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1. Introduction

In this short paper we review the main ideas and results developped in [CKS].

1.1. Statement of the problem. Let ω be a bounded connected open subset of R2 that contains the
origin, with C2-boundary ∂ω. We put Ω = R × ω and write x = (x1, x

′) with x′ = (x2, x3) for every
x = (x1, x2, x3) ∈ Ω throughout this text. Given T > 0, we consider the following initial boundary value
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problem (IBVP in short)

(1.1)

 (−i∂t −∆u+ V (t, x))u = 0 in Q = (0, T )× Ω,
u(0, ·) = u0 in Ω,
u = g on Σ = (0, T )× ∂Ω,

where the time dependent electric potential V is 1-periodic with respect to the infinite variable x1:

(1.2) V (t, x1 + 1, x′) = V (t, x1, x
′), (t, x1, x

′) ∈ Q.
In the present paper we examine the stability issue in the determination of V from the knowledge of the
“boundary” operator

(1.3) ΛV : (u0, g) −→ (∂νu|Σ, u(T, ·)),
where the measure of ∂νu|Σ (resp., u(T, ·)) is performed on Σ (resp., in Ω). Here ν(x), x ∈ ∂Ω, denotes the
outward unit normal to Ω and ∂νu(t, x) = ∇u(t, x) · ν(x), t ∈ (0, T ).

1.2. What is known so far. There are only a few results available in the mathematical literature on
the identification of time-dependent coefficients appearing in an IBVP, such as [Es1, GK, Cho, CK]. All
these results were obtained in bounded domains. Several authors considered the problem of recovering time
independent coefficients in an unbounded domain from boundary measurements. In most of the cases the
unbounded domain under consideration is either an half space [Ra, Na] or an infinite slab [Ik, SW, LU].

The case of an infinite cylindrical waveguide was adressed in [CS, K]. For inverse problems with time-
independent coefficients in unbounded domains we also refer to [DKLS]. In [Es2], uniqueness modulo gauge
invariance was proved in the inverse problem of determining the time-dependent electric and magnetic
potentials from the Dirichlet-to-Neumann map for the Schrödinger equation in a simply-connected bounded
or unbounded domain. More specifically the inverse problem of determining periodic coefficients in the
Helmholz equation was recently examined in [Fl].

1.3. Boundary operator. We define the trace operator τ0 by

τ0w =
(
w|Σ, w(0, ·)

)
for all w ∈ C∞0 ([0, T ]× R, C∞(ω)),

and extend it to a bounded operator from H2(0, T ;H2(Ω)) into

L2((0, T )× R;H3/2(∂ω))× L2(Ω)

Then the space X0 = τ0(H2(0, T ;H2(Ω))) is easily seen to be Hilbertian for the norm

‖w‖X0 = inf{‖W‖H2(0,T ;H2(Ω)),W ∈ H2(0, T ;H2(Ω)) such that τ0W = w},
and we recall from [CKS][Corollary 2.1] the following useful existence and uniqueness result:

Proposition 1.1. Fix M > 0 and let V ∈ C([0, T ],W 2,∞(Ω)) be such that

‖V ‖C([0,T ];W 2,∞(Ω)) ≤M.

Then for every (g, u0) ∈ X0, the IBVP (1.1) admits a unique solution

s(g, u0) ∈ Z = L2(0, T ;H2(Ω)) ∩H1(0, T ;L2(Ω)),

and there is a constant C > 0, depending only on ω, T and M , such that we have

(1.4) ‖s(g, u0)‖Z ≤ C‖(g, u0)‖X0
.

Armed with Proposition 1.1 we turn now to defining the operator ΛV appearing in (1.3). To do that we
introduce the linear bounded operator τ1 from L2((0, T )× R;H2(ω)) ∩H1(0, T ;L2(Ω)) into X1 = L2(Σ)×
L2(Ω), obeying

τ1w =
(
∂νw|Σ, w(T, ·)

)
for w ∈ C∞0 ([0, T ]× R;C∞(ω)).

