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Institut de Mathématiques de Marseille, CNRS, UMR 7373, École Centrale
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13288 Marseille, France

Abstract. We consider the multidimensional inverse problem of determining
the conductivity coefficient of a hyperbolic equation in an infinite cylindrical

domain, from a single boundary observation of the solution. We prove Hölder

stability with the aid of a Carleman estimate specifically designed for hyper-
bolic waveguides.

1. Statement of the problem and results.

1.1. Introduction. The present paper deals with the inverse problem of deter-
mining the time-independent isotropic conductivity coefficient c : Ω→ R appearing
in the hyperbolic partial differential equation (∂2

t − ∇ · c(x)∇)u(x, t) = 0, where
Ω := ω × R is an infinite cylindrical domain whose cross section ω is a bounded
open subset of Rn−1, n ≥ 2. Namely, ` > 0 being arbitrarily fixed, we seek Hölder
stability in the identification of c in Ω` := ω × (−`, `) from the observation of u on
the lateral boundary ΓL := ∂ω × (−L,L) over the course of time (0, T ), for L > `
and T > 0 sufficiently large.

Several stability results in the inverse problem of determining one or several un-
known coefficients of a hyperbolic equation from a finite number of measurements
of the solution in a bounded domain are available in the mathematics literature
[1, 2, 5, 6, 7, 11, 12, 18, 21]. Their derivation relies on Bukhgeim-Klibanov’s method
[8], which is by means of a Carleman inequality specifically designed for hyperbolic
systems. More precisely, [11, 21] study the determination of the zero-th order term
p : Ω → R appearing in ∂2

t −∆ + p = 0, while [1, 7] deal with the identification of
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the speed c : Ω → R in the hyperbolic equation ∂2
t − cA = 0 where A = A(x,Dx)

is a second order differential operator. The case of a principal matrix term in the
divergence form, arising from anisotropic media, was treated by Bellassoued, Jellali
and Yamamoto in [5], using the full data (i.e. the measurements are performed
on the whole boundary). Using the FBI transform Bellassoued and Yamamoto
claimed logarithmic stability in [6] from arbitrarily small boundary observations.
Imanuvilov and Yamamoto derived Hölder stability results in [12] by means of H−1

Carleman inequality, from data observation on subdomains fulfilling specific geo-
metric assumptions. In [18] Klibanov and Yamamoto employed a different approach
inspired by [17] and proved Lipschitz stability with the help of L2 Carleman inequal-
ities.
Similarly, numerous authors have used the Dirichlet-to-Neumann operator to claim
stability in the determination of unknown coefficients of a hyperbolic equation. We
refer to [4, 13, 20] for a non-exhaustive list of such references.
In all the above mentioned papers, the domain was bounded. Recently, the Bukhgeim-
Klibanov method was adapted to the framework of infinite quantum cylindrical do-
mains in [9, 15, 16]. Nevertheless, in all of these three articles the observation is
taken on the infinitely extended lateral boundary of the waveguide. The approach
developed in this paper is completely different in the sense that we aim to retrieve
the non-compactly supported conductivity c on any arbitrary bounded subpart Ω`
from one data (measured over the time span (0, T )) taken on a compact subset
of the lateral boundary. This is made possible upon designing a suitable Carle-
man estimate for hyperbolic systems in finitely extended cylindrical domains ΩL,
L > 0. The key idea here is to distinguish between the transverse and longitudinal
variables by imposing super exponential decay to the corresponding weight func-
tion with respect to the longitudinal direction, while it is expressed in the classical
way with respect to the transversal variables. To our knowledge, this strategy and
the corresponding stability estimate derived in this paper, are not available in the
mathematical literature of inverse non-compactly supported coefficient problems.

The paper is organized as follows. Section 2 is devoted to the analysis of the
direct problem associated with the hyperbolic system under study. In Section 3
we prove a global Carleman estimate specifically designed for hyperbolic systems
in the cylindrical domain Ω. Finally Section 4 contains the analysis of the inverse
problem and the proof of the main result.

1.2. Settings.

1.2.1. Notations. Throughout this text we write x = (x′, xn) ∈ Ω for every x′ :=

(x1, . . . , xn−1) ∈ ω and xn ∈ R. Further, we denote by |y| :=
(∑m

i=1 y
2
j

)1/2
the

Euclidian norm of y = (y1, . . . , ym) ∈ Rm, m ∈ N∗, and we write

Sn−1 :=
{
x′ = (x1, . . . , xn−1) ∈ Rn−1, |x′| = 1

}
.

For the sake of shortness we write ∂j for ∂/∂xj , j ∈ N∗n+1 := {m ∈ N∗, m ≤
n + 1}. For convenience the time variable t is sometimes denoted by xn+1 so
that ∂t = ∂/∂t = ∂n+1. We set ∇ := (∂1, . . . , ∂n)T , ∇x′ := (∂1, . . . , ∂n−1)T and
∇x,t = (∂1, . . . , ∂n, ∂t)

T .
For any open subset D of Rm, m ∈ N∗, we note Hp(D) the p-th order Sobolev

space on D for every p ∈ N, where H0(D) stands for L2(D). We write ‖ · ‖p,D for
the usual norm in Hp(D) and we note H1

0 (D) the closure of C∞0 (D) in the topology
of H1(D).
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Finally, we set Γ := ∂ω × (−∞,∞) and for d > 0 we put Ωd := ω × (−d, d),
Qd := Ωd × (0, T ), Γd := ∂ω × (−d, d) and Σd := ∂ω × (−d, d)× (0, T ).

1.2.2. Statement of the problem. We examine the following initial boundary value
problem (IBVP in short) ∂2

t u−∇ · c(x)∇u = 0 in Q := Ω× (0, T ),
u(·, 0) = θ0, ∂tu(·, 0) = θ1 in Ω,
u = 0 on Σ := Γ× (0, T ),

(1.1)

with initial data (θ0, θ1), where c is the unknown bounded conductivity coefficient
we aim to retrieve. Given ` > 0, we examine the stability issue in the inverse
problem of determining c in Ω` from the observation of the normal derivative of
the solution to (1.1) on ΓL, for some L > `. This is by means of the Bukhgeim-
Klibanov method imposing that the solution u to (1.1) be sufficiently smooth and
appropriately bounded.

Throughout the entire text we shall suppose that c fulfills the ellipticity condition

c ≥ cm in Ω, (1.2)

for some positive constant cm. Notice that we may assume, and this will be system-
atically the case in the sequel, without restricting the generality of the foregoing,
that cm ∈ (0, 1).

Let us now say a few words on the solution to (1.1). In order to exhibit suffi-
cient conditions on the initial data (θ0, θ1) (together with the cross section ω and
the conductivity c) ensuring that the solution to (1.1) is within an appropriate
functional class we shall make precise further, we need to introduce the self-adjoint
operator A = Ac := −∇·c(x)∇, associated with c, generated in L2(Ω) by the closed
sesquilinear form

qA[u] := ‖c1/2∇u‖20,Ω =

∫
Ω

c(x)|∇u(x)|2dx, u ∈ D(qA) := H1
0 (Ω).

Evidently, the operator A acts on its domain D(A) := H1
0 (Ω)∩H2(Ω) as −∇·c(x)∇.

Since A is positive in L2(Ω), by (1.2), the operator A1/2 is well defined from the
spectral theorem, and

D(A1/2) = D(qA) = H1
0 (Ω).

