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Abstract. This article deals with the uniqueness and stability issues in the
inverse problem of determining the unbounded potential of the Schrödinger
operator in a bounded domain of Rn, n ≥ 3, endowed with Robin boundary
condition, from knowledge of its boundary spectral data. These data are de-
fined by the pairs formed by the eigenvalues and either partial or full Dirichlet
measurement of the eigenfunctions on the boundary of the domain.

1. Introduction

In the present article, Ω is a C1,1 bounded domain of Rn, n ≥ 3, with boundary
Γ, and we equip the two spaces H := L2(Ω) and V := H1(Ω) with their usual scalar
product. Put p := 2n/(n+ 2) and let p∗ := 2n/(n− 2) be its conjugate number, in
such a way that V is continuously embedded in Lp∗(Ω).

To simplify notations, we denote throughout this text by 〈·, ·〉 the duality pairing
between an arbitrary Banach space and its dual.

1.1. The Robin Laplacian. Let s ∈ (n − 1,∞). For α ∈ Ls(Γ,R) and q ∈
Ln/2(Ω,R), we consider the sesquilinear form a : V × V → C, defined by

a(u, v) :=
ˆ

Ω
∇u · ∇vdx+

ˆ
Ω
quvdx+ a0(u, v), u, v ∈ V,

where
a0(u, v) :=

ˆ
Γ
αuvds(x), u, v ∈ V.

It is proved in Appendix A that a0 is continuous. On the other hand, we know
from [9, Lemma 1.1] that∣∣∣∣ˆ

Ω
quvdx

∣∣∣∣ ≤ cΩ‖q‖Ln/2(Ω)‖u‖V ‖v‖V ,

where cΩ > 0 is a constant depending only on Ω. In consequence, a is continuous.
Throughout the entire text, we assume that α ≥ −c for some constant c ∈

(0, n−2) almost everywhere on Γ, where n denotes the norm of the (bounded) trace
operator u ∈ V 7→ u|Γ ∈ L2(Γ). Set

Q(ρ,ℵ) := {q ∈ Lρ(Ω,R); ‖q‖Lρ(Ω) ≤ ℵ}, ρ ≥ n/2, ℵ > 0.
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Then, arguing as in the derivation of [19, Lemma A2], we obtain that
(1.1) ‖qu2‖L1(Ω) ≤ ε‖u‖2V + Cε‖u‖2H , q ∈ Q(n/2,ℵ), u ∈ V, ε > 0,
for some constant Cε > 0 depending only of n, Ω, ℵ and ε. Further, we get by
applying (1.1) with ε = κ := (1− cn2)/2 that
(1.2) a(u, u) + λ∗‖u‖2H ≥ κ‖u‖2V , u ∈ V,
where λ∗ > 0 is a constant which depends only on n, Ω, c and ℵ.

Then the bounded operator A : V → V ∗ defined by
〈Au, v〉 = a(u, v), u, v ∈ V,

is self-adjoint and coercive according to (1.2).

1.2. Boundary spectral data. With reference to [16, Theorem 2.37], the spec-
trum of A consists of its eigenvalues λk, k ∈ N := {1, 2, . . .}, arranged in non-
decreasing order and repeated with the (finite) multiplicity,

−∞ < λ1 ≤ λ2 ≤ . . . ≤ λk ≤ . . . , and such that lim
k→∞

λk →∞.

Moreover, there exists an orthonormal basis {φk, k ∈ N} of H, made of eigenfunc-
tions φk ∈ V of A, satisfying

a(φk, v) = λk(φk, v), v ∈ V, k ∈ N,
where (·, ·) is the usual scalar product in H. For the sake of shortness, we write

ψk := φk|Γ, k ∈ N.

Recall that for u ∈ V , we have ∆u ∈ H−1(Ω), the space dual to H1
0 (Ω), but

that it is not guaranteed that ∆u lie in V ∗ (which is strictly embedded in H−1(Ω)).
Thus, we introduce

W := {u ∈ V ; ∆u ∈ V ∗}.
Endowed with its natural norm

‖u‖W = ‖u‖V + ‖∆u‖V ∗ , u ∈W,
is a Banach space. Next, for ϕ ∈ H1/2(Γ), we set

ϕ̇ := {v ∈ V ; v|Γ = ϕ},

and we equip the space H1/2(Γ) with its graph norm
‖ϕ‖H1/2(Γ) = min{‖v‖V ; v ∈ ϕ̇}.

Now, for u ∈W fixed, we put
Φu(v) := 〈∆u, v〉+ (∇u,∇v), v ∈ V,

apply the Cauchy-Schwarz inequality, and get that
(1.3) |Φu(v)| ≤ ‖∆u‖V ∗‖v‖V + ‖u‖V ‖v‖V ≤ ‖u‖W ‖v‖V .
Moreover, since C∞0 (Ω) is dense in H1

0 (Ω), it is easy to see that H1
0 (Ω) ⊂ ker Φu

and consequently that Φu(v) depends only on v|Γ. This enables us to define the
normal derivative of u, denoted by ∂νu, as the unique vector in H−1/2(Γ) satisfying

〈∂νu, ϕ〉 = Φu(v), v ∈ ϕ̇ is arbitrary.
As a consequence we have

‖∂νu‖H−1/2(Γ) ≤ ‖u‖W ,
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by (1.3), and the following generalized Green formula:

(1.4) 〈∆u, v〉+ (∇u,∇v) = 〈∂νu, v|Γ〉, u ∈W, v ∈ V.

Pick f ∈ V ∗ and µ ∈ C, and let u ∈ V satisfy

(1.5) a(u, v) + µ(u, v) = 〈f, v〉, v ∈ V.

Using that C∞0 (Ω) ⊂ V , we obtain thatˆ
Ω
∇u · ∇vdx+

ˆ
Ω
quvdx+ µ

ˆ
Ω
uvdx = 〈f, v〉, v ∈ C∞0 (Ω),

which yields −∆u + qu + µu = f in D ′(Ω). Thus, bearing in mind that qu ∈ V ∗,
we have u ∈W , and the generalized Green formula (1.4) provides

〈∂νu+ αu|Γ, v|Γ〉 = 0, v ∈ V.

Since v ∈ V 7→ v|Γ ∈ H1/2(Γ) is surjective, the above line reads ∂νu + αu|Γ = 0
in H−1/2(Γ), showing that (1.5) is the variational formulation of the following
boundary value problem (BVP):

(−∆ + q + µ)u = f in Ω, ∂νu+ αu|Γ = 0 on Γ.

As we notice from (A.1) with v = 1 that αu ∈ L1(Γ) satisfies the estimate

‖αu‖L1(Γ) ≤ c0‖α‖Ls(Γ)‖u‖V ,

for some positive constant c0 depending only on s and Ω, we see that the Robin
boundary condition ∂νu+ αu|Γ = 0 holds in L1(Γ), and hence a.e. on Γ.

Further, taking f = 0 and µ = λk for all k ∈ N, we find that φk ∈W satisfies

(1.6) (−∆ + q − λk)φk = 0 in Ω, ∂νφk + αφk|Γ = 0 on Γ.

1.3. Statement of the results. We stick to the notations of the previous sections,
that is to say that we still denote by λk, φk and ψk, k ≥ N, the k-th eigenvalue,
eigenfunction and corresponding Dirichlet trace, respectively, of the operator A,
and we write λ̃k (resp., φ̃k, ψ̃k) instead of λk (resp., φk, ψk) when the potential q̃
is substituted for q. Our first result is as follows.

Theorem 1.1. Let q and q̃ be in Lr(Ω,R), where r = n/2 when n ≥ 4 and r > n/2
when n = 3, and let ` ∈ N. Then, the conditions

(1.7) λk = λ̃k for all k ≥ ` and ψk = ψ̃k on Γ for all k ≥ 1,

yield that q = q̃ in Ω.

The claim of Theorem 1.1 was first established for smooth bounded potentials,
in the peculiar case where ` = 1, by Nachman, Sylvester and Uhlmann in [17].
In the same context (of smooth bounded potentials), their result was extended to
` ≥ 1 through a heuristic approach in [22].