In view of (1.4) we have ‖τ1s(g, u0)‖X1
≤ C‖s(g, u0)‖Z ≤ C‖(g, u0)‖X0

, where, as in the remaining part of
this text, C denotes some generic positive constant. As a consequence the operator ΛV = τ1 ◦ s is bounded
from X0 into X1 and ‖ΛV ‖ = ‖ΛV ‖B(X0,X1) ≤ C.
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1.4. Main result. The main result of this paper is borrowed from [CKS][Theorem 1.1] and claims log-
arithmic stability in the determination of V from ΛV . Putting Ω′ = (0, 1) × ω, Q′ = (0, T ) × Ω′ and
Σ′∗ = (0, T )× (0, 1)× ∂ω, it may be stated as follows.

Theorem 1.1. For M > 0 fixed, let V1, V2 ∈ W 2,∞(0, T ;W 2,∞(Ω)) fulfill (1.2) together with the three
following conditions:

(1.5) (V2 − V1)(T, ·) = (V2 − V1)(0, ·) = 0 in Ω′,

(1.6) V2 − V1 = 0 in Σ′∗,

(1.7) ‖Vj‖W 2,∞(0,T ;W 2,∞(Ω′)) ≤M, j = 1, 2.

Then there are two constants C > 0 and γ∗ > 0, depending only on T , ω and M , such that the estimate

‖V2 − V1‖L2(Q′) ≤ C
(

ln

(
1

‖ΛV2
− ΛV1

‖B(X0,X1)

))−2/5

,

holds whenever 0 < ‖ΛV2 − ΛV1‖B(X0,X1) < γ∗.

1.5. Outline. The paper is organized as follows. In section 2 we introduce the Floquet-Bloch-Gel’fand
transform, that is used to decompose the IBVP (1.1)-(1.2) into a collection of IBVPs in Q′, with quasi-
periodic boundary conditions on (0, T )×{0, 1}×ω. Section 3 is devoted to building suitable optics geometric
solutions (abbreviated as OGS in the sequel) for each of these problems. Finally a sketch of the proof of
Theorem 1.1, which is by means of the OGS defined in section 3, is given in section 4.

2. Floquet-Bloch-Gel’fand analysis

The main tool in the analysis of the periodic system (1.1)-(1.2) is the partial Floquet-Bloch-Gel’fand
transform (abbreviated to FBG in the sequel) with respect to the x1-direction, that is described below.

2.1. Partial FBG transform. For any arbitrary open subset Y of Rn, n ∈ N∗, we define the partial FBG
transform with respect to x1 of f ∈ C∞0 (R× Y ) by

(2.1) f̌Y,θ(x1, y) = (UY f)θ(x1, y) =

+∞∑
k=−∞

e−ikθf(x1 + k, y), x1 ∈ R, y ∈ Y, θ ∈ [0, 2π).

With reference to [RS2][§XIII.16], UY extends to a unitary operator, still denoted by UY , from L2(R × Y )
onto the Hilbert space∫ ⊕

(0,2π)

L2((0, 1)× Y )dθ/(2π) = L2((0, 2π)dθ/(2π);L2((0, 1)× Y )).

Let Hs
],loc(R×Y ), s = 1, 2, denote the subspace of distributions f in R×Y such that f|I×Y ∈ Hs(I×Y ) for

any bounded open subset I ⊂ R. Then a function f ∈ Hs
],loc(R×Y ) is said to be 1-periodic with respect to x1

if it satisfies f(x1 + 1, y) = f(x1, y) for a.e. (x1, y) ∈ (0, 1)× Y . The subspace of functions of Hs
],loc(R× Y ),

that are 1-periodic with respect to x1, is denoted by Hs
],per(R × Y ). Such a function being obviously

determined by its values on (0, 1) × Y , we put Hs
],per((0, 1) × Y ) = {u|(0,1)×Y , u ∈ Hs

],per((0, 1) × Y )}.
Since f̌Y,θ(x1 + 1, y) = eiθf̌Y,θ(x1, y) for a.e. (x1, y) ∈ R × Y and all θ ∈ [0, 2π), by (2.1), we next set
Hs
],θ((0, 1)× Y ) = {eiθx1u, u ∈ Hs

],per((0, 1)× Y )} and then derive from [Di][Chap. II, §1, Définition 1] that

UYHs(R× Y ) =

∫ ⊕
(0,2π)

Hs
],θ((0, 1)× Y )

dθ

2π
, s = 1, 2.