For the sake of definiteness, we set A0 := I and D(A0) := L2(Ω), where I denotes
the identity operator in L2(Ω), and for each m ∈ N∗ we put

Am/2v := A(m−1)/2(A1/2v),

for v ∈ D(Am/2) := {v ∈ D(A(m−1)/2), A1/2v ∈ D(A(m−1)/2)}.
It turns out that the linear space D(Am/2) endowed with the scalar product

〈v, w〉D(Am/2) :=

m∑
j=0

〈Aj/2v,Aj/2w〉0,Ω,

is Hilbertian, and it is established in Proposition 2.3 that

D(Am) = {v ∈ H2m(Ω); v,Av, . . . , Ap−1v ∈ H1
0 (Ω)}, m ∈ {p− 1/2, p}, p ∈ N∗,

(1.3)
provided ∂ω is C2m and c ∈ W 2m−1,∞(Ω). As a matter of fact we know from
Corollary 2.4 for any natural number m, that the system (1.1) admits a unique
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solution

u ∈
m+1⋂
k=0

Ck([0, T ];Hm+1−k(Ω)), (1.4)

provided the boundary ∂ω is Cm+1, the conductivity c ∈Wm,∞(Ω;R) fulfills (1.2)
and (θ0, θ1) ∈ D(A(m+1)/2) × D(Am/2). Moreover, if ‖c‖Wm,∞(Ω) ≤ cM for some
constant cM > 0, then the solution u to (1.1) satisfies the estimate

m+1∑
k=0

‖u‖Ck([0,T ];Hm+1−k(Ω)) ≤ C (‖θ0‖m+1,Ω + ‖θ1‖m,Ω) , (1.5)

where C > 0 depends only on T , ω and cM .

1.2.3. Admissible conductivity coefficients and initial data. In order to solve the
inverse problem associated with (1.1) we seek solutions belonging to the space
∩4
k=3C

k([0, T ];H5−k(Ω)). Hence we chose m = 4 in (1.4) and impose that c be
in W 4,∞(Ω;R) and satisfy (1.2). In what follows we note cM a positive constant
fulfilling

‖c‖W 4,∞(Ω) ≤ cM . (1.6)

Since our strategy is based on a Carleman estimate for the hyperbolic system (1.1),
it is also required that the purely technical condition

a′ · ∇x′c ≥ a0 in Ω, (1.7)

hold for some a′ = (a1, . . . , an−1) ∈ Sn−1 and a0 > 0. Hence, given ω# an open
subset in Rn−1 such that ∂ω ⊂ ω#, we put O∗ = ω# ×R, and for c∗ ∈W 4,∞(O∗ ∩
Ω;R) satisfying

c∗ ≥ cm and a′ · ∇x′c∗ ≥ a0 in O∗ ∩ Ω, (1.8)

we introduce the set ΛO∗ = ΛO∗(a
′, a0, c∗, cm, cM ) of admissible conductivity coef-

ficients as

ΛO∗ := {c ∈W 4,∞(Ω;R) obeying (1.2) and (1.6)− (1.7); c = c∗ in O∗ ∩Ω}. (1.9)

Notice that the above choice of m = 4 dictates that (θ0, θ1) be taken in D(A5/2)×
D(A2), i.e. that θ0 ∈ H1

0 (Ω)∩H5(Ω) be such that Aθ0 ∈ H1
0 (Ω) and A2θ0 ∈ H1

0 (Ω),
and that θ1 ∈ H1

0 (Ω) ∩H4(Ω) satisfy Aθ1 ∈ H1
0 (Ω), according to (1.3).

Furthermore, it is required by the analysis of the inverse problem carried out in this
article that θ0 be in W 3,∞(Ω) and satisfy

− (a′ · ∇x′θ0)(x) ≥ η0e
−(1+x2

n), x = (x′, xn) ∈ ω∗ × R, (1.10)

for some η0 > 0 and some open subset ω∗ in Rn−1, with C2 boundary, satisfying

ω \ (ω# ∩ ω) ⊂ ω∗ and ω∗ ⊂ ω. (1.11)

Notice that condition (1.10) is imposed on the open subset ω∗ of the cross section
and not on ω itself, since it is required that θ0 fulfill homogeneous Dirichlet boundary
conditions on Γ = ∂ω × R.

Next, for M0 > 0 such that

‖θ0‖W 3,∞(Ω) +
∑
j=0,1

‖θj‖5−j,Ω ≤M0, (1.12)

we define the set Θω∗ = Θω∗(a
′,M0, η0) of admissible initial conditions (θ0, θ1) as

Θω∗ :=
{

(θ0, θ1) ∈
(

D(A5/2) ∩W 3,∞(Ω)
)
×D(A2), fulfilling (1.10) and (1.12)

}
.

(1.13)
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Having introduced all these notations we may now state the main result of this
paper.

1.2.4. Main result. The following result claims Hölder stability in the inverse prob-
lem of determining c in Ω`, where ` > 0 is arbitrary, from the knowledge of one
boundary measurement of the solution to (1.1), performed on ΣL for L > ` suffi-
ciently large. The corresponding observation is viewed as a vector of the Hilbert
space

H (ΣL) := H3(0, T ;L2(ΓL)),

endowed with the norm ‖v‖2H (ΣL) := ‖v‖2H3(0,T ;L2(ΓL)), v ∈H (ΣL).

Theorem 1.1. Assume that ∂ω is C5 and let O∗ be a neighborhood of Γ in Rn−1.
For a′ = (a1, . . . , an−1) ∈ Sn−1, a0 > 0, cm ∈ (0, 1), cM > cm and c∗ ∈W 4,∞(O∗ ∩
Ω;R) fulfilling (1.8), pick cj, j = 1, 2, in ΛO∗(a

′, a0, c∗, cm, cM ), defined by (1.9).
Further, given M0 > 0, η0 > 0, and an open subset ω∗ ⊂ Rn−1 obeying (1.11), let
(θ0, 0) be a set of initial data in Θω∗(a

′,M0, η0), defined in (1.13).
Then, for any ` > 0, there exists L > ` and T > 0, such that the solution

uj ∈
⋂5
k=0 C

k([0, T ], H5−k(Ω)), j = 1, 2, to (1.1) associated with (θ0, 0), where cj
is substituted for c, satisfies

‖c1 − c2‖H1(Ω`)
≤ C

∥∥∥∥∂u1

∂ν
− ∂u2

∂ν

∥∥∥∥κ
H (ΣL)

.

Here ν(x) is the unit outward normal vector to Γ computed at x, and C > 0 and
κ ∈ (0, 1) are two constants depending only on ω, `, M0, η0, a′, a0, c?, cm and cM .

We stress out that the measurement of the observation data is performed on ΓL
and not on the whole boundary ∂ΩL.

1.2.5. Comments. It is worth mentioning that there exists actual initial conditions
θ0 satisfying the conditions of Theorem 1.1. As a matter of fact, for any function
f ∈ H5(ω) fulfilling the condition

−a′ · ∇x′f ≥ η0 in ω∗,

it is apparent that θ0(x) := f(x′)(1 + x2
n)−1 is lying in Θω∗ .

Moreover, we notice that the condition (1.10) imposed on θ0 is weakening the
classical non-degeneracy condition −a′ · ∇x′θ0 ≥ η0 that is usually associated with
a bounded domain. The occurrence in the right hand side of (1.10) of the (super-

exponentially) decreasing multiplicative term e−(1+x2
n) with respect to the infinite

variable xn, is justified by the fact that there is no such thing as a square integrable
function fulfilling the above mentioned classical condition in ω×R. Further, we point
out that (1.10) is reminiscent of the condition [16, Eq. (1.9)] imposed on the initial
state by the Bukhgeim-Klibanov analysis of the inverse problem of determining the
electric potential of the Schrödinger equation in an infinite cylindrical domain.

The choice θ1 = 0 in Theorem 1.1 is required by the technique used to derive the
Hölder stability estimate. Indeed, the method is by means of a global hyperbolic
Carleman estimate in H2(Ω × (−T, T )), imposing that each function uj , j = 1, 2,
extended to Ω× (−T, T ) by setting uj(x, t) := uj(x,−t) for all (x, t) ∈ Ω× (−T, 0),
be continuously differentiable at t = 0.

Notice that for simplicity, we impose that the time variable t and the longitudinal
variable xn play symmetric roles in the explicit expression (3.3) of the weight func-
tion appearing in the above mentioned hyperbolic Carleman estimate. Therefore,
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we shall always assume that L = T in the remaining part of this text. Nevertheless,
this does not restrict the generality of the result, as the general case L 6= T reduces
to this special one, with a slight modification of the weight function.