In view of stating our stability results, we denote by `∞ (resp. `2) the Banach
(resp., Hilbert) space of bounded (resp. squared summable) sequences of complex
numbers (zk), equipped with the norm

‖(zk)‖`∞ := sup
k≥1
|zk|

resp., ‖(zk)‖`2 :=

∑
k≥1
|zk|2

1/2
 ,
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and let
`2(L2(Γ)) :=

{
(wk) ∈ L2(Γ)N such that (‖wk‖L2(Γ)) ∈ `2

}
be endowed with its natural norm

‖(wk)‖`2(L2(Γ)) := ‖(‖wk‖L2(Γ))‖`2 .

Theorem 1.2. Fix ℵ ∈ (0,∞) and let (q, q̃) ∈ Q(r,ℵ)2, where r = n/2 when n ≥ 4
and r > n/2 when n = 3, satisfy q− q̃ ∈ L2(Ω). Assume that (λk− λ̃k) ∈ `∞ fulfills
‖(λk − λ̃k)‖`∞ ≤ ℵ and that (ψk − ψ̃k) ∈ `2(L2(Γ)). Then, we have

(1.8) ‖q − q̃‖H−1(Ω) ≤ C
(
‖(λk − λ̃k)‖`∞ + ‖(ψk − ψ̃k)‖`2(L2(Γ))

)2(1−2β)/(3(n+2))
,

where β := max (0, n(2− r)/(2r)) and C is a positive constant depending only on
n, Ω, ℵ and c.

Remark 1.1. (i) It is worth noticing that we have β = 0 when n ≥ 4, whereas
β ∈ [0, 1/2) when n = 3. Moreover, in the latter case we see that β converges to
1/2 (resp., 0) as r approaches 3/2 (resp., 2) from above (resp., below).
(ii) We have q − q̃ ∈ L2(Ω) for all (q, q̃) ∈ Q(n/2,ℵ)2, provided that n ≥ 4.
Nevertheless, this is no longer true when n = 3, even if (q, q̃) is taken in Q(r,ℵ)2 with
r ∈ (n/2, 2). Hence the additional requirement of Theorem 1.2 that q − q̃ ∈ L2(Ω)
in the three-dimensional case.
(iii) When q − q̃ ∈ L∞(Ω), we have (λk − λ̃k) ∈ `∞ and ‖(λk − λ̃k)‖`∞ ≤ ‖q −
q̃‖L∞(Ω), by the min-max principle. Thus, Theorem 1.2 remains valid by replacing
the condition ‖(λk − λ̃k)‖`∞ ≤ ℵ by the stronger assumption ‖q − q̃‖L∞(Ω) ≤ ℵ.
(iv) Assume that |α(x)| > 0 for a.e. x ∈ Γ. Then, the statement of Theorem 1.1
remains valid upon replacing the condition ψk = ψ̃k by ∂νφk = ∂ν φ̃k for all k ≥ 1,
in (1.7). Moreover, if 1/α ∈ L∞(Γ), then we may substitute ‖(ψk − ψ̃k)‖`2(L2(Γ))
by ‖(∂νφk − ∂ν φ̃k)‖`2(L2(Γ)) on the right hand side of (1.8) in Theorem 1.2.

To the best of our knowledge, there is no comparable stability result available in
the mathematical literature for Robin boundary conditions, even when the poten-
tials are assumed to be bounded. Nevertheless, it should be pointed out that the
variable coefficients case was recently addressed by [3] in the framework of Dirichlet
boundary conditions.

Further downsizing the data needed for retrieving the unknown potential, we
seek a stability inequality requesting a local Dirichlet boundary measurement of
the eigenfunctions only, i.e. boundary observation of the ψk’s and ψ̃k’s that is
performed on a strict subset of Γ. For this purpose we assume that Γ is connected
and we consider a C1,1-connected neighborhood Ω0 of Γ in Ω, a fixed nonempty open
subset Γ∗ of Γ, and for all ϑ ∈ (0,∞) we introduce the function Ψϑ : [0,∞)→ R as

(1.9) Ψϑ(t) :=

 0 if t = 0
| ln t|−ϑ if t ∈ (0, 1/e)

t if t ∈ [1/e,∞).
The corresponding local stability estimate can be stated as follows.

Theorem 1.3. For ℵ ∈ (0,∞) fixed, let (q, q̃) ∈ Q(n,ℵ)2 satisfy q = q̃ on Ω0.
Assume that α ∈ C0,1(Γ), and suppose that (λk− λ̃k) ∈ `∞ and that (kt(ψk−ψ̃k)) ∈
`2(L2(Γ)) for some t > 4/n+ 1, with

‖(λk − λ̃k)‖`∞ ≤ ℵ, ‖(kt(ψk − ψ̃k))‖`2(L2(Γ)) ≤ ℵ.
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Then there exist two constants C > 0 and ϑ > 0, both of them depending only on
n, Ω, Ω0, Γ∗, ℵ, c and ‖α‖C0,1(Γ), such that we have:

(1.10) ‖q − q̃‖H−1(Ω) ≤ CΨϑ

(
‖(λk − λ̃k)‖`∞ + ‖(k−t+2/n(ψk − ψ̃k))‖`2(H1(Γ∗))

)
.

Remark 1.2. (i) Bearing in mind that the k-th eigenvalue, k ≥ 1, of the unper-
turbed Dirichlet Laplacian (i.e. the operator A associated with q = 0 in Ω and
α = 0 on Γ) scales like k2/n when k becomes large, see e.g. [8, Theorem III.36 and
Remark III.37], we obtain by combining the min-max principle with (1.1), that for
all q ∈ Q(n,ℵ),

(1.11) C−1k2/n ≤ 1 + |λk| ≤ Ck2/n, k ≥ 1,

where C ∈ (1,∞) is a constant depending only on n, Ω, c and ℵ. In light of Lemma
2.6 below, establishing the H2-regularity of the eigenfunctions φk, k ≥ 1, of A, and
the energy estimate (2.30), it follows from (1.11) that (k−t+2/nψk) ∈ `2(H1(Γ)).
Therefore, we have ‖(k−t+2/n(ψk − ψ̃k))‖`2(H1(Γ∗)) < ∞ on the right hand side of
(1.10).
(ii) Assume that α ∈ C1(Γ) and 1/α ∈ L∞(Γ∗). Then, the statement of Theorem
1.3 remains valid upon replacing ‖(k−t+2/n(ψk−ψ̃k))‖`2(H1(Γ∗)) by ‖(k−t+2/n(∂νφk−
∂ν φ̃k))‖`2(H1(Γ∗)) in (1.10).

1.4. A short bibliography of the existing literature. The first published
uniqueness result for the multidimensional Borg-Levinson problem can be found in
[17]. The breakthrough idea of the authors of this article was to relate the inverse
spectral problem under analysis to the one of determining the bounded potential
by the corresponding elliptic Dirichlet-to-Neumann map. This can be understood
from the fact that, the Schwartz kernel of the elliptic Dirichlet-to-Neumann oper-
ator can be, at least heuristically, fully expressed in terms of the eigenvalues and
the normal derivatives of the eigenfunctions. Later on, [13] proved that the result
of [17], which assumes complete knowledge of the boundary spectral data, remains
valid when finitely many of them remain unknown.

The stability issue for multidimensional Borg-Levinson type problems was first
examined in [1]. The authors proceed by relating the spectral data to the corre-
sponding hyperbolic Dirichlet-to-Neumann operator, which stably determines the
bounded electric potential. We refer the reader to [4, 5, 6] for alternative inverse
stability results based on this approach.

In all the aforementioned results, the number of unknown spectral data is at most
finite (that is to say that the data are either complete or incomplete). Nevertheless,
it was proved in [11] that asymptotic knowledge of the boundary spectral data is
enough to Hölder stably retrieve the bounded potential. This result was improved
in [14, 23] by removing all quantitative information on the eigenfunctions of the
stability inequality, at the expense of an additional summability condition on their
boundary measurements. The same approach was adapted to magnetic Laplacians
in [2].