For the sake of simplicity we will systematically omit the subscript Y in UY and f̌Y,θ in the remaining part
of this text.
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2.2. FBG decomposition. Let τ ′0 denote the linear bounded operator fromH2(0, T ;H2(Ω′)) into L2((0, T )×
(0, 1);H3/2(∂ω))×L2(Ω′) such that τ ′0w =

(
w|Σ′∗ , w(0, ·)

)
for w ∈ C∞0 ((0, T )× (0, 1);C∞(ω)). Thus, putting

X ′
0,θ = τ ′0(H2(0, T ;H2

],θ(Ω
′))) for all θ ∈ [0, 2π), it is easy to check that X0 = UX0 =

∫ ⊕
(0,2π)

X ′
0,θdθ/(2π)

and

Uτ0U−1 =

∫ ⊕
(0,2π)

τ ′0dθ/(2π)

, where the notation τ ′0 stands for the operator τ ′0 restricted to H2(0, T ;H2
],θ(Ω

′)). The last identity means

that (Uτ0f)θ = τ ′0(Uf)θ for all f ∈ H2(0, T ;H2(Ω)) and a. e. θ ∈ (0, 2π).

Further, we have Z = UZ =
∫ ⊕

(0,2π)
Z ′θdθ/(2π), where

Z ′θ = L2(0, T ;H2
],θ(Ω

′)) ∩H1(0, T ;L2(Ω′)).

Thus, applying the transform U to (1.1), we immediately get the:

Proposition 2.1. Let V ∈ W 2,∞(0, T ;W 2,∞(Ω)) fulfill (1.2) and let (g, u0) ∈ X0. Then u is the solution
s(g, u0) ∈ Z to (1.1) defined in Proposition 1.1 if and only if Uu ∈ Z and each ǔθ = (Uu)θ ∈ Zθ, for
θ ∈ [0, 2π), is solution to the following IBVP

(2.2)

 (−i∂t −∆ + V )v = 0 in Q′ = (0, T )× Ω′,
v(0, ·) = ǔ0,θ in Ω′,
v = ǧθ on Σ′∗,

where ǧθ (resp. ǔ0,θ) stands for (Ug)θ (resp. (Uu0)θ), that is

(ǧθ, ǔ0,θ) = (U(g, u0))θ.

The existence and uniqueness of solutions to (2.2) for θ ∈ [0, 2π) is guaranteed by [CKS][Lemma 2.1]:

Lemma 2.1. Assume that V obeys the conditions of Proposition 2.1 and satisfies

‖V ‖W 2(0,T ;W 2,∞(Ω′)) ≤M,

for some M > 0. Then for every (ǧθ, ǔ0,θ) ∈X ′
0,θ, θ ∈ [0, 2π), there exists a unique solution sθ(ǧθ, ǔ0,θ) ∈ Z ′θ

to (2.2), such that the estimate

(2.3) ‖sθ(ǧθ, ǔ0,θ)‖Z ′θ ≤ C‖(ǧθ, ǔ0,θ)‖X ′
0,θ
,

holds for some constant C > 0 depending only on T , ω and M .

2.3. Boundary operators. In view of Lemma 2.1 the linear operator sθ, θ ∈ [0, 2π), is bounded from X ′
0,θ

into Z ′θ , with

(2.4) ‖sθ‖ = ‖sθ‖B(X ′
0,θ,Z

′
θ) ≤ C, θ ∈ [0, 2π).

Let τ ′1 be the linear bounded operator from

L2((0, T )× (0, 1);H2(Ω′)) ∩H1(0, T ;L2(Ω′))

−→X ′
1 = L2((0, T )× (0, 1)× ∂ω)× L2(Ω′),

satisfying τ ′1w =
(
∂νw|Σ′∗ , w(T, ·)

)
for all w ∈ C∞0 ((0, T )× (0, 1);C∞(ω)), in such a way that X1 = UX1 =∫ ⊕

(0,2π)
X ′

1dθ/(2π) and Uτ1U−1 =
∫ ⊕

(0,2π)
τ ′1dθ/(2π). Then we have ‖τ ′1sθ(ǧθ, ǔ0,θ)‖X ′

1
≤ C‖sθ(ǧθ, ǔ0,θ)‖Z ′θ ≤

C‖(ǧθ, ǔ0,θ)‖X ′
0,θ

for every θ ∈ [0, 2π), from (2.3), so the reduced boundary operator ΛV,θ = τ ′1 ◦ sθ ∈
B(X ′

