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Abstract. The study of the quantum motion of a charged particle in a half-

plane as well as in an infinite strip submitted to a perpendicular constant

magnetic field B reveals eigenstates propagating permanently along the edge,
the so-called edge states. Moreover, in the half-plane geometry, current carried

by edge states with energy in between the Landau levels persists in the presence

of a perturbing potential small relative to B. We show here that edge states
carrying current survive in an infinite strip for a long time before tunneling

between the two edges has a destructive effect on it. The proof relies on

Helffer-Sjöstrand functional calculus and decay properties of quantum Hall
Hamiltonian resolvent.

1. Introduction

Since the discovery of quantized Hall conductivity by Von Klitzing et al [1], edge
states have been at the center of both theoretical explanations and controversies
about this effect (see e.g. [2], [3], [4], [5], [6], [7], [8], [9], [10]). The one-electron
model approximation, although certainly insufficient to explain all the aspects of
Hall quantization, in particular the fractional quantum Hall effect, is nevertheless a
source of interesting spectral problems. Some of them have been rigorously investi-
gated by various authors ([11], [12], [13], [14], [15]). In this paper we will summarize
and complement existing results about existence and properties of current carrying
edge states and point out some open problems.

2. Models and known results

For any B > 0, HL = p2
x+(py−Bx)2 (where px = −i∂x and py = −i∂y) denotes

the Landau Hamiltonian on R2 describing a charged particle in a uniform magnetic
field orthogonal to the plane. We consider a confining potential V0 defined as

V0 = V −0 + V +
0

where

V −0 (x) =

{
V0 for x ≤ 0
0 otherwise,

and

V +
0 (x) = V −0 (L0 − x),

with V0 > 0 and L0 � B−1/2. Recall that the classical cyclotron radius of an
electron in such a uniform magnetic field is proportional to B−1/2. In the following,
V0 will be assumed to be very large with respect to B so

H0 = HL + V0

is the Hamiltonian of a typical quantum Hall device in the idealized situation where
it is infinitely extended in the y-direction. Finite geometries can be considered as
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well such as Laughlin’s cylinder geometry by imposing periodic boundary conditions
in y. Impurities in the sample are represented by a potential V of unbounded sup-
port, and nondecaying at infinity (e.g. an Anderson potential). Then the dynamics
of the charges particle are governed by

H = H0 + V.

Spectral properties of H give insight into these dynamical properties and have been
investigated by many authors in the recent years. We recall now some of them.

Concerning the Landau Hamiltonian HL on L2(R2), it is well known that

σ(HL) = {(2n+ 1)B, n ∈ N}.

If V0 = 0 and V is a random potential describing impurities then for large disorder
or large magnetic fields the random Hamiltonian H1 = HL + V has bands of dense
pure point spectrum contained in the Landau bands [(2n+1)B, (2n+3)B] (see e.g.
[16], [17], [18]).

As for the half-plane case, L0 = +∞, if B−1‖V ‖L∞(R2) is small enough, then the

spectrum of H− = HL + V −0 + V has absolutely continuous components contained
in the complement of the Landau bands (see [12], [11], [13]). These authors consider
smooth confining potentials ([11], [13]), or Dirichlet boundary conditions at x =
0, that correspond to V0 = +∞ ([12], [13]). More general geometries with one
boundary have been considered in [19].

Finally, for the strip geometry, L0 < +∞, there are very few results. Recently it
was shown in [14] that absolutely continuous spectrum of H0 survives perturbation
by V if V is periodic or decays fast enough in y-direction.

The connection between absolutely continuous spectrum and existence of Hall
currents is not straightforward. In fact, in macroscopic finite samples, such currents
exist although the spectrum is discrete. This was shown in [15] and is certainly one
of the most relevant recent result from a physical point of view. It turns out that
in some cases investigated in [12] and [13], for which L0 =∞, the existence of Hall
currents carried by edge states is shown through positive commutator estimates.
By Mourre’s theory, such estimates imply absolutely continuous spectrum. More
precisely, let

vy = py −Bx
denote the velocity operator in the y-direction along the edge. For an infinite system
in y-direction, one has

vy =
i

2
[H, y].