In all the articles cited above in this section, the unknown potential is supposed to
be bounded. The unique determination of unbounded potentials by either complete
or incomplete boundary spectral data is discussed in [18, 19], whereas the stability
issue for the same problem, but in the variable coefficients case, is examined in [3].
As for the treatment of the inverse problem of determining the unbounded potential
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from asymptotic knowledge of the spectral data, we refer the reader to [7] for the
uniqueness issue, and to [15] for the stability issue.

All the above mentioned results were obtained for multidimensional Laplace op-
erators endowed with Dirichlet boundary conditions, except for [17] which proved
that full knowledge of the boundary spectral data of the Robin Laplacian uniquely
determines the unknown electric potential, and for [2] where the case of Neumann
Laplacians is examined. But, apart from the claim, based on a heuristic approach,
of [22], that incomplete knowledge of the spectral data of the multidimensional
Robin Laplacian uniquely determines the unknown bounded potential, it seems
that, even for a bounded unknown potential q, there is no reconstruction result
of q by incomplete spectral data, available in the mathematical literature for such
operators. In the present article we prove not only unique identification by incom-
plete spectral data, but also stable determination by either full or local boundary
spectral data, of the singular potential of the multidimensional Robin Laplacian.

1.5. Outline. The remaining part of this paper is structured as follows. In Section
2 we gather several technical results which are needed by the proof of the three main
results of this article. Then we proceed with the proof of Theorems 1.1, 1.2 and 1.3
in Section 3.

2. Preliminaries

In this section we collect several preliminary results that are needed by the proof
of the main results of this article. We start by noticing, upon applying (1.2) with
u = φk, k ≥ 1, that

(2.1) λk > −λ∗, k ≥ 1.

2.1. Resolvent estimates. By [16, Corollary 2.39], the operator A− λ : V → V ∗

has a bounded inverse whenever λ ∈ ρ(A) := C \ σ(A), the resolvent set of A.
Furthermore, for all f ∈ V ∗ we have

(2.2) (A− λ)−1f =
∑
k≥1

〈f, φk〉
λk − λ

φk,

where the series converges in V . For further use, we now establish that the resolvent
(A − λ)−1 may be regarded as a bounded operator from H into the space K :=
{u ∈ H; Au ∈ H} endowed with the norm

‖u‖K := ‖u‖H + ‖Au‖H , u ∈ K.

Lemma 2.1. For all λ ∈ ρ(A), the operator (A−λ)−1 is bounded from H into K.
Furthermore, we have

(A− λ)−1(A− λ)u = u, u ∈ K,(2.3)
(A− λ)(A− λ)−1f = f, f ∈ H.(2.4)

Proof. Put u := (A − λ)−1f where f ∈ H is fixed. Then, we have (u, φk) =
(f, φk)/(λk − λ) for all k ≥ 1, from (2.2), whence

(2.5) Au =
∑
k≥1

λk
λk − λ

(f, φk)φk,
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according to [16, Theorem 2.37], the series being convergent in V ∗. Moreover, since∑
k≥1

λ2
k

|λk − λ|2
|(f, φk)|2 ≤ ‖(λk/(λk − λ))‖2`∞‖f‖2H <∞,

by the Parseval theorem, the right hand side on (2.5) lies in H. Therefore, we have
Au ∈ H and

‖Au‖H ≤ ‖(λk/(λk − λ))‖`∞‖f‖H ,
and consequently u ∈ K and

‖u‖K ≤ ‖((1 + λk)/(λk − λ))‖`∞‖f‖H .
Next, we pick u ∈ K and set f = (A − λ)u. Then, we have ((A − λ)u, φk) =
(λk − λ)(u, φk) for all k ≥ 1, by [16, Theorem 2.37], and hence

(A− λ)−1f =
∑
k≥1

((A− λ)u, φk)
λk − λ

φk

=
∑
k≥1

(u, φk)φk.

This establishes that (A−λ)−1f = u, which yields (2.3). Finally, since (2.4) follows
readily from (2.5), the proof of the lemma is complete. �

Proposition 2.1. Let q ∈ Q(n/2,ℵ) and let λ ∈ ρ(A). Then, for all f ∈ V ∗, the
following estimate
(2.6) ‖(A− λ)−1f‖V ≤ C‖((λk + λ∗)/(λk − λ))‖`∞‖f‖V ∗
holds with C = κ−1/2‖(A + λ∗)−1‖B(V ∗,V ), where B(V ∗, V ) denotes the space of
linear bounded operators from V ∗ to V . Moreover, in the special case where f ∈ H,
we have
(2.7) ‖(A− λ)−1f‖H ≤ ‖(1/(λk − λ))‖`∞‖f‖H .

Proof. Since (2.7) follows directly from (2.2) and the Parseval formula, it is enough
to prove (2.6). To this purpose we set u := (A−λ)−1f and notice from the obvious
identity ∆u = (q − λ)u − f ∈ V ∗ that u ∈ W . Therefore, by applying (1.4) with
v = u, we infer from the coercivity estimate (1.2) that
(2.8) κ‖u‖2V ≤ 〈(A+ λ∗)u, u〉V ∗,V .
Let us assume for a while that f ∈ H. Then, with reference to (2.5), we have

(A+ λ∗)u =
∑
k≥1

λk + λ∗

λk − λ
(f, φk)φk,

where the series converges in H. It follows from this, (2.2) and (2.8) that

κ‖u‖2V ≤
∑
k≥1

λk + λ∗

|λk − λ|2
|(f, φk)|2(2.9)

≤ ‖((λk + λ∗)/(λk − λ))‖2`∞
∑
k≥1

|(f, φk)|2

λk + λ∗
.

Further, taking into account that∑
k≥1

|(f, φk)|2

λk + λ∗
= ‖(A+ λ∗)−1f‖2H ,
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according to (2.2) and the Parseval formula, and then using that
‖(A+ λ∗)−1f‖H ≤ ‖(A+ λ∗)−1‖B(V ∗,V )‖f‖V ∗ ,

we infer from (2.9) that
(2.10) ‖u‖V ≤ κ−1/2‖(A+ λ∗)−1‖B(V ∗,V )‖((λk + λ∗)/(λk − λ))‖`∞‖f‖V ∗ .
Finally, keeping in mind that u = (A−λ)−1f and that (A−λ)−1 ∈ B(V ∗, V ), (2.6)
follows readily from (2.10) by density of H in V ∗. �

As a byproduct of Proposition 2.1, we have the following:

Corollary 2.1. Let q ∈ Q(n/2,ℵ). Then, for all τ ∈ [1,+∞) we have
(2.11) ‖(A− (τ + i)2)−1f‖H ≤ (2τ)−1‖f‖H , f ∈ H.
Moreover, for all τ ≥ τ∗ =: 1 + (max(0, 2− λ∗))1/2, we have
(2.12) ‖(A− (τ + i)2)−1f‖V ≤ C(τ + λ∗)‖f‖V ∗ , f ∈ V ∗,
where C is the same constant as in (2.6).

Proof. As (2.11) is a straightforward consequence of (2.7), we shall only prove
(2.12). To do that, we refer to (2.6) and notice that

(2.13) λk + λ∗

|λk − (τ + i)2|
= λk + λ∗

((λk − (τ2 − 1))2 + 4τ2)1/2 ≤ 2Θ(λk), k ≥ 1,

where we have set Θ(t) := (t+λ∗)/(|t−(τ2−1)|+2τ) for all t ∈ [−λ∗,∞). Further,
taking into account that Θ is a decreasing function on [τ2 − 1,∞), provided that
τ ≥ τ∗, we easily get that

sup
t∈[−λ∗,+∞)

Θ(t) ≤ τ2 − 1 + λ∗

2τ ≤ τ + λ∗

2 ,

which along with (2.6) and (2.13), yields (2.12). �

Proposition 2.2. Let q ∈ Q(n/2,ℵ). Then, there exists a constant C > 0, de-
pending only on n, Ω, c and ℵ, such that for all σ ∈ [0, 1] and all f ∈ Lpσ (Ω), we
have
(2.14) ‖(A− (τ + i)2)−1f‖Lp∗σ (Ω) ≤ Cτ

−1+2σ‖f‖Lpσ (Ω), τ ∈ [τ∗,∞),

where pσ := 2n/(n+ 2σ) and p∗σ := 2n/(n− 2σ) is the conjugate integer to pσ.

