ≥ 2, (4.17) can be equivalently

rewritten as

−(λj − λ1)〈ϕ̃1, ϕj〉2 = 〈(q̃ − q)ϕ̃1, ϕj〉2, j ∈ N.

Now, supp (q̃ − q) being compact, we have (q̃ − q)ϕ̃1 ∈ L2(R) and consequently

∞∑
j=2

(λj − λ1)2〈ϕ̃1, ϕj〉22 = ‖(q̃ − q)ϕ̃1‖22. (4.18)

by the Plancherel theorem. Since λj −λ1 > 0 for all j ≥ 2, by (2.6)-(2.7), and since ϕ̃1(x) > 0

for all x ∈ R, it follows readily from (4.18) that

q̃ − q = 0 ⇐⇒ 〈ϕ̃1, ϕj〉2 = 0, j ≥ 2

⇐⇒ ϕ̃1 = 〈ϕ̃1, ϕ1〉2ϕ1.

The two functions ϕ1 and ϕ̃1 being positive and normalized in L2(R), this last equality is

equivalent to ϕ̃1 = ϕ1. �

Under the conditions of Theorem 2.2, it follows readily from Proposition 4.1 and Lemma

4.2 that

(±ξ0 − a(x))2 = (±ξ0 − ã(x))2, x ∈ R. (4.19)

Now, since ±a(x) > 0 and ±ã(x) ≥ 0 whenever ±x ≥ 0, it is apparent that (4.19) yields that

ã = a.

Finally, we prove Corollary 2.3 by noticing that (2.14) can be equivalently rewritten as∫
R
ei(y0ξ−t0λ1(ξ))χ(ξ)(ϕ1(x, ξ)− ϕ̃1(x, ξ))dx = 0, χ ∈ C∞0 (R), x ∈ R.

This entails that ei(y0ξ−t0λ1(ξ))(ϕ1(·, ξ)− ϕ̃1(·, ξ)) = 0 for all ξ ∈ R, and hence that ϕ1(·, ξ) =

ϕ̃1(·, ξ), which yields (2.13).

Acknowledgments

The first and third authors were partially supported by the Agence Nationale de la

Recherche (ANR) under grant ANR-17-CE40-0029 (projet MultiOnde) while doing this work.
19



References

[1] C. Bardos, G. Lebeau, J. Rauch, Sharp sufficient conditions for the observation, control and stabilization

from the boundary, SIAM J. Control Optim. 30 (1992), 1024-1065.

[2] M. Bellassoued, Stable determination of coefficients in the dynamical Schrödinger equation in a magnetic

field, Inverse Problems 33 (2017), 055009.

[3] M. Bellassoued, M. Choulli, Stability estimate for an inverse problem for the magnetic Schr?odinger

equation from the Dirichlet-to-Neumann map, J. Funct. Anal. 258 (2010), 161? 195.

[4] A. L. Bukhgeim, M. V. Klibanov, Global uniqueness of class of multidimensional inverse problems,

Soviet Math. Dokl. 24 (1981), 244-247.
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[10] N. Dombrowski, P. D. Hislop, E. Soccorsi, Edge Currents and Eigenvalue Estimates for Magnetic

Barrier Schrödinger Operators, Asympt. Anal. 89 (2014), no. 3-4, 331-363.

[11] D. Dos Santos Ferreira, C. E. Kenig, J. Sjöstrand, G. Uhlmann, Determining a magnetic
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Ann. H. Poincaré 1 (2000), 405-444.

[13] F. Gesztezy, B. Simon, Uniqueness theorems in inverse spectral theory for one-dimensional Schrödinger

operators, Trans. Amer. Math. Soc. 348 (1996), no. 1, 349-373.

[14] P. D. Hislop, E. Soccorsi, Edge Currents for Quantum Hall Systems, I. One-Edge, Unbounded Geome-

tries, Rev. Math. Phys. 20 (2008), no. 1, 71-115.

[15] P. D. Hislop, E. Soccorsi, Edge Currents for Quantum Hall Systems, II. Two-Edge, Bounded and

Unbounded Geometries, Ann. H. Poincaré 9 (2008), 1141-1171.
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