Since y is in this case a bona-fide conjugate operator for H in the sense of Mourre
(see [20], [21]), positivity of vy in spectral subspaces of H implies absolute continuity
for the spectrum of H in corresponding energy intervals. Indeed, if PH(∆) denotes
the spectral projection for H associated to interval ∆, then Mourre’s inequality

(2.1) PH(∆)vyPH(∆) ≥ cPH(∆) for some c > 0

implies σ(H)∩∆ = σac(H)∩∆, where σ(H) (resp. σac(H)) denotes the spectrum
(resp. the absolutely continuous spectrum) of H. Of course, in finite samples,
neither Mourre’s theory nor the virial theorem apply with y as a conjugate operator
and positivity of vy in spectral subspaces of H is not related to spectral properties
of H.
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When L0 < +∞, the Hall current has different signs on opposite edges so one
can’t expect (2.1) to hold. However we can try to obtain a good conjugate operator
replacing vy by a suitable localized version of it changing sign on both edges. This
can be done easily if V = 0 or V is periodic in y (see [22]) and again in these cases
existence of edge currents is related to absolutely continuous spectrum.

It is very likely that for general V there is no conjugate operator for H related
to Hall current operator vy. In fact existence of such an operator would imply that
there are states carrying currents of a given direction for all times; this does not
seem realistic from a physical point of view. We will show nevertheless in section
6 that current carrying edge states exists although destructive interference effects
due to tunneling between the two edges of the sample might prevent them from
surviving after some large tunneling time.

After reviewing some basic spectral properties of H0 we will present in section 4
perturbative arguments along the lines already used in [12] and [13] showing that
current carrying edge states still exist in the half-plane or semi-infinite cylinder
geometry if B−1‖V ‖L∞(R2) is small enough. The two last sections will be devoted
to the strip geometry. We will present there some efficient techniques to deal with
the above mentioned tunneling effect.

3. The one-edge geometry

We consider first the case L0 = +∞, so that the unperturbed Hamiltonian
operator is H−0 = HL+V −0 on the Hilbert space L2(R2). Most spectral properties of
H−0 described below remain valid if one adds to V −0 some potential V1 representing
some mean field interaction due to the distribution of electrons and holes in the
system. We can also treat on the same way cylindrical geometries which amounts
to imposing periodic boundary conditions in the edge direction.

Partial Fourier transform in the y-direction shows that H−0 is unitarily equivalent
to the direct integral over R,

(3.1) H−0 '
∫ ⊕
R
h−0 (k)dk.

The fiber operators on L2(R) are the selfadjoint operators h−0 (k) = p2
x + (Bx −

k)2 + V −0 (x), with the k-independent domain

D(h−0 ) = {v ∈ H1
1 (R), (p2

x + x2)v ∈ L2(R)},

where H1
1 (R) is the space {v ∈ H1(R), (1 + x2)

1
2 v ∈ L2(R)}.

Since the embedding H1
1 (R) ↪→ L2(R) is compact (see corollary IX.B.4 of [23]),

every h−0 (k) has compact resolvent and also a discrete spectrum

σ(h−0 (k)) = {ω−n (k), n ≥ 0},
with ω−n (k) ≤ ω−n+1(k) and limn→+∞ ω−n (k) = +∞. In the following, we denote by

{ϕ−n (x, k), n ≥ 0} an orthonormal basis of L2(R) of associated eigenfunctions.
The main properties of the dispersion curves ω−n (k), n ∈ N, that will be needed

are collected in the following lemma :

Lemma 3.1. For any integer n,

(1) The multiplicity of the eigenvalue ω−n (k) is equal to one;
(2) The mapping k 7→ ω−n (k) is real analytic and decreases from (2n+1)B+V0

to (2n+ 1)B as k → +∞;
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(3) The derivative of ω−n is (ω−n )′(k) = −V0

B (ϕ−n )2(0, k) for any k ∈ R;
(4) ω−0 (k) ≤ 3B for any k ≥ 0.