Proof. In light of (2.12) and the identity p1 = p, we have for all f ∈ Lp1(Ω),
(2.15) ‖(A− (τ + i)2)−1f‖

L
p∗1 (Ω) ≤ Cτ‖f‖Lp1 (Ω), τ ∈ [τ∗,∞),

by the Sobolev embedding theorem, where C is a positive constant depending only
on n, Ω, c and ℵ. Further, bearing in mind that H = Lp0(Ω) and that p∗0 = p0 = 2,
we rewrite (2.11) as
(2.16) ‖(A− (τ + i)2)−1f‖

L
p∗0 (Ω) ≤ (2τ)−1‖f‖Lp0 (Ω), τ ∈ [1,∞),

whenever f ∈ Lp0(Ω). Therefore, since (1− σ)/p0 + σ/p1 = 1/pσ for all σ ∈ [0, 1],
we deduce from (2.15)-(2.16) upon interpolating between Lp0(Ω) and Lp1(Ω) with
the aid of the Riesz-Thorin theorem (see, e.g. [20, Theorem IX.17]), that

‖(A− (τ + i)2)−1f‖Lp∗σ (Ω) ≤ (Cτ)σ(2τ−1)1−σ‖f‖Lpσ (Ω)

≤ 2(1 + C)τ−1+2σ‖f‖Lpσ (Ω),
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whenever τ ∈ [τ∗,∞). Finally, we obtain (2.14) from this by renaming the constant
2(1 + C) as C in the above line. �

2.2. Asymptotic spectral analysis. Set H := H2(Ω) if n 6= 4 and put H :=
H2+ε(Ω) for some arbitrary ε > 0, if n = 4. We notice that H ⊂ L∞(Ω) and that
the embedding is continuous, provided that n = 3 or n = 4, while H is continuously
embedded in L2n/(n−4)(Ω) when n > 4. The main purpose for bringing H into the
analysis here is the following useful property: fu ∈ H whenever f ∈ Lmax(2,n/2)(Ω)
and u ∈ H.

Next we introduce the subspace

h := {g = ∂νG+ αG|Γ; G ∈ H}

of L2(Γ), equipped with its natural quotient norm

‖g‖h := min{‖G‖H; G ∈ ġ}, g ∈ h,

where
ġ := {G ∈ H; ∂νG+ αG|Γ = g}, g ∈ h,

and we consider the non homogenous BVP:

(2.17) (−∆ + q − λ)u = 0 in Ω, ∂νu+ αu|Γ = g on Γ.

We first examine the well-posedness of (2.17).

Lemma 2.2. Let λ ∈ ρ(A) and let g ∈ h. Then, the function

(2.18) uλ(g) := (A− λ)−1(∆− q + λ)G+G

is independent of G ∈ ġ. Moreover, uλ(g) ∈ K ∩W is the unique solution to (2.17)
and is expressed as

(2.19) uλ(g) =
∑
k≥1

(g, ψk)
λk − λ

φk

in H. Here (·, ·) stands for the usual scalar product in L2(Γ), not to be mistaken
with the scalar product in H which is denoted by the same symbol.

Proof. Since G ∈ H, it is clear that (∆ − q + λ)G ∈ H. Thus, the right hand side
of (2.18) lies in W and it is obviously a solution to the BVP (2.17). Moreover, λ
being taken in the resolvent set of A, this solution is unique.

Further, for allG1 andG2 in ġ, it is easy to check that ∂ν(G1−G2)+α(G1−G2) =
0 on Γ and that (A − λ)−1(∆ − q + λ)(G1 − G2) = −(G1 − G2) in Ω. Therefore,
the function uλ(g) given by (2.18), is independent of G ∈ ġ.

We turn now to showing (2.19). To do that we apply the generalized Green
formula (1.4) with u = uλ(g) and v = φk, k ≥ 1. We obtain

〈∆uλ(g), φk〉+ (∇uλ(g)|∇φk) = 〈∂νuλ(g), ψk〉,

which may be equivalently rewritten as

(2.20) ((q − λ)uλ(g), φk) + (∇uλ(g),∇φk) = 〈g − αuλ(g)|Γ, ψk〉.

Doing the same with u = φk and v = uλ(g), and taking the conjugate of both sides
of the obtained equality, we find that

(uλ(g), (q − λk)φk) + (∇uλ(g),∇φk) = −〈uλ(g)|Γ, αψk〉.
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Bearing in mind that q and α are real-valued, and that λk ∈ R, this entails that

(2.21) ((q − λk)uλ(g), φk) + (∇uλ(g),∇φk) = −〈αuλ(g)|Γ, ψk〉.

Now, taking the difference of (2.20) with (2.21), we end up getting that

(λk − λ)(uλ(g), φk) = 〈g, ψk〉 = (g, ψk).

This and the basic identity

uλ(g) =
∑
k≥1

(u, φk)φk

yield (2.19). �

The series on the right hand side of (2.19) converges only in H and thus we
cannot deduce an expression of the trace uλ(g)|Γ in terms of λk and ψk, k ≥ 1,
directly from (2.19). To circumvent this difficulty we establish the following lemma:

Lemma 2.3. Let g ∈ h. Then, for all λ and µ in ρ(A), we have

(2.22) uλ(g)|Γ − uµ(g)|Γ = (λ− µ)
∑
k≥1

(g, ψk)
(λk − λ)(λk − µ)ψk,

and the series converges in H1/2(Γ).

Proof. Notice that
(−∆ + q − λ)(uλ − uµ) = (λ− µ)uµ

in Ω and that ∂ν(uλ − uµ) + α(uλ − uµ)|Γ = 0 on Γ, where, for shortness sake, we
write uλ = uλ(g) and uµ = uµ(g). Thus, we have

uλ − uµ = (λ− µ)(A− λ)−1uµ = (λ− µ)
∑
k≥1

(uµ, φk)
λk − λ

φk.

On the other hand, since

(uµ, φk) = (g, ψk)
λk − µ

, k ≥ 1,

from (2.19), we obtain that

(2.23) uλ − uµ = (λ− µ)
∑
k≥1

(g, ψk)
(λk − λ)(λk − µ)φk,

where the series converges in K. As a consequence we have

(A− λ)
∑
k≥1

(g, ψk)
(λk − λ)(λk − µ)φk =

∑
k≥1

(g, ψk)
(λk − λ)(λk − µ) (A− λ)φk

=
∑
k≥1

(g, ψk)
λk − µ

φk,

the series being convergent in H, whence∑
k≥1

(g, ψk)
(λk − λ)(λk − µ)φk = (A− λ)−1

∑
k≥1

(g, ψk)
λk − µ

φk,

according to (2.3).
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It follows from this and (2.23) that

uλ − uµ = (λ− µ)(A− λ)−1
∑
k≥1

(g, ψk)
λk − µ

φk,

where the series on the right hand side of (2.23) converges in V . As a consequence
we have

(2.24) uλ|Γ − uµ|Γ = (λ− µ)
∑
k≥1

(g, ψk)
(λk − λ)(λk − µ)ψk,

the series being convergent in H1/2(Γ). �

Next, we establish the following a priori estimate for the solution to (2.17).

Lemma 2.4. Let q ∈ Q(n/2,ℵ). Then, there exist two constants λ+ ≥ λ∗ and
C > 0, depending only on n, Ω, ℵ and c, such that for all λ ∈ (−∞,−λ+] and all
g ∈ h, the solution uλ(g) to (2.17) satisfies the estimate
(2.25) |λ|1/2‖uλ(g)‖H + ‖uλ(g)‖V ≤ C‖g‖L2(Γ).