2. Analysis of the direct problem. In this section we establish existence and
uniqueness results as well as regularity properties, for the solution to hyperbolic
(1.1)-like IBVP systems.
We emphasize the fact these regularity results obtained for hyperbolic equations in
unbounded cylindrical domains cannot be derived directly from the corresponding
results existing for hyperbolic equations in bounded domains (see e. g. [10, Sect.
7.2, Theorem 6]).

2.1. Existence and uniqueness result. With reference to (1.1) we consider the
boundary value problem{

∂2
t v +Av = f in Q
v(·, 0) = g, ∂tv(·, 0) = h in Ω,

(2.1)

where f , g and h are suitable data, and we state the following existence, uniqueness
and regularity result, whose proof is postponed to Appendix A and B.

Theorem 2.1. Let m be a nonnegative integer. We assume that g ∈ D(A(m+1)/2),
h ∈ D(Am/2), and

∂kt f ∈ C0([0, T ]; D(A(m−k)/2)), k = 0, . . . ,m.

Then there exists a unique solution v to (2.1), such that

∂kt v ∈ C0([0, T ]; D(A(m+1−k)/2)), k = 0, 1, . . . ,m+ 1. (2.2)

Moreover we have the estimate
m+1∑
k=0

sup
t∈[0,T ]

‖∂kt v(·, t)‖D(A(m+1−k)/2)

≤ C

(
m∑
k=0

‖∂kt f‖C0([0,T ];D(A(m−k)/2)) + ‖g‖D(A(m+1)/2) + ‖h‖D(Am/2)

)
. (2.3)

Remark 2.2. The result of Theorem 2.1 is similar to the one of [10, Sect. 7.2,
Theorem 6], which holds for a bounded domain. This can be seen from the char-
acterization of the D(Ak/2) for k = 0, . . . ,m, displayed in Subsection 2.2. Namely,
it is worth noticing that the mth-order compatibility conditions [10, Sect. 7.2, Eq.
(62)] imposed on f , g and h, are actually hidden in the operatorial formulation of
Theorem 2.1. This will be made explicit below.

2.2. Characterizing the domain of Am/2 for m ∈ N∗.

Proposition 2.3. Let m ∈ N∗ and let k be either m− 1/2 or m. Assume that ∂ω
is C2k and that c ∈W 2k−1,∞(Ω) fullfills (1.2). Then we have

D(Ak) = {u ∈ H2k(Ω), u, Au, . . . , Am−1u ∈ H1
0 (Ω)}.

Moreover, the norm associated with D(Ak) is equivalent to the usual one in H2k(Ω):
There exists C(k) > 1, depending only on k, ω, the constant cm defined in (1.2)
and ‖c‖W 2k−1,∞(Ω), such that we have

C(k)−1‖u‖D(Ak) ≤ ‖u‖2k,Ω ≤ C(k)‖u‖D(Ak), u ∈ D(Ak).
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In view of Theorem 2.1 and Proposition 2.3 we obtain the following result.

Corollary 2.4. Let m be a natural number. Assume that ∂ω is Cm+1, that c ∈
Wm,∞(Ω) fulfills (1.2) and that (θ0, θ1) ∈ D(A(m+1)/2)×D(Am/2). Then the initial
boundary value problem (1.1) admits a unique solution

u ∈
m+1⋂
k=0

Ck([0, T ];Hm+1−k(Ω)).

Moreover, we have

m+1∑
k=0

‖u‖Ck([0,T ];Hm+1−k(Ω)) ≤ C (‖θ0‖m+1,Ω + ‖θ1‖m,Ω) , (2.4)

for some constant C > 0 depending only on T , ω and ‖c‖Wm,∞(Ω).

The main benefit of using the successive powers of the operator A1/2 in the
formulation of Theorem 2.1 and Corollary 2.4 lies in its simplicity. Nevertheless, to
make these statements more explicit, we introduce for any u ∈ H1

0 (Ω) the sequence
(un)n∈N by setting

u0 := u and un := −∇ · c∇un−1 for n ∈ N∗,

and, given m ∈ N∗, we say that u satisfies the mth-order compatibility condition
(with respect to c) if

un ∈ H1
0 (Ω) for n = 0, 1, . . . ,m− 1.

Therefore, for every m ∈ N∗, we see from Proposition 2.3 that

D(Am) = {u ∈ H2m(Ω), u satisfies the mth-order compatibility condition},

and

D(Am−1/2) = {u ∈ H2m−1(Ω), u satisfies the mth-order compatibility condition}.

3. Global Carleman estimate for hyperbolic equations in cylindrical do-
mains. In this section we establish a global Carleman estimate for the system (1.1).
To this purpose we start by time-symmetrizing the solution u of (1.1). Namely, we
put

u(x, t) := u(x,−t), x ∈ Ω, t ∈ (−T, 0). (3.1)

Under the conditions of Theorem 1.1, and since θ1 = 0, it is not hard to check that

u ∈
4⋂
k=3

Ck([−T, T ];H5−k(Ω)).

With a slight abuse of notations we put Q := Ω × (−T, T ), Σ := Γ × (−T, T ) and
QL := ΩL× (−T, T ), ΣL := ∂ω× (−L,L)× (−T, T ) for any L > 0, in the remaining
part of this text.
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3.1. The case of second order hyperbolic operators. In view of establishing
a Carleman estimate for the operator

H = H (x, t, ∂) := ∂2
t −∇ · c(x)∇+R, (3.2)

where R is a first-order partial differential operator with L∞(Q) coefficients, we
define for a′ ∈ Sn−1 fulfilling condition (1.7), the following weight functions:

ψ(x, t) = ψδ(x, t) := |x′−δa′|2−x2
n−t2 and ϕ(x, t) = ϕδ,γ(x, t) := eγψ(x,t), (x, t) ∈ Q,

(3.3)
for all δ > 0 and γ > 0.

Notice that the cylindrical geometry of Ω is reflected in the expression of these
weight functions through the fact that the longitudinal variable xn plays a role
different from that of the transverse variable x′ within (3.3). We stress out that
this feature, which is a cornerstone of the analysis of the inverse coefficient problem
carried out in this text, is specific to waveguides, as the classical weight function ψ
(see e.g. [14, Eq. (3.4.1)]) used by hyperbolic Carleman estimates in a domain of
general shape in Rn, is quite different from the one given by (3.3).

We turn now to establishing the following Carleman estimate for the operator
H .

Proposition 3.1. Let H be defined by (3.2), where c obeys (1.2) and (1.6)-(1.7),
and let ` be positive. Then there exist δ0 > 0 and γ0 > 0, such that for all δ ≥ δ0
and γ ≥ γ0, there exist L > `, T > 0, and s0 > 0, for which the estimate

s
∑
j=0,1

s2(1−j)‖esϕ∇jx,tv‖20,QL ≤ C

‖esϕH v‖20,QL + s
∑
j=0,1

s2(1−j)‖esϕ∇jx,tv‖20,∂QL

 ,

(3.4)
holds for any s ≥ s0 and v ∈ H2 (QL). Here C is a positive constant depending
only on ω, a′, a0, δ0, γ0, s0, cm and cM .