The proof of the two first assertions is standard. The proof of point (3.) follows
from the Feynman-Hellman theorem and elementary integration by parts. Noticing
that ω−0 (0) = 3B in the Dirichlet limit V0 = +∞, point (4.) follows from (3.) and
the monotonicity of ω−0 (k) in V0. The details will appear in [22]. It follows that
H−0 has absolutely continuous spectrum :

σ(H−0 ) = [B,+∞[.

Ground state eigenfunctions ϕ−0 (., k) are well-known to be positive. Furthermore,
they satisfy the following decay estimate in the barrier region:

Lemma 3.2. For any x ≤ 0 and k ∈ (ω−0 )−1([B, 3B]) we have :

ϕ−0 (x, k) ≤ ϕ−0 (0, k)e[V0−ω−0 (k)]
1/2

x,

provided V0 is large enough, that is, provided 2π1/2(1 − ω−0 (k)/V0) < 1, for all
k ∈ (ω−0 )−1([B, 3B]).

This behavior provides a useful estimate on the derivative of ω−0 .

Proposition 3.3. For all k ∈ (ω−0 )−1([B, 3B]) we have :

(ω−0 )′(k) ≤ − 1

4B5/2
(3B − ω−0 (k))(ω−0 (k)−B)2e

k2

B ,

provided V0 is large enough.

Proof. Let ψn(., k), n ∈ N, denote the normalized eigenfunctions of hL(k) = p2
x +

(Bx− k)2 associated to eigenvalue (2n+ 1)B. In particular :

(3.2) ψ0(x, k) =

(
B

π

) 1
4

e−
B
2 (x− k

B )
2

.

Then ϕ−0 (., k) =
∑
n≥0 αn(k)ψn(., k) and hL(k)ϕ−0 (., k) =

∑
n≥0(2n+1)Bαn(k)ψn(., k).

Since V −0 = h−0 (k)− hL(k), we have(
ϕ−0 (., k), V −0 ϕ−0 (., k)

)
L2(R)

= ω−0 (k)−
∑
n≥0

(2n+ 1)B|αn(k)|2,

and also :

(ω−0 (k)−B)|α0(k)|2 =
(
ϕ−0 (., k), V −0 ϕ−0 (., k)

)
L2(R)

+
∑
n≥1

[
(2n+ 1)B − ω−0 (k)

]
|αn(k)|2

≥
[
3B − ω−0 (k)

]
(1− |α0(k)|2).

Therefore, we finally obtain

(3.3) |α0(k)| ≥
(

3B − ω−0 (k)

2B

) 1
2

,

for any k ∈ (ω−0 )−1([B, 3B]). Thus,
(
ϕ−0 (., k), V −0 ψ0(., k)

)
L2(R)

= (ω−0 (k)−B)α0(k)

and (3.3) imply :

(3.4)
∣∣∣(ϕ−0 (., k), V −0 ψ0(., k)

)
L2(R)

∣∣∣ ≥ (ω−0 (k)−B)

(
3B − ω−0 (k)

2B

) 1
2

.
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Then, by lemma 3.2 one obtains :(
ϕ−0 (., k), V −0 ψ0(., k)

)
L2(R)

=

(
B

π

) 1
4

V0

∫ 0

−∞
e−

B
2 (t− k

B )
2

ϕ−0 (t, k)dt

≤
(
B

π

) 1
4

e−
k2

2B V0ϕ
−
0 (0, k)

∫ 0

−∞
e[V0−ω−0 (k)]

1
2 tdt

≤
(
B

π

) 1
4

e−
k2

2B [V0 − ω−0 (k)]−
1
2V0ϕ

−
0 (0, k).

Inserting this inequality in (3.4) we get :

(3.5) V0(ϕ−0 )2(0, k) ≥ e
k2

B

( π
B

) 1
2

(
1− ω−0 (k)

V0

) (
3B − ω−0 (k)

2B

)
(ω−0 (k)−B)2.