Proof. Fix λ ∈ ρ(A)∩ (−∞, 0). We apply the generalized Green formula (1.4) with
u = v := uλ, where we write uλ instead of uλ(g). We get that
(2.26) |λ|‖uλ‖2H + ‖∇uλ‖2H ≤ ‖qu2

λ‖L1(Ω) − (αuλ, uλ) + (g, uλ).
Next, ε being fixed in (0,+∞), we combine (1.1) with (2.26) and obtain
(2.27) |λ|‖uλ‖2H + ‖∇uλ‖2H ≤ ε‖uλ‖2V + Cε‖uλ‖2H + cn2‖uλ‖2V + n‖g‖L2(Γ)‖uλ‖V ,
where Cε is a positive constant depending only on n, Ω, ℵ and ε. Taking ε = κ =
(1− cn2)/2 in (2.27) then yields

(|λ| − 1− Cκ)‖uλ‖2H + κ‖uλ‖2V ≤ n‖g‖L2(Γ)‖uλ‖V .
As a consequence we have

|λ|‖uλ‖2H + ‖uλ‖2V ≤
2n2

κ2 ‖g‖
2
L2(Γ),

whenever |λ| ≥ (1 + Cκ)/(1− κ/4), and (2.25) follows readily from this. �

Armed with Lemma 2.4 we can examine the dependence of (the trace of) the
solution to the BVP (2.17) with respect to q. More precisely, we shall establish that
the influence of the potential on uλ(g) is, in some sense, dimmed as the spectral
parameter λ goes to −∞.

Lemma 2.5. Let q and q̃ be in Q(n/2,ℵ). Then, for all g ∈ h, we have
(2.28) lim

λ=<λ→−∞
‖uλ(g)|Γ − ũλ(g)|Γ‖H1/2(Γ) = 0.

Proof. Let λ ∈ (−∞,−λ+], where λ+ is the same as in Lemma 2.4. We use the
same notation as in the proof of Lemma 2.4 and write uλ (resp., ũλ) instead of
uλ(g) (resp., ũλ(g)). Since

(−∆ + q − λ)(uλ − ũλ) = (q̃ − q)ũλ in Ω
and

∂ν(uλ − ũλ) + α(uλ − ũλ)|Γ = 0 on Γ,
we have

uλ − ũλ = (A− λ)−1((q̃ − q)ũλ),
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whence

(2.29) ‖uλ − ũλ‖V ≤ C‖((λk + λ∗)/(λk − λ))‖`∞‖(q̃ − q)ũλ‖V ∗ ,

by (2.6), where C is a positive constant which is independent of λ.
We are left with the task of estimating ‖(q̃−q)ũλ‖V ∗ . For this purpose, we notice

from q̃− q ∈ Ln/2(Ω) and from ũλ ∈ Lp
∗(Ω) that (q̃− q)ũλ ∈ Lp(Ω). Thus, bearing

in mind that the embedding V ⊂ Lp
∗(Ω) is continuous, we infer from Hölder’s

inequality that

‖(q̃ − q)ũλ‖V ∗ ≤ ‖q̃ − q‖Ln/2(Ω)‖ũλ‖Lp∗ (Ω)

≤ 2ℵ‖ũλ‖V .

In light of (2.25), this entails that

‖(q̃ − q)ũλ‖V ∗ ≤ C‖g‖L2(Γ),

for some constant C depending only on n, Ω, ℵ and c. From this, (2.29) and the
continuity of the trace operator w ∈ V 7→ w|Γ ∈ H1/2(Γ), we obtain that

‖uλ|Γ − ũλ|Γ‖H1/2(Γ) ≤ C‖((λk + λ∗)/(λk − λ))‖`∞‖g‖L2(Γ),

where C is independent of λ. Now (2.28) follows immediately from this upon
sending λ to −∞ on both sides of the above inequality. �

2.3. H2-regularity of the eigenfunctions. For all q ∈ Ln/2(Ω), we have φk ∈ V ,
k ≥ 1, but it is no guaranteed in general that φk ∈ H2(Ω). Nevertheless, we shall
establish that the regularity of the eigenfunctions of A can be upgraded to H2,
provided that the potential q is taken in Ln(Ω).

Lemma 2.6. Let q ∈ Q(n,ℵ) and assume that α ∈ C0,1(Γ). Then, for all k ∈ N,
we have φk ∈ H2(Ω) and the estimate

(2.30) ‖φk‖H2(Ω) ≤ C(1 + |λk|),

where C is a positive constant depending on n, Ω and ℵ and ‖α‖C0,1(Γ).

Proof. Let us start by noticing from (1.2) that

(2.31) ‖φk‖V ≤ κ−1/2(λk + λ∗)1/2, k ≥ 1.

On the other hand we have qφk ∈ H for all k ∈ N, and the estimate

(2.32) ‖qφk‖H ≤ ‖q‖Ln(Ω)‖φk‖Lp∗ (Ω) ≤ C0‖φk‖V ,

where C0 is a positive constant depending only on n, Ω, c and ℵ.
Next, bearing in mind that αφk|Γ ∈ H1/2(Γ), we pick φ0

k ∈ H2(Ω) such that
∂νφ

0
k = αφk|Γ. Evidently, we have

−∆(φk + φ0
k) = (λk − q)φk −∆φ0

k in Ω and ∂ν(φk + φ0
k) = 0 on Γ.

Since (λk− q)φk−∆φ0
k ∈ H, [21, Theorem 3.17] then yields that φk +φ0

k ∈ H2(Ω).
As a consequence we have φk = (φk + φ0

k)− φ0
k ∈ H2(Ω) and

‖φk‖H2(Ω) ≤ C1(‖(λk − q)φk‖H + ‖φk‖V )

for some constant C1 > 0 which depends only on n, Ω and ‖α‖C0,1(Γ), by [21, Lemma
3.181] (see also [12, Theorem 2.3.3.6]). Putting this together with (2.31)-(2.32), we
obtain (2.30). �
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3. Proof of Theorems 1.1, 1.2 and 1.3

3.1. Proof of Theorem 1.1. We use the same notations as in the previous sec-
tions. Namely, we denote by Ã is the operator generated in H by a where q̃ is
substituted for q, and we write uλ (resp., ũλ) instead of uλ(g) (resp., ũλ(g)). Let
λ ∈ C \ R and pick µ in ρ(A) ∩ ρ(Ã). Depending on whether ` = 1 or ` ≥ 2, we
have either

uλ|Γ − uµ|Γ = ũλ|Γ − ũµ|Γ
or

uλ|Γ − uµ|Γ − (λ− µ)
`−1∑
k=1

(g, ψk)
(λk − λ)(λk − µ)ψk

= ũλ|Γ − ũµ|Γ − (λ− µ)
`−1∑
k=1

(g, ψk)
(λ̃k − λ)(λ̃k − µ)

ψk,

by virtue of (2.22). Sending <µ to −∞ in these two identities, where <µ denotes
the real part of µ, we get with the help of (2.28) that

(3.1) uλ|Γ − ũλ|Γ = R`λ,

where

R`λ = R`λ(g) :=
{

0 if ` = 1∑`−1
k=1

(λ̃k−λk)(g,ψk)
(λk−λ)(λ̃k−λ)ψk if ` ≥ 2.

Notice for further use that there exists λ∗ > 0 such that the estimate

(3.2) |(R`λ, h)| ≤ C`
|λ|2
‖g‖L2(Γ)‖h‖L2(Γ), |λ| ≥ λ∗, g, h ∈ h,

holds for some constant C` = C`(q, q̃) which is independent of λ.
Let us now consider two functions G ∈ H and H ∈ H, that will be made precise

below, and put u := (A − λ)−1(∆ − q + λ)G + G, g := ∂νG + αG|Γ and h :=
∂νH + αH|Γ. Then, bearing in mind that ∂νu+ u|Γ = g, the Green formula yields
that

(3.3)
ˆ

Γ
uhds(x) =

ˆ
Γ
gHds(x) +

ˆ
Ω

(u∆H −∆uH)dx.

Further, taking into account that ∆u = (q − λ)u in Ω, we see that

u∆H −∆uH = u(∆− q + λ)H
=

(
(A− λ)−1(∆− q + λ)G+G

)
(∆− q + λ)H.

Thus, assuming that (∆ + λ)G = (∆ + λ)H = 0, the above identity reduces to

u∆H −∆uH = −
(
−(A− λ)−1qG+G

)
qH,

and (3.3) then reads

(3.4)
ˆ

Γ
uhds(x) =

ˆ
Γ
gHds(x)−

ˆ
Ω

(
−(A− λ)−1qG+G

)
qHdx.