Moreover there exists a constant d` > 0, depending only on ω, `, δ0 and γ0, such
that the weight function ϕ defined by (3.3) satisfies

ϕ(x′, xn, 0) ≥ d`, (x′, xn) ∈ ω × [−`, `], (3.5)

and there exist ε ∈ (0, (L− `)/2) and ν0 > 0 so small that we have:

max
x∈ω×[−L,L]

ϕ(x′, xn, t) ≤ d̃` := d`e
−γν2

0 , |t| ∈ [T − 2ε, T ], (3.6)

max
(x′,t)∈ω×[−T,T ]

ϕ(x′, xn, t) ≤ d̃`, |xn| ∈ [L− 2ε, L]. (3.7)

Proof. The proof is divided in three parts. The derivation of the Carleman estimate
(3.4) essentially boils down to [14, Theorem 3.2.1’]. It consists in proving pseudo-
convexity of ψ for the second order operator H , i.e. that, first, the principal part
H2 of H fulfills (3.12), and, second, that under the conditions (3.14)-(3.15), the
function J defined by (3.13), is positive in QL ×

(
Rn+1 \ {0}

)
. This is achieved

in the second part of the proof by means of two intermediate estimates, (3.10) and
(3.11). Actually, much of the technical work of this proof is carried out in the first
part, where sufficient conditions on the parameters L and T , ensuring (3.10)-(3.11),
are exhibited. Finally, we establish the estimates (3.5)–(3.7) in the third part of the
proof.
First part: Definition of δ0, L and T . Bearing in mind that

|x′ − δa′|2 − |y′ − δa′|2 = |x′| − |y′|2 − 2δa′ · (x′ − y′), x′, y′ ∈ ω,



DETERMINING THE WAVEGUIDE CONDUCTIVITY 9

we see that supx′∈ω |x′−δa′|2− infx′∈ω |x′−δa′|2 ≤ |ω|(|ω|+4δ|a′|), for every δ > 0,
where |ω| := supx′∈ω |x′|. Hence the function

g`(δ) =

(
sup
x′∈ω
|x′ − δa′|2 − inf

x′∈ω
|x′ − δa′|2 + `2

)1/2

(3.8)

scales at most like δ1/2, proving that there exists δ0 > 0 so large that

δa0 >

((
1 +

2
√
n

cm1/2

)
g`(δ) +

√
n− 1|ω|+ 2

)
cM + 2, δ ≥ δ0. (3.9)

This technical condition links geometric parameters and conditions on the conduc-
tivity c and will be useful via (3.10) in the second part of the proof of the proposition
3.1. Further, since ω is bounded and a′ 6= 0Rn−1 by (1.7), we may as well assume

upon possibly enlarging δ0, that we have in addition c
1/2
m infx′∈ω |x′ − δa′| > g`(δ)

for all δ ≥ δ0. This and (3.9) yield that there exists ϑ > 0 so small that the two
following inequalities

δa0 −
(
L+
√
n− 1|ω|+ 2

(
1 +

√
nT

cm1/2

))
cM − 2 > 0, (3.10)

and

c1/2m inf
x′∈ω
|x′ − δa′| > T, (3.11)

hold simultaneously for every L and T in (g`(δ), g`(δ) + ϑ), uniformly in δ ≥ δ0.
Second part: Proof of (3.4). We first introduce the following notations, we shall
use in the remaining part of the proof. For notational simplicity we put x := (x, t)
for (x, t) ∈ QL and ∇x = (∂1, . . . , ∂n, ∂n+1)T . We also write ξ′ = (ξ1, . . . , ξn−1)T ∈
Rn−1, ξ = (ξ1, . . . , ξn)T ∈ Rn and ξ̃ = (ξ1, . . . , ξn, ξn+1)T ∈ Rn+1. We call H2

the principal part of the operator H , that is H2 = H2(x, ∂) := ∂2
t − c(x)∆, and

denote its symbol by H2(x, ξ̃) := c(x)|ξ|2 − ξ2
n+1, where |ξ| =

(∑n
j=1 ξ

2
j

)1/2

. Since

H2(x,∇xψ(x)) = 4
(
c(x)(|x′ − δa′|2 + x2

n)− x2
n+1

)
for every x ∈ QL, we have

H2(x,∇xψ(x)) > 0, x ∈ QL, (3.12)

by (3.11). For all x ∈ QL and ξ̃ ∈ Rn+1, put

J(x, ξ̃) = J =

n+1∑
j,k=1

∂H2

∂ξj

∂H2

∂ξk
∂j∂kψ+

n+1∑
j,k=1

((
∂k
∂H2

∂ξj

)
∂H2

∂ξk
− (∂kH2)

∂2H2

∂ξj∂ξk

)
∂jψ,

(3.13)
where, for the sake of shortness, we write ∂j , j ∈ N∗n+1, instead of ∂/∂xj , and xn+1

stands for t. Assuming that

H2(x, ξ̃) = c(x)|ξ|2 − ξ2
n+1 = 0, x ∈ Ω, ξ̃ ∈ Rn+1\{0}, (3.14)

and that

∇ξ̃H2(x, ξ̃) · ∇xψ(x) = 4 [c(x)(ξ′ · (x′ − δa′)− ξnxn) + ξn+1xn+1]

= 0, x ∈ QL, ξ̃ ∈ Rn+1\{0}, (3.15)

we shall prove that J(x, ξ̃) > 0 for any (x, ξ̃) ∈ QL ×
(
Rn+1 \ {0}

)
. To this end we

notice that the first sum in the right hand side of (3.13) reads

〈Hess(ψ)∇ξ̃H2,∇ξ̃H2〉 = 8
(
c2(|ξ′|2 − ξ2

n)− ξ2
n+1

)
,
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that the sum in
∑n+1
j,k=1

((
∂k

∂H2

∂ξj

)
∂H2

∂ξk
− (∂kH2) ∂2H2

∂ξj∂ξk

)
∂jψ can actually be taken

over (j, k) ∈ (N∗n)2 only, since
(
∂k

∂H2

∂ξj

)
∂H2

∂ξk
− (∂kH2) ∂2H2

∂ξj∂ξk
= 0 if either j or k is

equal to n+ 1, and hence that

n+1∑
j,k=1

((
∂k
∂H2

∂ξj

)
∂H2

∂ξk
− (∂kH2)

∂2H2

∂ξj∂ξk

)
∂jψ

= 2c

n∑
j,k=1

((
2ξjξk − |ξ|2

∂ξj
∂ξk

)
∂kc

)
∂jψ

= 2c
(
2(∇c · ξ)(∇ψ · ξ)− (∇c · ∇ψ)|ξ|2

)
.

Therefore we have

J = 2
[
4
(
c2(|ξ′|2 − ξ2

n)− ξ2
n+1

)
+ 2c(∇c · ξ)(∇ψ · ξ)− c(∇c · ∇ψ)|ξ|2

]
= 4

[
2c2(|ξ′|2 − ξ2

n)− (2 + (x′ − δa′) · ∇x′c− xn∂nc) ξ2
n+1 − 2xn+1ξn+1∇c · ξ

]
,

from (3.14)-(3.15). Further, in view of (3.14) we have

c2(|ξ′|2 − ξ2
n) ≥ −c2|ξ|2 ≥ −cξ2

n+1 and |∇c · ξ| ≤ |∇c||ξ| ≤ (|∇c|/c1/2)|ξn+1|,

whence

J ≥ 4

[
δa′ · ∇x′c−

(
x′ · ∇x′c− xn∂nc+ 2c+ 2T

|∇c|
c1/2

+ 2

)]
ξ2
n+1. (3.16)

Here we used the fact that xn+1 = t ∈ [0, T ]. Due to (1.6)-(1.7), the right hand
side of (3.16) is lower bounded, up to the multiplicative constant 4ξ2

n+1, by the left
hand side of (3.10). Since ξn+1 is non zero by (1.6) and (3.14), then we obtain

J(x, ξ̃) > 0 for all (x, ξ̃) ∈ QL ×
(
Rn+1 \ {0}

)
. With reference to (3.12), we may

apply [14, Theorem 3.2.1’], getting two constants s0 = s0(γ) > 0 and C > 0 such
that (3.4) holds for any s ≥ s0 and v ∈ H2(QL).
Third part: Proof of (3.5)–(3.7). First, (3.5) follows readily from (3.3), with d` :=

eγβ` and β` := infx′∈ω |x′ − δa′|2− `2. Next, for ν0 ∈ (0, ϑ) arbitrarily fixed, we put

L = T = g`(δ) + ν0. (3.17)

Notice for further reference from (3.8), (3.11) and (3.17), that we have

β` ≥
g`(δ)

2

cm
− `2 ≥

(
1− cm
cm

)
`2 > 0, (3.18)

since cm ∈ (0, 1), by assumption. Similarly, as

T 2 > g`(δ)
2 + ν2

0 = sup
x′∈ω
|x′ − δa′|2 − (β2

` − ν2
0),

we deduce from (3.3) that

ϕ(x′, xn,±T ) ≤ e
γ
(

supx′∈ω|x′−δa′|2−x2
n−T

2
)
< eγ(β`−ν2

0 )e−γx
2
n , (x′, xn) ∈ ω×[−L,L].