This, together with the third point of lemma 3.1 completes the proof. �

Remark 3.4.

(1) Let ϕ ∈ PH−0 (∆0)L2(R2) where PH−0
denotes the spectral projection asso-

ciated to H−0 and ∆0 = [a1B, a2B], 1 < a1 < a2 < 3. The partial Fourier
transform with respect to y of ϕ decomposes on {ϕ−n , n ≥ 0} :

ϕ̂(x, k) = β0(k)11(ω−0 )−1(∆0)(k)ϕ−0 (x, k),

where β0(k) =
(
ϕ̂(., k), ϕ−0 (., k)

)
L2(R)

. Thus, by the Feynman-Hellman the-

orem we have

(ϕ̂, (k −Bx)ϕ̂)L2(R2)

=

∫
(ω−0 )−1(∆0)

|β0(k)|2
(
ϕ−0 (., k), (k −Bx)ϕ−0 (., k)

)
L2(R)

dk

=
1

2

∫
(ω−0 )−1(∆0)

|β0(k)|2(ω−0 )′(k)dk,

and proposition 3.3 implies :

(ϕ, vyϕ)L2(R2) ≤ −
(3− a2)

8B3/2

∫
(ω−0 )−1(∆0)

|β0(k)|2(ω−0 (k)−B)2dk.

Then, by noticing that∫
(ω−0 )−1(∆0)

|β0(k)|2(ω−0 (k)−B)2dk = ‖(H−0 −B)ϕ‖2L2(R2),

we finally get :

(3.6) (ϕ, vyϕ)L2(R2) ≤ −
(3− a2)(a1 − 1)2

8
B1/2‖ϕ‖2L2(R2).

So states in PH−0
(∆0)L2(R2) carry a current which is O(B1/2).

(2) Such ϕ live within a strip of size O(B−1/2) along the edge. This follows
from the above decomposition of ϕ̂ in terms of ϕ−0 and from the fact that
if k ∈ (ω−0 )−1(∆0) then the exterior of such a strip is in the classically
forbidden region for the harmonic potential (k − Bx)2. This justifies the
terminology “edges states” for any ϕ ∈ PH−0 (∆0)L2(R2) as above.
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4. Perturbation theory for the one-edge Hamiltonian

Let H− = H−0 + V and note PH− the spectral projection associated to H−. Let
ψ ∈ PH−(∆)L2(R2) where for simplicity ∆ is assumed to be an interval of size O(1)
centered in E ∈]3B/2, 2B[. We want to show that ψ still carries a current, that is :

(ψ, vyψ)L2(R2) ≤ −C(B)‖ψ‖2L2(R2),

for some constant C(B) > 0 depending on B, provided the impurity potential V

is not too strong. Noticing that (ψ, vyψ)L2(R2) =
(
ψ̂, (k −Bx)ψ̂

)
L2(R2)

where ψ̂

denotes the partial Fourier transform with respect to y of ψ, and integrating by
parts we get

(4.1) 2B (ψ, vyψ)L2(R2) = (ψ, ∂xV ψ)L2(R2) − V0

∫
R
|ψ(0, y)|2dy,

so existence of current carrying edge states should hold in particular if states ψ ∈
PH−(∆)L2(R2) have support satisfying this condition up to controllable corrections.
One can think that this holds in particular if the impurity potential V is not strong
enough to create states with energy in ∆ living in the bulk region x� B−1/2. This
type of result is shown e.g. in [12] and [13]. In the case considered here one has :

Proposition 4.1. For ψ ∈ PH−(∆)L2(R2), we have

(ψ, vyψ)L2(R2) ≤ −C(∆)‖ψ‖2L2(R2)

for some constant C(∆) > 0, depending on ∆, provided ‖V ‖L∞(R2) = O(B).

For this we decompose ψ in

ψ = ϕ+ ξ with ϕ = PH−0
(∆0)ψ and ξ = PH−0

(∆c
0)ψ,

where ∆0 is an open interval ]a1B, a2B[, 1 < a1 < a2 < 3, containing ∆. One easily
obtains :

(4.2) (ψ, vyψ)L2(R2) ≤ (ϕ, vyϕ)L2(R2) + 2‖vyξ‖L2(R2).