This being said, we set λτ := (τ + i)2 for some fixed τ ∈ [1,+∞), pick two
vectors ω and θ in Sn−1, and we consider the special case where

G(x) = eλτ ,ω(x) := ei
√
λτω·x, H(x) = eλτ ,−θ(x) := e−i

√
λτθ·x.
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Next, we put

S(λτ , ω, θ) :=
ˆ

Γ
uλ(g)hds(x), S̃(λτ , ω, θ) :=

ˆ
Γ
ũλ(g)hds(x),

in such a way that
(3.5) S(λτ , ω, θ)− S̃(λ, ω, θ) = 〈R`λτ (g), h〉.
Then, taking into account that

g(x) = (i
√
λτω · ν + α)ei

√
λτω·x, h(x) = (−i

√
λτθ · ν + α)e−i

√
λτθ·x,

we have ‖g‖L2(Γ)‖h‖L2(Γ) ≤ Cτ2 for some positive constant C which is independent
of ω, θ and τ , and we infer from (3.2) and (3.5) that
(3.6) lim

τ→∞
sup

ω,θ∈Sn−1

(
S(λτ , ω, θ)− S̃(λτ , ω, θ)

)
= 0.

On the other hand, (3.4) reads

(3.7) S(λτ , ω, θ) = S0(λτ , ω, θ) +
ˆ

Γ
(i
√
λτω · ν + α)e−i

√
λτ (θ−ω)·xds(x),

where

(3.8) S0(λτ , ω, θ) :=
ˆ

Ω
(A− λτ )−1(qeλτ ,ω)qeλτ ,−θdx−

ˆ
Ω
qe−i

√
λτ (θ−ω)·xdx.

Now, we fix ξ in Rn, pick η ∈ Sn−1 such that ξ · η = 0, and for all τ ∈ (|ξ|/2,+∞)
we set
(3.9) ωτ :=

(
1− |ξ|2/(4τ2)

)1/2
η − ξ/(2τ), θτ :=

(
1− |ξ|2/(4τ2)

)1/2
η + ξ/(2τ)

in such a way that

(3.10) lim
τ→+∞

√
λτ (θτ − ωτ ) = ξ.

Evidently, we have
(3.11) ‖eλτ ,ωτ ‖L∞(Ω) ≤ ‖e|x|‖L∞(Ω), ‖eλτ ,−θτ ‖L∞(Ω) ≤ ‖e|x|‖L∞(Ω).

Next, with reference to the notations β = max (0, n(2− r)/(2r)) and pσ = 2n/(n+
2σ), σ ∈ [0, 1], of Theorem 1.2 and Proposition 2.2, respectively, we see that β = 0
and hence that pβ = p0 = 2, when n ≥ 4, whereas pβ = r ∈ (3/2, 2), when n = 3.
Thus, we have pβ ≤ r whenever n ≥ 3, and consequently q ∈ Lpβ (Ω). It follows
from this and (3.11) that qeλτ ,ωτ and qeλτ ,−θτ lie in Lpβ (Ω) and satisfy the estimate
(3.12) ‖qeλτ ,ωτ ‖Lpβ (Ω) + ‖qeλτ ,−θτ ‖Lpβ (Ω) ≤ C‖q‖Lr(Ω), τ ∈ (|ξ|/2,∞),
for some positive constant C = C(n,Ω) depending only on n and Ω. Moreover, for
all τ ≥ max(|ξ|/2, τ∗), we have∣∣∣∣ˆ

Ω
(A− λτ )−1(qeλτ ,ωτ )qeλτ ,−θτ dx

∣∣∣∣(3.13)

≤ ‖(A− λτ )−1(qeλτ ,ωτ )‖
L
p∗
β (Ω)
‖qeλτ ,−θτ ‖Lpβ (Ω)

≤ Cτ−1+2β‖qeλτ ,ωτ ‖Lpβ (Ω)‖qeλτ ,−θτ ‖Lpβ (Ω),

by (2.14), where C > 0 is independent of τ . Since β ∈ [0, 1/2) from its very
definition, we infer from (3.12)-(3.13) that

(3.14) lim
τ→∞

∣∣∣∣ˆ
Ω

(A− λτ )−1(qeλτ ,ωτ )qeλτ ,−θτ dx
∣∣∣∣ = 0,
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which together with (3.8)-(3.10) yields that

lim
τ→∞

S0(λτ , ωτ , θτ ) = −
ˆ

Ω
qe−iξ·x, ξ ∈ Rn.

From this and the identity

lim
τ→∞

(
S0(λτ , ωτ , θτ )− S̃0(λτ , ωτ , θτ )

)
= lim
τ→∞

(
S(λτ , ωτ , θτ )− S̃(λτ , ωτ , θτ )

)
= 0,

arising from (3.6)-(3.7), it then follows thatˆ
Ω

(q − q̃)e−iξ·xdx = 0, ξ ∈ Rn.

Otherwise stated, the Fourier transform of (q− q̃)χΩ, where χΩ is the characteristic
function of Ω, is identically zero in S ′(Rn). By the injectivity of the Fourier
transformation, this entails that q = q̃ in Ω.

3.2. Proof of Theorem 1.2. Pick ω and θ be in Sn−1, and let λ ∈ C \R. We use
the same notations as in the proof of Theorem 1.1. Namely, for all x ∈ Γ, we write

g(x) = gλ(x) = (i
√
λω · ν + α)ei

√
λω·x, h(x) = hλ(x) = (−i

√
λθ · ν + α)e−i

√
λθ·x

and we recall that S(λ, ω, θ) =
´

Γ uλ(g)hds(x). Next, for all µ ∈ ρ(A)∩ρ(Ã) we set
(3.15)

T (λ, µ) = T (λ, µ, ω, θ) := S(λ, ω, θ)− S(µ, ω, θ) =
ˆ

Γ
(uλ(g)− uµ(g))hds(x).

By Lemma 2.3, we have

T (λ, µ) = (λ− µ)
∑
k≥1

dk
(λk − λ)(λk − µ) , dk := (g, ψk)(ψk, h),

and hence

(3.16) T (λ, µ)− T̃ (λ, µ) = U(λ, µ) + V (λ, µ),

where

U(λ, µ) :=
∑
k≥1

λ− µ
λk − µ

dk − d̃k
λk − λ

,(3.17)

V (λ, µ) :=
∑
k≥1

(
λ− µ

(λk − λ)(λk − µ) −
λ− µ

(λ̃k − λ)(λ̃k − µ)

)
d̃k.(3.18)

Notice that for all k ∈ N, we have dk − d̃k = (g, ψk − ψ̃k)(ψk, h) + (g, ψ̃k)(ψk −
ψ̃k, h), which immediately entails that

(3.19) |dk − d̃k|
|λk − λ|

≤
(
|(g|ψk)|
|λk − λ|

‖h‖L2(Γ) + ρk(λ) |(ψ̃k|h)|
|λ̃k − λ|

‖g‖L2(Γ)

)
‖ψk − ψ̃k‖L2(Γ),

where ρk(λ) := |λ̃k − λ|/|λk − λ|. Further, since 0 ≤ ρk(λ) ≤ 1 + |λk − λ̃k|/|λk − λ|
and (λk − λ̃k) ∈ `∞ by assumption, with ‖(λk − λ̃k)‖`∞ ≤ ℵ, it is apparent that
(ρk(λ)) ∈ `∞ and that

‖(ρk(λ))‖`∞ ≤ ζ(λ) := 1 + ℵ
|=λ|

,
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where =λ denotes the imaginary part of λ. Thus, applying the Cauchy-Schwarz
inequality in (3.19) and Parseval’s theorem to the representation formula (2.19) in
Lemma 2.2, we get that

(3.20)
N∑
k=1

|dk − d̃k|
|λk − λ|

≤M(λ)‖(ψk − ψ̃k)‖`2(L2(Γ)), N ∈ N,

where

(3.21) M(λ) := ‖h‖L2(Γ)‖uλ(g)‖H + ζ(λ)‖g‖L2(Γ)‖ũλ(h)‖H .