With reference to (3.18) we may thus choose ε ∈ (0, (L− `)/2) so small that

ϕ(x′, xn, t) ≤ d`e−γν
2
0 e−γx

2
n , (x′, xn) ∈ ω × [−L,L], |t| ∈ [T − 2ε, T ],

which entails (3.6). Finally, since t and xn play symmetric roles in (3.3), and since
T = L, we obtain (3.7) by substituting (T, t) for (L, xn) in (3.6).
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3.2. A Carleman estimate for the system (1.1). In this subsection we derive
from Proposition 3.1 a global Carleman estimate for the solution to the boundary
value problem {

∂2
t u−∇ · c(x)∇u = f in Q
u = 0 on Σ,

(3.19)

where f ∈ L2(Q). To this purpose we introduce a cut-off function χ ∈ C2(R; [0, 1]),
such that

χ(xn) :=

{
1 if |xn| < L− 2ε,
0 if |xn| ≥ L− ε,

(3.20)

where ε is the same as in Proposition 3.1, and we set

uχ(x, t) := χ(xn)u(x, t) and fχ(x, t) := χ(xn)f(x, t), (x, t) ∈ Q.

Corollary 3.2. Let f ∈ L2(Q). Then, under the conditions of Proposition 3.1,
there exist two constants s∗ > 0 and C > 0, depending only on ω, `, M0, η0, a′, a0,
cm and cM , such that the estimate

s
∑
j=0,1

s2(1−j)‖esϕ∇jx,tu‖20,QL

≤ C

‖esϕf‖20,QL + s3e2sd̃`‖u‖21,QL + s
∑
j=0,1

s2(1−j)‖esϕ∇jx,tuχ‖20,ΣL

 ,

holds for any solution u ∈ H2(Q) to (3.19), uniformly in s ≥ s∗.

Proof. Since u is solution to (3.19) we have

∂2
t uχ −∇ · c(x)∇uχ = fχ +R1u in Q,

where

R1 = R1(x, ∂) := [χ,∇ · c∇] = −(c∆χ+∇c · ∇χ+ 2c∇χ · ∇), (3.21)

is a first-order differential operator. Therefore, the function v(x, t) := η(t)uχ(x, t),
where η ∈ C2(R; [0, 1]) is such that

η(t) :=

{
1 if |t| < T − 2ε,
0 if |t| ≥ T − ε, (3.22)

satisfies ∂2
t v −∇ · c∇v = g := ηfχ + ηR1u+ η′′uχ + 2η′∂tuχ in Q.

Moreover, as v ∈ H2(QL), we may apply Proposition 3.1, getting

s
∑
j=0,1

s2(1−j)‖esϕ∇jx,tv‖20,QL ≤ C

‖esϕg‖20,QL + s
∑
j=0,1

s2(1−j)‖esϕ∇jx,tv‖20,∂QL

 .

(3.23)
Further, bearing in mind that ∂QL = ΣL ∪ (ω × {±L} × (−T, T )) ∪ (ΩL × {±T}),
we deduce from the vanishing of v(·,±L, ·) and ∇x,tv(·,±L, ·) in ω × (−T, T ), and
the one of v(·,±T ) and ∇x,tv(·,±T ) in ΩL, that

‖esϕ∇jx,tv‖0,∂QL = ‖esϕ∇jx,tv‖0,ΣL , j = 0, 1. (3.24)

Next we know from (3.7) and (3.21) that

‖esϕηR1u‖0,QL ≤ Cesd̃`‖u‖L2(−T,T ;H1(ΩL)), (3.25)

and from (3.6) that

‖esϕ(η′′uχ + 2η′∂tuχ)‖0,QL ≤ Cesd̃`‖uχ‖H1(−T,T ;L2(ΩL)). (3.26)
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Hence, putting (3.23)–(3.26) together, we find out that

s
∑
j=0,1

s2(1−j)‖esϕ∇jx,tv‖20,QL

≤ C

‖esϕf‖20,QL + s
∑
j=0,1

s2(1−j)‖esϕ∇jx,tuχ‖20,ΣL + e2sd̃`‖u‖21,QL

 .(3.27)

The next step of the proof involves noticing from (3.6) that ‖esϕ(1−η)∇jxuχ‖0,QL ≤
esd̃`‖∇jxuχ‖0,QL for j = 0, 1, hence

‖esϕ∇jxuχ‖0,QL ≤ ‖esϕ(1− η)∇jxuχ‖0,QL + ‖esϕ∇jxv‖0,QL
≤ esd̃`‖∇jxuχ‖0,QL + ‖esϕ∇jxv‖0,QL , j = 0, 1. (3.28)

Furthermore, by combining the identity ∂tuχ = (1−η)∂tuχ+η∂tuχ = (1−η)∂tuχ−
η′∂tuχ + ∂tv with (3.6), we get that

‖esϕ∂tuχ‖0,QL ≤ ‖esϕ(1− η)∂tuχ‖0,QL + ‖esϕη′uχ‖0,QL + ‖esϕ∂tv‖0,QL
≤ esd̃`

(
‖∂tuχ‖0,QL + ‖η′‖L∞(−T,T )‖uχ‖0,QL

)
+ ‖esϕ∂tv‖0,QL ,

which, together with (3.28), yields∑
j=0,1

s2(1−j)‖esϕ∇jx,tuχ‖20,QL

≤ C
∑
j=0,1

s2(1−j)
(

e2sd̃`‖∇jx,tuχ‖20,QL + ‖esϕ∇jx,tv‖20,QL
)
. (3.29)

Similarly, using (3.7), we derive from the identity ∂jt u = ∂jt uχ + (1 − χ)∂jt u for
j = 0, 1, that

‖esϕ∂jt u‖0,QL ≤ ‖esϕ∂
j
t uχ‖0,QL + esd̃`‖∂jt u‖0,QL , j = 0, 1,

and from ∇xu = ∇xuχ + (1− χ)∇xu− χ′(0, . . . , 0, u)T , that

‖esϕ∇xu‖0,QL ≤ ‖esϕ∇xuχ‖0,QL + esd̃`
(
‖∇xu‖0,QL + ‖χ′‖L∞(−L,L)‖u‖0,QL

)
.

As a consequence we have∑
j=0,1

s2(1−j)‖esϕ∇jx,tu‖20,QL ≤ C
∑
j=0,1

s2(1−j)
(

e2sd̃`‖∇jx,tu‖20,QL + ‖esϕ∇jx,tuχ‖20,QL
)
.

(3.30)
Finally we obtain the desired result by gathering (3.27) and (3.29)-(3.30).

4. Inverse problem. In this section we prove the statement of Theorem 1.1.

4.1. Linearized inverse problem and preliminary estimate. In this subsec-
tion we introduce the linearized inverse problem associated with (1.1) and relate
the first Sobolev norm of the conductivity to some suitable initial condition of this
boundary problem.

Namely, given ci ∈ ΛΓ for i = 1, 2, we note ui the solution to (1.1) where ci
is substituted for c, suitably extended to (−T, 0) in accordance with (3.1). Thus,
putting

c := c1 − c2 and fc := ∇ · (c∇u2), (4.1)
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it is clear from (1.1) that the function u := u1 − u2 is solution to the linearized
system  ∂2

t u−∇ · (c1∇u) = fc in Q
u = 0 on Σ
u(·, 0) = ∂tu(·, 0) = 0 in Ω.

(4.2)

By differentiating k-times (4.2) with respect to t, for k ∈ N∗ fixed, we see that
u(k) := ∂kt u is solution to{

∂2
t u

(k) −∇ · (c1∇u(k)) = f
(k)
c in Q

u(k) = 0 on Σ,
(4.3)

with f
(k)
c := ∂kt fc = ∇ · (c∇u(k)

2 ), where u
(k)
2 stands for ∂kt u2.