According to formula (3.6) in remark 3.4 the first term has an upper bound which
is O(B1/2). To estimate the second term we observe by an easy perturbation
argument that for any u ∈ PH−(∆)L2(R2),

‖PH−0 (∆c
0)u‖L2(R2) ≤ dist−1(E,∆c

0)

(
|∆|
2

+ ‖V ‖L∞(R2)

)
‖u‖L2(R2),

so we get

‖vyξ‖2L2(R2) ≤
(
(py −Bx)2ξ, ξ

)
L2(R2)

≤
(
H−0 ξ, ξ

)
L2(R2)

≤
(
H−0 ψ, ξ

)
L2(R2)

≤
(
(H− − V )ψ, ξ

)
L2(R2)

≤ ‖(H− − V )ψ‖L2(R2)‖ξ‖L2(R2)

≤
(
E +

|∆|
2

)
‖ψ‖L2(R2)‖ξ‖L2(R2)

≤
E + |∆|

2

dist(E,∆c
0)

(
|∆|
2

+ ‖V ‖L∞(R2)

)
‖ψ‖2L2(R2).



EDGE STATES FOR QUANTUM HALL HAMILTONIANS 7

It just remains to choose a1 and a2 in order that
E+
|∆|
2

dist(E,∆c
0)

is of order O(1) and

the result follows.

Remark 4.2.

(1) Notice that one obtains here a Mourre’s inequality

iPH−(∆)[H−, y]PH−(∆) ≥ 2C(∆)PH−(∆),

so that σ(H−) ∩∆ = σac(H
−) ∩∆.

(2) Under conditions involving only ‖V ‖L∞(R2) this type of result is quite op-
timal. To see this assume for example that ∆ is a small interval centered
around E0 ∈ [a1B, a2B], 1 < a1 < a2 < 3. Next, consider the following
potential

V = E0 +Wω,

where Wω is a random potential of Anderson type. Then, general results
on band-edge localization (see [24]) ensure that σ(H−) is pure point in the
vicinity of E0, so that (ψ, vyψ)L2(R2) = 0 for corresponding eigenfunctions

by the virial theorem.
(3) As we have seen in section 3, unperturbed edge states live in a strip of width

O(B−1/2) along the edge. So, if conditions on the support of V are added,
current carrying edge states should survive under much weaker conditions
on ‖V ‖L∞(R2). We will prove this fact in the more general setting of the
strip geometry in section 5.

5. The strip geometry

We now consider the case L0 < +∞. One still has a decomposition (3.1) for
H0 but it is clear that the dispersion curves ωn are no more monotonic because
wn(k) = wn(BL0 − k). As a consequence the current carried by states in PH0(∆)
with ∆ ⊂]B, 3B[ for example, will not have a definite sign unless one specifies their
location on one of the edges of the strip. This can be seen from the following
properties of ωn’s :

Lemma 5.1. For any r ≥ 0 and any k ≤ [r + 1 + (2n + 1)1/2]B1/2 such that
ω−n (k) ≤ (2n+ 3)B, one has

σ(h0(k)) ∩ [w−n (k), w−n (k) + Cn(r)e−
B
4 L

2
0 ] = {wn(k)},

for some constant Cn(r) > 0 and large enough B.
Under the same assumptions on k one gets in addition

‖ϕ−n (., k)− ϕn(., k)‖L2(R2) ≤ Cn(r)e−
B
4 L

2
0 .