As a consequence we have
∑
k≥1 |dk − d̃k|/|λk − λ| <∞. Furthermore, taking into

account that µ ∈ (−∞,−(λ∗ + 1)] 7→ (λ − µ)/(λk − µ) is bounded according to
(2.1), we apply the dominated convergence theorem to (3.17) and find that

(3.22) lim
µ=<µ→−∞

U(λ, µ) =
∑
k≥1

dk − d̃k
λk − λ

=: U(λ).

Moreover, we have

(3.23) |U(λ)| ≤M(λ)‖(ψk − ψ̃k)‖`2(L2(Γ)),

according to (3.20).
Arguing as before with V defined by (3.18) instead of U , we obtain in a similar

fashion that

(3.24) lim
µ=<µ→−∞

V (λ, µ) =
∑
k≥1

λ̃k − λk
(λk − λ)(λ̃k − λ)

d̃k =: V(λ)

and that

(3.25) |V(λ)| ≤ ζ(λ)‖(λ̃k − λk)‖`∞‖ũλ(g)‖H‖ũλ(h)‖H .

Having seen this, we refer to (3.15)-(3.16) and deduce from Lemma 2.5, (3.22)
and (3.24) that

(3.26)
ˆ

Γ
(uλ(g)− ũλ(g))hds(x) = U(λ) + V(λ).

Now, taking λ = λτ = (τ + i)2 for some fixed τ ∈ (|ξ|/2,∞) and (ω, θ) = (ωτ , θτ ),
where ωτ and θτ are the same as in (3.9), we combine (3.7)-(3.8) with (3.26). We
obtain that the Fourier transform b̂ of b := (q̃ − q)χΩ, reads

(3.27) b̂((1 + i/τ)ξ) = U(λτ ) + V(λτ ) + R(λτ ),

where

R(λτ ) :=
ˆ

Ω
(Ã− λτ )−1(q̃eλτ ,ωτ )q̃eλτ ,−θτ dx−

ˆ
Ω

(A− λτ )−1(qeλτ ,ωτ )qeλτ ,−θτ dx.

Moreover, for all τ ≥ max(|ξ|/2, τ∗), we have

(3.28) |R(λτ )| ≤ Cτ−1+2β ,

by (3.12)-(3.13), where β ∈ [0, 1/2) is defined in Theorem 1.2 and τ∗ is the same as
in Corollary 2.1. Here and in the remaining part of this proof, C denotes a positive
constant depending only on n, Ω, ℵ and c, which may change from line to line.
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On the other hand, using that∣∣∣b̂((1 + i/τ)ξ)− b̂(ξ)
∣∣∣ =

∣∣∣∣ˆ
Rn
e−iξ·x

(
e
ξ
τ ·x − 1

)
b(x)dx

∣∣∣∣
≤ |ξ|

τ

(
sup
x∈Ω

e(|ξ|/τ)|x|
)
‖b‖L1(Rn),

we get in a similar way to [11, Eq. (5.1)] that

|b̂(ξ)| ≤ |b̂((1 + i/τ)ξ)|+ c|ξ|
τ
ec|ξ|/τℵ, τ ∈ (|ξ|/2,∞),

for some positive constant c depending only on Ω. Putting this together with
(3.27)-(3.28) we find that for all τ ≥ max(|ξ|/2, τ∗),

(3.29) |b̂(ξ)| ≤ C

τ1−2β + c|ξ|
τ
ec|ξ|/τℵ+ |U(λτ )|+ |V(λτ )|.

To upper bound |U(λτ )| + |V(λτ )| on the right hand side of (3.29), we recall
from (2.18) that uλτ (g) = −(A−λτ )−1(qeλτ ,ωτ ) + eλτ ,ωτ and that ũλτ (h) = −(Ã−
λτ )−1(q̃eλτ ,−θτ ) + eλτ ,−θτ , and we combine (2.14) with (3.11) and (3.12): We get
for all τ ≥ τξ := max(1, |ξ|/2, τ∗), that

‖uλτ (g)‖H + ‖ũλτ (h)‖H ≤ C.
This together with the basic estimate ‖g‖L2(Γ) + ‖h‖L2(Γ) ≤ Cτ , (3.21), (3.23) and
(3.25), yield that

|U(λτ )|+ |V(λτ )| ≤ C
(
τ‖(ψk − ψ̃k)‖`2(L2(Γ)) + ‖(λ̃k − λk)‖`∞

)
, τ ∈ [τξ,∞).

Inserting this into (3.29), we find that

(3.30) |b̂(ξ)| ≤ C

τ1−2β + c|ξ|
τ
ec|ξ|/τℵ+ Cτδ, τ ∈ [τξ,∞),

where we have set
(3.31) δ := ‖(ψk − ψ̃k)‖`2(L2(Γ)) + ‖(λ̃k − λk)‖`∞ .
Let % ∈ (0, 1) to be made precise further. For all τ ∈ [τ∗,∞), where τ∗ is defined
in Corollary 2.1, it is apparent that the condition τ ≥ τξ is automatically satisfied
whenever ξ ∈ B(0, τ%) := {ξ ∈ Rn, |ξ| < τ%}. Thus, squaring both sides of (3.30)
and integrating the obtained inequality over B(0, τ%), we get that

‖b̂‖2L2(B(0,τ%)) ≤ C
(
τ−2(1−2β)+%n + e2cτ−(1−%)

τ%(n+2)−2 + τ2+%nδ2
)
, τ ∈ [τ∗,∞).

Then, taking % = (1− 2β)/(n+ 2) in the above line, we obtain that

(3.32) ‖b̂‖2L2(B(0,τ(1−2β)/(n+2))) ≤ C
(
τ−(1−2β) + τ (3n+4)/(n+2)δ2

)
, τ ∈ [τ∗,∞).

On the other hand, using that the Fourier transform is an isometry from L2(Rn)
to itself, we have for all τ ∈ [τ∗,∞),ˆ

Rn\B(0,τ(1−2β)/(n+2))
(1 + |ξ|2|)−1|b̂(ξ)|2dξ ≤ τ−2(1−2β)/(n+2)‖b‖2L2(Rn)

≤ Cτ−2(1−2β)/(n+2),

which together with (3.32) yields that

‖b‖2H−1(Rn) ≤ τ
−2(1−2β)/(n+2) + τ (3n+4)/(n+2)δ2, τ ∈ [τ∗,∞).
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Assuming that δ < (2(1− 2β)/(3n+ 4))1/2 =: δ0, we get by minimizing the right
hand side of the above estimate with respect to τ ∈ [τ∗,∞), that

‖b‖H−1(Rn) ≤ Cδ2(1−2β)/(3(n+2)),

and the desired stability inequality follows from this upon recalling that ‖q −
q̃‖H−1(Ω) ≤ ‖b‖H−1(Rn). Finally, we complete the proof by noticing that for all
δ ≥ δ0, we have

‖q − q̃‖H−1(Ω) ≤ ‖q − q̃‖L2(Ω) ≤
(

2ℵδ−2(1−2β)/(3(n+2))
0

)
δ2(1−2β)/(3(n+2)).

3.3. Proof of Theorem 1.3. Upon possibly substituting q+λ∗+1 (resp., q̃+λ∗+1)
for q (resp., q̃), we shall assume without loss of generality in the sequel, that λk ≥ 1
(resp., λ̃k ≥ 1) for all k ≥ 1. Next, taking into account that q = q̃ in Ω0, we notice
that the function uk := φk − φ̃k, k ≥ 1, satisfies
(3.33) (−∆ + q − λk)uk = (λk − λ̃k)φ̃k in Ω0, ∂νuk + αuk = 0 on Γ.
Let s ∈ (0, 1/2) fixed arbitrarily. It follows from [10, Theorem 1.1] (with η1 = 1/2
and η0 chosen so that (1/2− η0)/(1 + η0) = s/4) and [10, comments in Section 1.3]
that there exist three constants C = C(n,Ω0,Γ∗) > 0, b = b(n,Ω0,Γ∗, s) > 0 and
γ = γ(n,Ω0) > 0, such that for all r ∈ (0, 1) and all λ ∈ [0,+∞), we have

(3.34) C
(
‖u‖H1(Γ0) + ‖∂νu‖L2(Γ0)

)
≤ rs/4‖u‖H2(Ω0) + ebr

−γ
Cλ(u), u ∈ H2(Ω0),

where we have set Γ0 := ∂Ω0 and
Cλ(u) := (1 + λ)

(
‖u‖H1(Γ∗) + ‖∂νu‖L2(Γ∗)

)
+ ‖(∆− q + λ)u‖L2(Ω0).