We stick with the notations of Corollary 3.2. In particular, for any function v,
we denote χv by vχ, where χ is defined in (3.20). Upon multiplying both sides of
the identity (4.3) by χ, we obtain that{

∂2
t u

(k)
χ −∇ · (c1∇u(k)

χ ) = f
(k)
cχ − gk in Q

u
(k)
χ = 0 on Σ,

(4.4)

with

fcχ := ∇ · (cχ∇u2) and gk := ∇ · (c1(∇χ)u(k)) + c1∇χ · ∇u(k) + c∇χ · ∇u(k)
2 . (4.5)

Notice that gk is supported in Ω̃ε := {x = (x′, xn), x′ ∈ ω and |xn| ∈ (L−2ε, L−ε)}.
Having said that we may now upper bound, up to suitable additive and multi-

plicative constants, the esϕ(·,0)-weighted first Sobolev norm of the conductivity cχ

in ΩL, by the corresponding norm of the initial condition u
(2)
χ (·, 0).

Lemma 4.1. Let u be the solution to the linearized problem (4.2) and let χ be
defined by (3.20). Then there exist two constants s∗ > 0 and C > 0, depending only
on ω, ε and the constant M0 defined by (1.12), such that the estimate

∑
j=0,1

‖esϕ(·,0)∇jcχ‖20,ΩL ≤ Cs
−1

∑
j=0,1

‖esϕ(·,0)∇ju(2)
χ (·, 0)‖20,ΩL + e2sd̃`

 ,

holds for all s ≥ s∗.

Proof. Let Ω∗ be an open subset of Rn with C2 boundary, such that

ω∗ × (−(L− ε), L− ε) ⊂ Ω∗ ⊂ ω∗ × (−L,L), (4.6)

where ε is defined by Proposition 3.1. We notice from (1.9) and (3.20) that ∂ji cχ ∈
H1

0 (Ω∗) for all i ∈ N∗n and j = 0, 1.
Further, with reference to (1.10) we may assume upon possibly enlarging δ ∈

[δ0,+∞), where δ0 is the same as in Proposition 3.1, that we have

|∇θ0 · (x1 − δa1, . . . , xn−1 − δan−1,−xn)| ≥ µ0 > 0, x ∈ Ω∗,

with some constant µ0 > 0. Thus applying [12, Proposition 2.2] 1 with D = Ω∗,

P (x, ∂)v = ∇ · ((∇θ0)v) and v = ∂ji cχ ∈ H1
0 (Ω∗) since χ(xn) = 0 for xn ≥ L − ε,

1Let D be a bounded open subset of Rn, n ≥ 1, with C2 boundary, and consider the first-order
operator P (x, ∂) :=

∑n
i=1 pi(x)∂i + p0(x), where p0 ∈ C0(D) and p := (p1, . . . , pn) ∈ C1(D)n.

Assume that

|p(x) · (x1 − δa1, . . . , xn−1 − δan−1,−xn)| ≥ pm, x ∈ D,
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for i ∈ N∗n and j = 0, 1, we obtain that

s‖esϕ(·,0)∂ji cχ‖
2
0,Ω∗ ≤ C‖e

sϕ(·,0)∇ · ((∂ji cχ)∇θ0)‖20,Ω∗ , i ∈ N∗n. j = 0, 1. (4.7)

Since cχ(x′, xn) = 0 a.e. in ω∗ × ((−L,−(L− ε)) ∪ (L− ε, L)) by (3.20), we have

‖esϕ(·,0)∂ji cχ‖0,Ω∗ = ‖esϕ(·,0)∂ji cχ‖0,ΩL for each i ∈ N∗n and j = 0, 1, from (4.6). We
derive from this and (4.7) that

s‖esϕ(·,0)∂ji cχ‖
2
0,ΩL ≤ C‖e

sϕ(·,0)∇ · ((∂ji cχ)∇θ0)‖20,ΩL , i ∈ N∗n, j = 0, 1. (4.8)

Further, taking t = 0 in the first line of (4.4) with k = 0, we get that

∇ · (cχ∇θ0) = u(2)
χ (·, 0) + c∇χ · ∇θ0. (4.9)

From this, (3.7) and (4.8) it then follows that

s‖esϕ(·,0)cχ‖20,ΩL ≤ C
(
‖esϕ(·,0)u(2)

χ (·, 0)‖20,ΩL + ‖esϕ(·,0)c∇χ · ∇θ0‖20,ΩL
)

≤ C
(
‖esϕ(·,0)u(2)

χ (·, 0)‖20,ΩL + e2sd̃`
)
. (4.10)

Similarly, since ∇ · ((∂icχ)∇θ0) = ∂i∇ · (cχθ0)−∇ · (cχ∇∂iθ0) for every i ∈ N∗n, we
derive from (4.9) that

∇ · ((∂icχ)∇θ0) = ∂iu
(2)
χ (·, 0) + ∂i(c∇θ0 · ∇χ)−∇cχ · ∇∂iθ0 − cχ∆∂iθ0.

As a consequence we have,

‖esϕ(·,0)∇ · ((∂icχ)∇θ0)‖20,ΩL

≤ C

‖esϕ(·,0)∂iu
(2)
χ (·, 0)‖20,Ωl +

∑
j=0,1

‖esϕ(·,0)∇jcχ‖20,Ωl + e2sd̃`

 , i ∈ N∗n,

according to (3.7). Summing up the above estimate over i in N∗n, it follows from
(4.8) that

s‖esϕ(·,0)∇cχ‖20,ΩL ≤ C

‖esϕ(·,0)∇u(2)
χ (·, 0)‖20,ΩL +

∑
j=0,1

‖esϕ(·,0)∇jcχ‖20,ΩL + e2sd̃`

 .

This and (4.10) yield the desired result.

4.2. Completion of the proof. The proof is divided into three steps.

Step 1. The first step of the proof is to bound u
(2)
χ (·, 0) from above in the esϕ(·,0)-

weighted H1(ΩL)-norm topology, by the corresponding norms of u
(2)
χ and u

(3)
χ in

QL, with the aid of the following technical result, borrowed from [3, Lemma 3.2].
Nevertheless, for the sake of completeness and for the convenience of the reader, we
shall give the proof.

Lemma 4.2. There exists a constant s∗ > 0 depending only on T such that we
have

‖z(·, 0)‖20,ΩL ≤ 2
(
s‖z‖20,QL + s−1‖∂tz‖20,QL

)
,

for all s ≥ s∗ and z ∈ H1(−T, T ;L2(ΩL)).

for some pm > 0. Then for any pM ≥ max{‖p0‖C0(D), ‖pi‖C1(D), i ∈ N∗
n}, there exist s∗ > 0

and C > 0, depending only on pM , such that the estimate

‖esϕ(·,0)v‖20,D ≤ Cs
−1‖esϕ(·,0)Pv‖20,D,

holds for all s ≥ s∗ and v ∈ H1
0 (D).
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Proof. Let η be defined by (3.22) for some fixed ε ∈ (0, T/2). Since

‖z(·, 0)‖20,ΩL =

∫ 0

−T

d

dt
‖η(t)z(·, t)‖20,ΩLdt

= 2

∫ 0

−T
η(t)2<

(∫
ΩL

z∂tz(t, x)dx

)
+ 2

∫ 0

−T
ηη′(t)‖z(·, t)‖20,ΩLdt,

we infer from Young’s inequality that

‖z(·, 0)‖20,ΩL ≤ (s+ 2‖η′‖L∞(R))‖z‖20,QL + s−1‖∂tz‖20,QL , s > 0,

The result follows from this upon taking s∗ = ‖η′‖L∞(R)/2.

The proof, based on integration by parts and Young’s inequality, can be found
in [3, Lemma 3.2].

Namely, we apply Lemma 4.2 with z = esϕ∂ji u
(2)
χ for i ∈ N∗n and j = 0, 1, getting

‖esϕ(·,0)∂ji u
(2)
χ (·, 0)‖20,ΩL ≤ C

(
s‖esϕ∂ji u

(2)
χ ‖20,QL + s−1‖esϕ∂ji u

(3)
χ ‖20,QL

)
, s ≥ s∗.