0,θ,X
′

1 ). Further, it folllows from Proposition 2.1 and Lemma 2.1 that

UΛV U−1 =

∫ ⊕
(0,2π)

ΛV,θdθ/(2π),

hence [Di][Chap. II, §2, Proposition 2] yields:

(2.5) ‖ΛV ‖B(X0,X1) = sup
θ∈(0,2π)

‖ΛV,θ‖B(X ′
0,θ,X

′
1 ).
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3. Optics geometric solutions

For each θ ∈ [0, 2π) we aim to build solutions to the system

(3.1)


(−i∂t −∆ + V )v = 0 in Q′,
u(·, 1, ·) = eiθu(·, 0, ·) on (0, T )× ω,
∂x1u(·, 1, ·) = eiθ∂x1u(·, 0, ·) on (0, T )× ω.

Specifically, for r > 0 fixed, we seek solutions uk,θ, k ∈ Z, to (3.1) of the form

(3.2) uk,θ(t, x) =
(
eiθx1 + wk,θ(t, x)

)
e−i((ξ·ξ+4π2k2)t+2πkx1+x′·ξ), (t, x) = (t, x1, x

′) ∈ Q′,

where wk,θ ∈ H2(0, T ;H2
],θ(Ω

′)) obeys

(3.3) ‖wk,θ‖H2(0,T ;H2(Ω′)) ≤
c

r
(1 + |k|) ,

for some constant c > 0 independent of r, k and θ, and ξ ∈ C2 \ R2 is such that

(3.4) =ξ · <ξ = 0.

The main issue here is the quasi-periodic condition imposed on wk,θ (through the requirement that wk,θ(t, ·)
is in H2

],θ(Ω
′) for a.e. t ∈ (0, T )). This problem may be overcomed upon adapting the framework introduced

in [Ha] for the defininiton of OGS in periodic media, giving (see [CKS][Lemma 3.2]):

Lemma 3.1. Let ξ ∈ C2\R2 obey (3.4) and let f ∈ H2(0, T ;H2(Ω′)). Then for all θ ∈ [0, 2π) and all k ∈ Z,
there exists Ek,θ ∈ B(H2(0, T ;H2(Ω′));H2(0, T ;H2

],θ(Ω
′))) such that ϕ = Ek,θf is solution to the equation

(3.5) (−i∂t −∆ + 4iπk∂x1
+ 2iξ · ∇x′)ϕ = f in Q′.

Moreover we have

(3.6) ‖Ek,θ‖B(H2(0,T ;H2(Ω′))) ≤
c0
|=ξ|

,

for some constant c0 > 0, which is independent of ξ, k and θ.

The occurence of (3.5) in Lemma 3.1 follows from a direct calculation showing that uk,θ fulfills (3.1) if
and only if wk,θ is solution to

(3.7)

 (−i∂t −∆ + 4iπk∂x1 + 2iξ · ∇x′ + V )w + eiθx1Wk,θ = 0 in Q′,
w(·, 1, ·) = eiθw(·, 0, ·) on (0, T )× ω,
∂x1

w(·, 1, ·) = eiθ∂x1
w(·, 0, ·) on (0, T )× ω,

with

Wk,θ = V + θ2 − 4πkθ.

Taking r = |=ξ| so large (relative to c0 and ‖V ‖W 2,∞(0,T ;W 2,∞(Ω))) that

Gk,θ : H2(0, T ;H2
],θ(Ω

′)) −→ H2(0, T ;H2
],θ(Ω

′))

q 7−→ −Ek,θ
(
V q + eiθx1Wk,θ

)
.

is a contraction mapping, we may apply Lemma 3.1 with f = −
(
V wk,θ + eiθx1Wk,θ

)
∈ H2(0, T ;H2(Ω′)).

In light of (3.5), wk,θ = Ek,θf is thus a solution to (3.7) and fulfills (3.3). As a consequence we have (see
[CKS][Proposition 3.1]) obtained:

Proposition 3.1. We assume that V ∈W 2,∞(0, T ;W 2,∞(Ω)) satisfies (1.2) and

‖V ‖W 2,∞(0,T ;W 2,∞(Ω)) ≤M

for some M ≥ 0. Pick r ≥ r0 = c0(1 +M), where c0 is the same as in (3.6), and let ξ ∈ C2 \R2 fulfill (3.4)
and |=ξ| = r. Then for all θ ∈ [0, 2π) and k ∈ Z, there exists wk,θ ∈ H2(0, T ;H2

],θ(Ω
′)) obeying (3.3) such

that the function uk,θ defined by (3.2) is a H2(0, T ;H2
],θ(Ω

′))-solution to the equation (3.1).
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4. Stability estimate

This section contains the proof of Theorem 1.1.