Thus, in light of (2.30) and the embedding Γ ⊂ Γ0, we deduce from (3.33) upon
applying (3.34) with (λ, u) = (λk, (uk)|Ω0), k ≥ 1, that for all r ∈ (0, 1), we have

C‖ψk − ψ̃k‖L2(Γ)

≤ rs/4(λk + λ̃k) + ebr
−γ (

(1 + ‖α‖C0,1(Γ))λk‖ψk − ψ̃k‖H1(Γ∗) + |λk − λ̃k|
)
,

for some constant C > 0 depending only on n, Ω, Ω0, Γ∗, ℵ and s. From this and
Weyl’s asymptotic formula (1.11), it then follows for all k ≥ 1 and all r ∈ (0, 1),
that

(3.35) C‖ψk− ψ̃k‖2L2(Γ) ≤ r
s/2k4/n+e2br−γ

(
k4/n‖ψk − ψ̃k‖2H1(Γ∗) + |λk − λ̃k|2

)
.

Here and in the remaining part of this proof, C denotes a generic positive constant
depending only on n, Ω, Ω0, Γ∗, ℵ and α, which may change from one line to
another. Since the constant C is independent of k ≥ 1 and since

∑
k≥1 k

−2t+4/n <

∞ as we have 2t > 1 + 4/n, we find upon multiplying both sides of (3.35) by k−2t

and then summing up the result over k ≥ 1, that
C‖(k−t(ψk − ψ̃k))‖2`2(L2(Γ))(3.36)

≤ rs/2 + e2br−γ
(
‖(k−t+2/n(ψk − ψ̃k))‖2`2(H1(Γ∗)) + ‖(k−t(λk − λ̃k))‖2`2

)
,

uniformly in r ∈ (0, 1). Further, taking into account that (kt(ψk− φ̃k)) ∈ `2(L2(Γ))
and ‖(kt(ψk − φ̃k))‖`2(L2(Γ)) ≤ ℵ, we have

‖(ψk − ψ̃k)‖2`2(L2(Γ)) ≤ ‖(kt(ψk − φ̃k))‖`2(L2(Γ))‖(k−t(ψk − ψ̃k))‖`2(L2(Γ))

≤ ℵ‖(k−t(ψk − ψ̃k))‖`2(L2(Γ)),
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by the Cauchy-Schwarz inequality, and hence

C‖(ψk − ψ̃k)‖2`2(L2(Γ))(3.37)

≤ rs/4 + ebr
−γ
(
‖(k−t(λk − λ̃k))‖`2 + ‖(k−t+2/n(ψk − ψ̃k))‖`2(H1(Γ∗))

)
,

whenever r ∈ (0, 1), by (3.36). Moreover, since

‖(k−t(λk − λ̃k))‖`2 ≤

∑
k≥1

k−2t

1/2

‖(λk − λ̃k))‖`∞

and
∑
k≥1 k

−2t <∞ as we assumed that 2t > 1 + n/2, (3.37) then provides

(3.38) ‖(ψk − ψ̃k)‖2`2(L2(Γ)) ≤ C
(
rs/4 + ebr

−γ
δ∗

)
, r ∈ (0, 1),

where we have set

δ∗ := ‖(λk − λ̃k)‖`∞ + ‖(k−t+2/n(ψk − ψ̃k))‖`2(H1(Γ∗)).

Next, with reference to (3.31) we have

δ2 ≤ 2
(
‖(λk − λ̃k)‖2`∞ + ‖(ψk − ψ̃k)‖2`2(L2(Γ))

)
≤ 2

(
ℵ‖(λk − λ̃k)‖`∞ + ‖(ψk − ψ̃k)‖2`2(L2(Γ))

)
.

Moreover, since ‖(λk − λ̃k)‖`∞ ≤ ebr
−γ
δ∗ whenever r ∈ (0, 1), the above inequality

combined with (3.38) yield that

(3.39) δ2 ≤ C
(
rs/4 + ebr

−γ
δ∗

)
, r ∈ (0, 1).

On the other hand, we have

‖q − q̃‖H−1(Ω) ≤ Cδ2(1−2β)/(3(n+2)),

from Theorem 1.2. Putting this together with (3.39), we obtain that

(3.40) ‖q − q̃‖H−1(Ω) ≤ C
(
rs/4 + ebr

−γ
δ∗

)(1−2β)/(3(n+2))
, r ∈ (0, 1).

Let us now examine the two cases δ∗ ∈ (0, 1/e) and δ∗ ∈ [1/e,∞) separately. We
start with δ∗ ∈ (0, 1/e) and take r = | ln δ∗|−1/γ ∈ (0, 1) in (3.40), getting that

‖q − q̃‖H−1(Ω) ≤ C
(
| ln δ∗|−s/(4γ) + δ

(b+1)
∗

)(1−2β)/(3(n+2))

≤ C
(
| ln δ∗|−s/(4γ) + e−(b+1)| ln δ∗|−(b+1)

)(1−2β)/(3(n+2))
,

where we used in the last line that δ∗ ≤ 1/(e| ln δ∗|). This immediately yields

(3.41) ‖q − q̃‖H−1(Ω) ≤ C| ln δ∗|−ϑ, δ∗ ∈ (0, 1/e),

where
ϑ := min (s/(4γ), b + 1) (1− 2β)/(3(n+ 2)).
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Next, for δ∗ ∈ [1/e,∞), we get upon choosing, say, r = 1/2 in (3.40), and then
taking into account that r < 1 ≤ eδ∗ and (1− 2β)/(3(n+ 2)) ≥ 0, that

‖q − q̃‖H−1(Ω) ≤ C
(

(eδ∗)s/4 + e2γb−1eδ∗

)(1−2β)/(3(n+2))

≤ C(eδ∗)(1−2β)/(3(n+2))

≤ Cδ∗.

Now, with reference to (1.9), the stability estimate (1.10) follows readily from this
and (3.41).

Appendix A. Proof of the continuity of a0

As Γ is compact, Ls2(Γ) is continuously embedded in Ls1(Γ) whenever s1 ≤ s2.
Therefore, we may assume without loss of generality that s ∈ (n − 1, n). Set
h(r) := r/(r − 2), r ∈ (2,∞). It is easy to see that the function h is decreasing
and bijective from (2n/(n− 1), 2(n− 1)/(n− 2)) onto (n−1, n). As a consequence,
there exists a unique p ∈ (2n/(n− 1), 2(n− 1)/(n− 2)) such that h(p) = s, since
s ∈ (n − 1, n). Otherwise stated, the conjugate exponent of p/2 is s, i.e. s =
(p/2)∗. Further, we recall from the comments following [12, Theorem 1.4.1] that
the space H1(Ω) = W 1,2(Ω) is continuously embedded into W t,p(Ω), where t =
1 − n/2 + n/p ∈ ((n− 2)/ (2(n− 1)) , 1/2). And since t − 1/p > 0, the map w ∈
W t,p(Ω) 7→ u|Γ ∈ Lp(Γ) is bounded according to [12, Theorem 1.6.1.3]. Therefore,
w ∈ V 7→ w|Γ ∈ Lp(Γ) is bounded as well.

Now, for all u, v ∈ V , we haveˆ
Γ
|α||u||v|ds(x) ≤ ‖α|u|2‖1/2L1(Ω)‖α|v|

2‖1/2L1(Ω),

by applying the Cauchy-Schwarz inequality and then the Hölder inequality, from
where we get that

(A.1)
ˆ

Γ
|α||u||v|ds(x) ≤ ‖α‖Ls(Γ)‖u‖Lp(Γ)‖v‖Lp(Γ).

Thus, bearing in mind that |a0(u, v)| ≤
´

Γ |α||u||v|ds(x), we find that

|a0(u, v)| ≤ c0‖α‖Ls(Γ)‖u‖V ‖v‖V ,

where c0 is a positive constant depending only on Ω and s.
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