A consequence of lemma 5.1 is the following picture of dispersion curves near
the edges:
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Notice that the monotonicity of ωn, n ∈ N, in a neighbourhood of size B
1
2 of 0

or BL0 follows easily from lemma 5.1. For the ground state, monotonicity of w0

on ]−∞, BL0/2] follows from theorem 5 of [25]. So one can construct edge states
carrying currents of negative sign as follows :

ϕ̂(x, k) = β0(k)11ω−1
0 (∆0)∩]−∞,BL0/2[(k)ϕ0(x, k),

where ∆0 ⊂]B, 3B[, and similar construction for higher levels. Replacing interval
] − ∞, BL0/2[ by ]BL0/2,+∞[ one obtains edge states localized near x = L0

carrying positive current. Such states will carry current for all times and don’t
interfere with each other. In other words one has a decomposition

H0 = H̃−0 ⊕ H̃
+
0

into time invariant subspaces of H0 where H̃±0 =
∫ ⊕
±(k−BL0/2)>0

h0(k)dk.

6. Perturbation theory for the strip geometry

Adding now the impurity potential V , the strategy developed for the one-edge
geometry obviously no longer works for the strip. In fact, V induces tunneling
between the two edges and it is a natural question to ask for how long edge states
will carry a current of definite sign before tunneling has a destructive effect on it.
One way to provide answer to this question is given by Helffer-Sjöstrand functional
calculus (see [26]).

Let f ∈ Cn+1(R), n ≥ 1, and define an almost analytic extension of f as

(6.1) f̃(z) =

[
n∑
r=0

f (r) (iγ)r

r!

]
σ(E, γ), z = E + iγ,

where σ(E, γ) = τ
(
γ
E

)
for some real-valued function τ ∈ C1(R) such that

τ(t) =

{
1 if |t| < 1
0 if |t| < 2.
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Then Helffer-Sjöstrand formula states that

(6.2) f(H) =
1

π

∫
Cl

∂f̃

∂z̄
(H − z)−1dEdγ,

when H = H∗. Notice that

∂f̃

∂z̄
(z) =

1

2

[
n∑
r=0

f (r)(E)
(iγ)r

2!

](
∂σ

∂E
+ i

∂σ

∂γ

)
+

1

2
f (n+1)(E)

(iγ)n

n!
σ(E, γ)

and that ∂σ
∂E and ∂σ

∂γ vanish if γ < E or γ > 2E. These properties of ∂f̃∂z̄ allow a good

control of the integral near the spectrum of H and are very useful for perturbation
theory in regions where the spectrum is dense.

A useful tool for the analysis of the tunneling effects is the geometric resolvent
equation which allows to take into account local properties of a given Hamiltonian
in the analysis of its Green’s functions (see e.g. [27]). Given the Hamiltonian H
and a C2-function J , let HJ be any self-adjoint operator such that HJJ = HJ .
Then if z ∈ ρ(HJ) ∩ ρ(H) (where ρ(M) denotes the resolvent set of operator M)
one has :

(6.3) J(H − z)−1 = (HJ − z)−1
[
J +W (J)(H − z)−1

]
where W (J) = [H,J ].

We apply this in two situations. First, as a warm-up, we assume that the impu-
rity potential V has a support away from the edges x = 0 and x = L0 and centered
around x = L0/2, with

dist (supp(V ), edges) = d, 0 < d < L0/2.

Let ψ0 ∈ PH0
(∆)L2(R2), ‖ψ0‖L2(R2) = 1, for some ∆ ∈ [a1B, a2B] with 1 < a1 <

a2 < 3, where H0 = HL + V0, as defined in section 2. From lemma 5.1, it is easy
to see, as we did in the half-plane case, that the restriction of ψ0 to supp(V ) has

norm O(e−αBd
2

), for some finite constant 0 < α <∞, independent of B. Let f be

a smooth function which is one on ∆ and zero outside some bigger interval ∆̃ ⊃ ∆,
of the same type as ∆. Then, f(H0)ψ0 = ψ0, and if f̃ denotes an almost analytic
extension of f as given by (6.1) with n = 1, the Helffer-Sjöstrand formula and the
second resolvent equation for H0 and H imply that :

(6.4) ψ ≡ f(H)ψ0 = ψ0 −
1

2πi

∫
Cl

∂f̃

∂z̄
(H − z)−1V (H0 − z)−1ψ0dz ∧ dz̄.