4.1. Auxiliary result. Fix r > 0 and let ζ = (η, `) ∈ R2 × R be such that η 6= 0R2 . Then there exists
ζj = ζj(r, η, `) = (ξj , τj) ∈ C2 × R, j = 1, 2, such that we have

(4.1) |=ξj | = r, τj = ξj · ξj , ζ1 − ζ2 = ζ, <ξj · =ξj = 0,

and

(4.2) |ξj | ≤
1

2

(
|η|+ |`|

|η|

)
+ r, |τj | ≤ |η|2 +

`2

|η|2
+ 2r2.

This can be checked by direct calculation upon setting

ξj =
1

2

(
(−1)j+1 +

`

|η|2

)
η + (−1)jiη⊥r ,

τj =
1

4

(
(−1)j+1 +

`

|η|2

)2

|η|2 − r2, j = 1, 2,

where η⊥ is any non zero R2-vector, orthogonal to η and η⊥r = rη⊥/|η⊥|.
This, combined with Proposition 3.1, immediately yields the:

Lemma 4.1. Assume that Vj ∈W 2,∞(0, T ;W 2,∞(Ω)), j = 1, 2, fulfill (1.2) and fix r ≥ r0 = c0(1+M) > 0,
where M ≥ maxj=1,2 ‖Vj‖W 2,∞(0,T ;W 2,∞(Ω)) and c0 is the same as in (3.6). Pick ζ = (η, `) ∈ R2 × R with

η 6= 0R2 , and let ζj = (ξj , τj) ∈ C2×R, j = 1, 2, obey (4.1)-(4.2). Then, there is a constant C > 0 depending
only on T , |ω| and M , such that for every k ∈ Z and θ ∈ [0, 2π), the function uj,k,θ, j = 1, 2, defined in
Proposition 3.1 by substituting ξj for ξ, satisfies the estimate

‖uj,k,θ‖H2(0,T ;H2(Ω′)) ≤ C(1 + q(ζ, k))
13
2

(1 + r2)3

r
e|ω|r, k ∈ Z, θ ∈ [0, 2π), r ≥ r0,

with

q(ζ, k) = q(η, `, k) = |η|2 +
|`|
|η|

+ k2.

4.2. Sketch of the proof. Let ζ = (η, `), r and ζj = (ξj , τj), j = 1, 2, be as in Lemma 4.1, fix k ∈ Z, and
put

(k1, k2) =

{
(k/2,−k/2) if k is even
((k + 1)/2,−(k − 1)/2) if k is odd.

Further we pick θ ∈ [0, 2π) and note uj , j = 1, 2, the OGS uj,kj ,θ, defined by Lemma 4.1. In light of Lemma

2.1 there is a unique solution v ∈ L2(0, T ;H2
],θ(Ω

′)) ∩H1(0, T ;L2(Ω′)) to the IBVP

(4.3)

 (−i∂t + ∆ + V2)v = 0 in Q′

v(0, ·) = u1(0, ·) in Ω′,
v = u1 on Σ′∗.

Hence u = v − u1 is solution to the following system

(4.4)


(−i∂t + ∆ + V2)u = (V1 − V2)u1 in Q′

u(0, ·) = 0 in Ω′,
u = 0 on Σ′∗,
u(·, 1, ·) = eiθu(·, 0, ·) on (0, T )× ω
∂x1u(·, 1, ·) = eiθ∂x1u(·, 0, ·) on (0, T )× ω,

so we get ∫
Q′

(V1 − V2)u1u2 dtdx =

∫
Σ′∗

∂νuu2 dtdσ(x)− i
∫

Ω′
u(T, ·)u2(T, ·) dx,(4.5)



DETERMINING THE SCALAR POTENTIAL IN A PERIODIC QUANTUM WAVEGUIDE FROM THE DN MAP 7

by integrating by parts and taking into account the quasi-periodic boundary conditions satisfied by u and

u2. Notice from (4.3)-(4.4) that ∂νu =
(

Λ1
V2,θ
− Λ1

V1,θ

)
(g1) and u(T, .) =

(
Λ2
V2,θ
− Λ2

V1,θ

)
(g1), where

g1 =
(
u1|Σ′∗ , u1(0, .)