Summing up the above estimate over i ∈ N∗n and j = 0, 1, we obtain for all s ≥ s∗
that∑
j=0,1

‖esϕ(·,0)∇ju(2)
χ (·, 0)‖20,ΩL ≤ C

∑
j=0,1

(
s‖esϕ∇ju(2)

χ ‖20,QL + s−1‖esϕ∇ju(3)
χ ‖20,QL

)
.

(4.11)
Step 2. The next step involves majorizing the right hand side of (4.11) with

hk(s) :=
∑
j=0,1

s2(1−j)‖esϕ∇jx,tu(k)
χ ‖20,ΣL , k = 2, 3. (4.12)

Indeed, since u
(k)
χ , for k = 2, 3, is solution to (3.19) with c = c1 and f = f

(k)
cχ − gk,

according to (4.4), then Corollary 3.2 yields

s
∑
j=0,1

s2(1−j)‖esϕ∇jx,tu(k)
χ ‖20,QL

≤ C
(
‖esϕf (k)

cχ ‖
2
0,QL + ‖esϕgk‖20,Q̃ε + s3e2sd̃`‖u(k)

χ ‖21,QL + shk(s)
)
,

for s large enough. In light of (4.11) this entails that∑
j=0,1

‖esϕ(·,0)∇ju(2)
χ (·, 0)‖20,ΩL

≤ C
∑
k=2,3

(
‖esϕf (k)

cχ ‖
2
0,QL + ‖esϕgk‖20,Q̃ε + s3e2sd̃`‖u(k)

χ ‖21,QL + shk(s)
)
.(4.13)

Further, recalling (4.5), we see from (1.5) and (1.12) (resp., from (1.5)-(1.6), (1.12)
and (3.7)) that the first (resp., second) term of the sum in the right hand side of
(4.13) is upper bounded up to some multiplicative constant, by

∑
j=0,1 ‖esϕ∇jcχ‖20,QL

(resp., e2sd̃`(‖u(k)‖21,QL+1)). From this and Lemma 4.1 then follows for s sufficiently
large that

C s
∑
j=0,1

‖esϕ(·,0)∇jcχ‖20,ΩL

≤
∑
j=0,1

‖esϕ∇jcχ‖20,QL + e2sd̃` +
∑
k=2,3

(
s3e2sd̃`‖u(k)‖21,QL + shk(s)

)
.(4.14)
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Step 3. Finally, we notice from (3.3) that

‖esϕ∇jcχ‖0,QL = ‖ρ1/2
s esϕ(·,0)∇jcχ‖0,ΩL , j = 0, 1, (4.15)

where ρs(x) :=
∫ T
−T e2s(ϕ(x,t)−ϕ(x,0))dt =

∫ T
−T e−2sϕ(x,0)(1−exp(−γt2))dt for all x ∈

ΩL. Bearing in mind that ϕ(x, 0) ≥ κ̃ := eγ(infx′∈ω|x′−δa′|2−L2) > 0 for all x ∈ ΩL,
we get that

‖ρs‖L∞(ΩL) ≤
∫ T

−T
e−2sκ̃(1−exp(−γt2))dt, s > 0.

Therefore we have lims→+∞ ρs = 0, uniformly in ΩL, by the dominated convergence
theorem, so we derive from (4.14)-(4.15) that

s
∑
j=0,1

‖esϕ(·,0)∇jcχ‖20,ΩL ≤ C

e2sd̃` +
∑
k=2,3

(
s3e2sd̃`‖u(k)‖21,QL + shk(s)

) ,

(4.16)
upon taking s sufficiently large. With reference to (3.5)–(3.7), this entails that∑

j=0,1

‖∇jcχ‖20,Ω` ≤ C
∑
k=2,3

(
s2e−2s(d`−d̃`) + hk(s)

)
. (4.17)

Here we used (1.5)-(1.12) and the embedding Ω` ⊆ ΩL in order to substitute Ω`
for ΩL in the left hand side of (4.16). Now, taking into account that d̃` < d` and
noting the second equality in (4.4) and (4.12), we end up getting the desired result
from (4.17).

Appendix A. . In this appendix we prove Theorem 2.1. To this end, we refer to
the IBVP (2.1) and start by recalling from 2[19, Sect. 3, Theorem 8.2] the following
existence and uniqueness result.

Proposition A.1. Assume that f ∈ C0([0, T ]; D(A0)), g ∈ D(A1/2) and h ∈
D(A0). Then there exists a unique solution v to (2.1) such that

∂kt v ∈ C0([0, T ]; D(A(1−k)/2)), k = 0, 1. (A.1)

Moreover we have the estimate

1∑
k=0

sup
t∈[0,T ]

‖∂kt v(·, t)‖D(A(1−k)/2) ≤ C
(
‖f‖C0([0,T ];D(A0)) + ‖g‖D(A1/2) + ‖h‖D(A0)

)
.

(A.2)

A.1. Improved regularity.

Proposition A.2. Assume that f ∈ C1([0, T ]; D(A0)), g ∈ D(A) and h ∈ D(A1/2).
Then the solution v to (2.1) satisfies

∂kt v ∈ C0([0, T ]; D(A(2−k)/2)), k = 0, 1, 2, (A.3)

2Upon taking H := D(A0) = L2(Ω), V := D(A1/2) = H1
0 (Ω) and a(t;u, v) :=

∫
Ω c(x)∇u(x) ·

∇v(x)dx for u, v ∈ V and all t ∈ [0, T ], in the definitions (8.2)-(8.3). Evidently, since the system

under study is autonomous here, the sesquilinear form a is time-independent, and hence continu-
ously differentiable with respect to t.
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and we have the estimate

2∑
k=0

sup
t∈[0,T ]

‖∂kt v(·, t)‖D(A(2−k)/2) ≤ C
(
‖f‖C1([0,T ];D(A0)) + ‖g‖D(A) + ‖h‖D(A1/2)

)
.

(A.4)

Proof. By differentiating (2.1) with respect to t, we check that w := ∂tv obeys{
∂2
tw +Aw = ∂tf in Q
w(·, 0) = h, ∂tw(·, 0) = f(·, 0)−Ag in Ω.

(A.5)

Since f(·, 0)−Ag is lying in D(A0) then we have ∂k+1
t v = ∂kt w ∈ C0([0, T ]; D(A(1−k)/2))

for k = 0, 1, with the estimate

1∑
k=0

sup
t∈[0,T ]

‖∂k+1
t v(·, t)‖D(A(1−k)/2)

≤ C
(
‖∂tf‖C0([0,T ];D(A0)) + ‖h‖D(A1/2) + ‖f(·, 0)−Ag‖D(A0)

)
≤ C

(
‖f‖C1([0,T ];D(A0)) + ‖g‖D(A) + ‖h‖D(A1/2)

)
(A.6)

by Proposition A.1. Further, as Av = f − ∂2
t v from the first line in (2.1), we get

that v ∈ C0([0, T ]; D(A)), and that ‖v(·, t)‖D(A) is majorized by the right hand side
of (A.6), uniformly in t ∈ [0, T ]. This and (A.6) yield the desired result.

Armed with Proposition A.2 we may now prove the statement of Theorem 2.1,
claiming higher regularity for the solution to (2.1).

A.2. Higher regularity: Proof of Theorem 2.1. The proof is by an induction
on m ∈ N.
a) The case m = 0 follows from Proposition A.1.
b) We assume that the theorem is valid for some m ∈ N and suppose that{

g ∈ D(A(m+2)/2), h ∈ D(A(m+1)/2),
∂kt f ∈ C0([0, T ]; D(A(m+1−k)/2)), k = 0, . . . ,m+ 1.