Let Ji be a C2-function supported near V , that is

Ji(x) =

{
1 if d/2 < x < L0 − d/2
0 if x < d/4 or x > L0 − d/4,

so that V Ji = V and V0Ji = 0. Applying the geometric resolvent equation (6.3)
for J = Ji, HL and H0, we have

(6.5) Ji(H0 − z)−1 = (HL − z)−1
[
Ji +W (Ji)(H0 − z)−1

]
,

where W (Ji) = [HL, Ji]. Furthermore, ‖Jiψ0‖L2(R2) = O(e−αBd
2

), and from the

decay properties of (HL − z)−1, it follows that :

‖V (HL − z)−1W (Ji)(H0 − z)−1ψ0‖L2(R2)

≤ ‖V ‖L∞(R2)e
−αBd2

d−1(z, σ(HL))|Im(z)|−1
(
‖J ′i‖L∞(R) + ‖J ′′i ‖L∞(R)

)
.
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Inserting (6.5) and this inequality in (6.4) gives :

(6.6) ψ = ψ0 + ξ with ‖ξ‖L2(R2) ≤ C1‖V ‖L∞(R2)e
−C2Bd

2

for some constants C1 and C2 depending only on f , Ji and ∆. It is easy to show that
the same type of estimate holds for ‖vyξ‖L2(R2), so that (ψ, vyψ)L2(R2) = O(B1/2),

as in (3.6) provided ‖V ‖L∞(R2) � eC2Bd
2

.

Remark 6.1. There is a major difference between this result and the one obtained
in section 4. Here estimates on (ψ, vyψ)L2(R2) are not uniform in ψ ∈ PH(∆̃)L2(R2)

for some ∆̃ containing ∆. In fact, constant C1 in (6.6) depends on ‖f ′‖L∞(R). In

particular, if f is changed into ft where ft(E) = e−itEf(E) so that ψt = ft(H)ψ0 is
the solution of the Schrödinger equation with initial data ψ , then C1 in (6.6) grows
like t2. In other words we cannot conclude that ψt carries a current of definite sign

beyond a time T (B) = O(eC2
Bd2

2 ), that is the quantum tunneling time between the
two edges. The same remark applies to the other situations considered below.

Now we don’t make any assumption on the support of V but rather investigate
a situation closer to the one considered in the perturbed one-edge case in section
4. More precisely define the “bulk Hamiltonian”

H1 = HL + V

(i.e. H1 is obtained from H by removing the two edges); let ∆ ⊂ ∆̃ as above and

such that ∆̃∩ σ(H1) = ∅ (this is satisfied for example if ‖V ‖L∞(R2) ≤ CB for some

constant C smaller than dist(∆̃, σ(HL)). Let J0 satisfy :

J0(x) =

{
1 if x < L0/2
0 if x > L0/2 + 1.

One has HJ0 = H−J0, where we recall that H− = H−0 + V is obtained from H by
removing the confining potential on the right edge. Then let ψ0 ∈ PH−0 (∆)L2(R2)

and define ψ ≡ f(H)ψ0 where f ∈ C2(R) has support in ∆̃; let also ψ1 = f(H−)ψ0.
Then if E0 denotes the middle of ∆ one has

‖(H− − E0)ψ0‖L2(R2) ≤

(
|∆̃|
2

+ ‖V ‖L∞(R2)

)
‖ψ0‖L2(R2),

so that ‖ψ1‖L2(R2) > 1/2, if |∆̃|/2 + ‖V ‖L∞(R2) < 1/2dist(E0,∆f ), where f is one

on ∆f ⊂ ∆̃. Since ψ0 is an edge state, one also has ψ = f(H)J0ψ0 + O(e−αBL
2
0).

By (6.1) and (6.3), one has:

(6.7) ψ = J0ψ1 −
1

2πi

∫
Cl

∂f̃

∂z̄
(H − z)−1W (J0)(H− − z)−1ψ0dz ∧ dz̄ +O(e−αBL

2
0).