)
∈X ′

0,θ.

Thus, putting

βk =

{
0 if k is even or k ∈ R \ Z
4π2 if k is odd,

for all k ∈ Z, and

(4.6) % = %k,θ = e−iθx1w1 + eiθx1w2 + w1w2,

we deduce from (4.1), (3.2) and (4.5) that

(4.7)

∫
Q′

(V1 − V2)e−i((`+βkk)t+2πkx1+x′·η)dtdx = A+B + C,

with

A = −
∫
Q′

(V2 − V1)%(t, x)e−i((`+βkk)t+2πkx1+x′·η)dtdx,(4.8)

B =

∫
Σ′∗

(
Λ1
V2,θ − Λ1

V1,θ

)
(g1)u2 dtdσ(x),(4.9)

C = −i
∫

Ω′

(
Λ2
V2,θ − Λ2

V1,θ

)
(g1)u2(T, ·) dx.(4.10)

Upon setting

V (t, x) =

{
(V2 − V1)(t, x) if (t, x) ∈ Q,

0 if (t, x) ∈ R4 \Q, and φk(x1) = ei2πkx1 , x1 ∈ R, k ∈ Z,

we may rewrite (4.7) as

(4.11)

∫
Q′

(V1 − V2)e−i((`+βkk)t+2πkx1+x′·η) dtdx =
〈
V̂ (`+ βkk, η), φk

〉
L2(0,1)

,

where V̂ stands for the partial Fourier transform of V with respect to t ∈ R and x′ ∈ R2. Further, due to
(3.3) and (4.6), we have ‖%‖L1(Q′) ≤ c′(1 + |k|)2/r2, where the constant c′ > 0 depends only on T , |ω| and
M . Since ‖V1 − V2‖∞ ≤ 2M , it follows from this and (4.8) (upon substituting c′ for 4Mc′) in the above
estimate that

(4.12) |A| ≤ ‖V1 − V2‖∞‖%‖L1(Q′) ≤ c′
(1 + q(ζ, k))

r2
,

where q is defined in Lemma 4.1. Moreover, we have

(4.13) |B|+ |C| ≤ C2‖Λ1
V2,θ − Λ1

V1,θ‖B(X ′
0,θ,X

′
1 )(1 + q(ζ, k))13 (1 + r2)6

r2
e2|ω|r, r ≥ r0.

from (4.9)-(4.10) and Lemma 4.1. Now, putting (4.7) and (4.11)–(4.13) together, we end up getting that∣∣∣∣〈V̂ (`+ βkk, η), φk

〉
L2(0,1)

∣∣∣∣ ≤ c′′ (1 + q(ζ, k))

r2

(
1 + γ(1 + q(ζ, k))12(1 + r2)6e2|ω|r

)
for r ≥ r0, where γ = ‖ΛV2,θ−ΛV1,θ‖B(X ′

0,θ,X
′
1 ) and the constant c′′ > 0 is independent of k, r and ζ = (η, `).

From this and the Parseval-Plancherel theorem, entailing

‖V2 − V1‖2L2(Q′) = ‖V ‖2L2(R×(0,1)×R2) =
∑
k∈Z

∫
R3

|〈V̂ (`, η), φk〉L2(0,1)|2dζ,

then follows the:
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Theorem 4.1. Let M and Vj, j = 1, 2, be the same as in Theorem 1.1. Then we may find two constants
C > 0 and γ∗ > 0, depending on T , ω and M , such that we have

‖V2 − V1‖L2(Q′) ≤ C

(
ln

(
1

‖ΛV2,θ − ΛV1,θ‖B(X ′
0 ,X

′
1 )

))−2/5

,

for any θ ∈ [0, 2π), provided 0 < ‖ΛV2,θ − ΛV1,θ‖B(X ′
0,θ,X

′
1 )) < γ∗.

Finally, putting (2.5) together with Theorem 4.1, we obtain Theorem 1.1.
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