(A.7)

We use the same strategy as in the proof of Proposition A.2. That is we differentiate
(2.1) with respect to t and get that w := ∂tv is solution to (A.5). Next, using that
h ∈ D(A(m+1)/2), f(0)−Ag ∈ D(Am/2) and

∂kt (∂tf) = ∂k+1
t f ∈ C0([0, T ]; D(A(m−k)/2)), k = 0, . . . ,m,

from (A.7), we get that ∂k+1
t v = ∂kt w ∈ C0([0, T ]; D(A(m+1−k)/2)) for k = 0, 1, . . . ,m+

1, and the estimate:

m+1∑
k=0

sup
t∈[0,T ]

‖∂k+1
t v(·, t)‖D(A(m+1−k)/2)

≤ C

(
m∑
k=0

‖∂k+1
t f‖C0([0,T ];D(A(m−k)/2)) + ‖h‖D(A(m+1)/2) + ‖f(0)−Ag‖D(Am/2)

)
.
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This entails ∂kt v ∈ C0([0, T ]; D(A(m+2−k)/2)) for k = 1, . . . ,m+ 2, and

C

m+2∑
k=1

sup
t∈[0,T ]

‖∂kt v(·, t)‖D(A(m+2−k)/2)

≤
m+1∑
k=0

‖∂kt f‖C0([0,T ];D(A(m+1−k)/2)) + ‖h‖D(A(m+1)/2) + ‖g‖D(A(m+2)/2).(A.8)

Further, as Av = f − ∂2
t v from the first line in (2.1), we find out that

C‖v(·, t)‖D(A(m+2)/2) ≤ ‖Av(·, t)‖D(Am/2) + ‖v‖D(A0)

≤ ‖f(·, t)‖D(Am/2) + ‖∂2
t v(·, t)‖D(Am/2) + ‖v‖D(A0).(A.9)

Here we used the identity

‖v(·, t)‖2D(A(m+2)/2) = ‖Av(·, t)‖2D(Am/2) +

1∑
k=0

‖Ak/2v(·, t)‖2D(A0),

and the estimate ‖A1/2v(·, t)‖D(A0) ≤
∑1
k=0 ‖Akv(·, t)‖D(A0). Since ‖v‖D(A0) and

‖∂2
t v(·, t)‖D(Am/2) are majorized by the right hand side of (A.8), uniformly in t ∈

[0, T ], (A.8)-(A.9) yield the assertion of the theorem for m+ 1.
This terminates the proof of Theorem 2.1.

Appendix B. . In this second appendix we prove Proposition 2.3 with the help of
the following elliptic boundary regularity result.

B.1. Elliptic boundary regularity. In this subsection we extend the classical
elliptic boundary regularity result for the operator ∇ · c∇ , which is well known in
any sufficiently smooth bounded subdomain of Rn (see e.g. [10, Sect. 6.3, Theorem
5]), to the case of the infinite waveguide Ω under study. The proof of this result
boils down to [16, Lemma 2.4] which claims elliptic boundary regularity for the
Dirichlet Laplacian in Ω.

Lemma B.1. Let r be a nonnegative integer. We assume that ∂ω is Cr+2 and
that c ∈ W r+1,∞(Ω) obeys (1.2). Then, for any ϕ ∈ Hr(Ω), there exists a unique
solution v ∈ Hr+2(Ω) to the boundary problem{

−∇ · c(x)∇v = ϕ in Ω
v = 0 on ∂Ω.

(B.1)

Moreover we have the estimate

‖v‖r+2,Ω ≤ Cr‖ϕ‖r,Ω, (B.2)

where Cr is a positive constant depending only on r, ω, the constant cm appearing
in (1.2) and ‖c‖W r+1,∞(Ω).

Proof. The proof is by induction on r.
a) We first consider the case r = 0. Due to (1.2) there is a unique solution v ∈ H1

0 (Ω)
to (B.1) by the Lax-Milgram theorem. Moreover v satisfies the energy estimate

‖v‖1,Ω ≤ C‖ϕ‖0,Ω, (B.3)
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where the constant C > 0 depends only on ω and cm. Here we used (1.2) and the
Poincaré inequality, which holds true in Ω since ω is bounded. Furthermore, v is
solution to the boundary value problem{

−∆v = f in Ω
v = 0 on ∂Ω,

(B.4)

where

f := c−1 (ϕ+∇c · ∇v) . (B.5)

Since f ∈ L2(Ω) then v ∈ H2(Ω) by [16, Lemma 2.4], and ‖v‖2,Ω is upper bounded,
up to some multiplicative constant depending only on ω, by ‖f‖0,Ω. As a conse-
quence we have

‖v‖2,Ω ≤ C ′ (‖ϕ‖0,Ω + ‖v‖1,Ω) ,

from (B.5), the constant C ′ > 0 depending only on ω, cm and ‖c‖W 1,∞(Ω). This
and (B.3) yield (B.2) with r = 0.
b) Suppose that the statement of the lemma is true for r ∈ N fixed, and assume
that ∂ω is Cr+3, c ∈ W r+2,∞(Ω) and ϕ ∈ Hr+1(Ω). Hence the solution v to (B.4)
belongs to Hr+2(Ω) and satisfies the estimate (B.2), by induction assumption, and
we have f ∈ Hr+1(Ω) in virtue of (B.5). Further, v being solution to (B.4) where
the boundary ∂ω is Cr+3 then v ∈ Hr+3(Ω) by [16, Lemma 2.4]. Moreover ‖v‖r+3,Ω

is upper bounded (up to some multiplicative constant depending only on r and ω)
by ‖f‖r+1,Ω. From this and (B.5) then follows that

‖v‖r+3,Ω ≤ C ′′ (‖ϕ‖r+1,Ω + ‖v‖r+2,Ω) ,

where the constant C ′′ > 0 depends only on r, ω, cm and ‖c‖W r+2,∞(Ω). Putting
this together with (B.2), we obtain (B.2) where r is replaced by r+ 1, proving that
the statement of the lemma remains valid upon substituting r + 1 for r.

B.2. Proof of Proposition 2.3. It suffices to show that

D(Ak) ⊂ {u ∈ H2k(Ω), u, Au, . . . , Am−1u ∈ H1
0 (Ω)}, (B.6)

and

‖u‖2k,Ω ≤ c(k)‖u‖D(Ak), u ∈ D(Ak). (B.7)

The proof is by induction on m.
a) We start with m = 1 and notice from the very definition of A1/2 that D(A1/2) =
D(qA) = H1

0 (Ω). Moreover we have

‖A1/2u‖20,Ω = qA[u] ≥ cm‖∇u‖20,Ω, u ∈ D(A1/2),

in virtue of (1.2). Bearing in mind that cm ∈ (0, 1), we obtain that ‖u‖1,Ω ≤
c
−1/2
m ‖u‖D(A1/2) for every u ∈ D(A1/2). This establishes (B.7) for k = 1/2.

Similarly, bearing in mind that D(A) = {u ∈ H1
0 (Ω), Au ∈ L2(Ω)}, we apply

Lemma B.1 with r = 0 and ϕ = Au, where u ∈ D(A) is arbitrary. We find that
u ∈ H2(Ω) satisfies ‖u‖2,Ω ≤ C0‖Au‖0,Ω, which entails (B.6)-(B.7) for k = 1.
b) Let us now suppose that the statement of the lemma is true for some m ∈
N∗ fixed. Pick k ∈ {m − 1/2,m} and assume that ∂ω is C2(k+1) and that c ∈
W 2k+1,∞(Ω) satisfies (1.2). As D(Ak+1) = {u ∈ D(Ak), Au ∈ D(Ak)}, we deduce
from the induction assumption that we have

D(Ak+1) = {u ∈ H2k(Ω), Au ∈ H2k(Ω) and u, . . . , Amu ∈ H1
0 (Ω)},
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with ‖Aju‖2k,Ω ≤ c(k)‖Aju‖D(Ak) for j = 0, 1. Thus, applying Lemma B.1, with

r = 2k and ϕ = Au, for u ∈ D(Ak+1), we get that u ∈ H2(k+1)(Ω), proving (B.6)
where (k + 1,m+ 1) is substituted for (k,m). Moreover, it holds true that

‖u‖2(k+1),Ω ≤ C2k‖Au‖2k,Ω,

and since Au ∈ D(Ak), the induction assumption yields ‖Au‖2k,Ω ≤ c(k)‖Au‖D(Ak).
Therefore ‖u‖2(k+1),Ω is majorized, up to a multiplicative constant depending only
on ω, c and m, by ‖u‖D(Ak+1), which is (B.7) where k + 1 is substituted for k.

This completes the proof of Proposition 2.3.
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