Now construct a function J1 which is one on the support of J ′0 as follows :

J1(x) =

{
1 if L0/4 < x < 3L0/4
0 if x > 3L0/4 + 1 or x < L0/4− 1

Then W (J0) = J1W (J0) and (6.3) gives

(6.8) (H − z)−1J1 = J1(H1 − z)−1 + (H − z)−1W (J1)(H1 − z)−1.
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Inserting (6.8) in (6.7) gives

ψ = J0ψ1 +
1

2πi

∫
Cl

∂f̃

∂z̄
J1(H1 − z)−1W (J0)(H− − z)−1ψ0dz ∧ dz̄

+
1

2πi

∫
Cl

∂f̃

∂z̄
(H − z)−1W (J1)(H1 − z)−1W (J0)(H− − z)−1ψ0dz ∧ dz̄

+O(e−αBL
2
0).(6.9)

Notice that by the geometric resolvent equation (6.3) and using W (J0) = −W (1−
J0) one has

(H1 − z)−1W (J0)(H− − z)−1 = (1− J0)(H− − z)−1 − (H1 − z)−1(1− J0).

By assumption d(z, σ(H1)) = d0 for some d0 > 0 when z ∈ supp(f̃) so that the
first two terms on the right hand side of (6.9) give [J0 + (1− J0)J1]ψ1. Obviously
the expectation of vy in this state is O(B1/2). It remains to show from the results
of section 3 that the last term on the right hand side of (6.9) is negligible provided
‖V ‖L∞(R2)/B is small enough; this follows from the fact that the kernel of (H1−z)−1

decreases exponentially when z ∈ supp
(
∂f̃
∂z̄

)
. This can be seen e.g. from a Combes-

Thomas argument since the support of J ′0 and J ′1 are at a distance O(L0

4 ). One
finally obtains

‖ψ − [J0 + (1− J0)J1]ψ1‖L2(R2) ≤ C1e−BL
2
0 + C2e−

d0L0B−1/2

2 ,

where C2 depends on ‖f ′‖L1(R) and ‖f ′′‖L1(R), and similar estimates for the expecta-
tions of vy. Typically, d0 isO(B) so that if ψt is the solution of the Schrödinger equa-

tion with initial data ψ then (ψ, vyψ)L2(R2) will be of order O(B1/2) for t < T (B)

where T (B) < C inf(eBL
2
0 , e

d0L0B−1/2

2 ).

7. Concluding remarks

Results presented here leave open questions which are not only of purely math-
ematical interest. Among them is the optimality of assumptions made on the
impurity potential V . We have seen that global conditions on the smallness of
‖V ‖L∞(R2)/B can be considerably weakened if extra assumptions are made in the
support of the impurity potential. In view of formula (4.1) it seems that a natu-
ral borderline for the size of V to preserve current carrying edge states should be
O(B3/2) and not O(B) since the first term of the right hand side of this equality can
be expected to be O(B3/2) from the estimates of section 3, provided a sufficiently
large fraction of the edges is free of impurities. On the other hand this also seems
to be the correct borderline for the disorder in order that Anderson localization
holds in the middle of Landau bands (this question is under current investigation).

Another open problem concerns effectiveness of tunneling in the strip problem
and whether it is possible to go beyond the results shown in section 5; certainly in
finite samples the tunneling time T (B) is much larger than the time required for
an electron moving along the edges to reach the measuring devices at the ends of
the sample. In this respect this result is consistent with the analysis of C. Ferrari
and N. Macris in [28]. Nevertheless it is an interesting mathematical question to
see if edges current survive for all times in an infinite sample.
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We have not discussed here some important related problem concerning proper-
ties of edge conductivity, in particular its quantization. An important step has been
achieved in [10] and rederived very recently in [29]. These authors show that for
discrete models edge conductivity equals bulk conductivity as defined using Kubo-
Chern formula (see [30]). But quantization of edge conductivity for the continuous
models considered here remains open.
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[23] R. Dautray, J.-L. Lions, Analyse mathématique et calcul numérique pour les sciences et les
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