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MULTIDIMENSIONAL BORG-LEVINSON INVERSE SPECTRAL
THEORY

ERIC SOCCORSI

ABSTRACT. This text deals with multidimensional Borg-Levinson inverse theory. Its main
purpose is to establish that the Dirichlet eigenvalues and Neumann boundary data of the
operator —A+ ¢, acting in a bounded domain of R? with d > 2, uniquely determine the real-
valued bounded potential q. We first address the case of incomplete spectral data, where
finitely many boundary spectral eigen-pairs remain unknown. Under suitable summability
condition on the Neumann data, we also consider the case where only the asymptotic behav-
ior of the eigenvalues is known. Finally, we use the multidimensional Borg-Levinson theory
for solving parabolic inverse coefficient problems.
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1. A SHORT INTRODUCTION TO INVERSE SPECTRAL PROBLEMS

Let Q C RY where d € N := {1,2,...}, be a bounded domain with C*! boundary 9.
In the particular case where d = 1, we set Q := (0,1). Given g € L*(2), real-valued, we
perturb the Dirichlet Laplacian in L*(Q) by ¢, i.e. we consider the operator acting in L?(£2)
as —A + ¢, that is endowed with homogeneous Dirichlet boundary conditions.

We investigate the inverse problem of determining the operator —A + ¢, that is of de-
termining the perturbation potential ¢, from knowledge of partial spectral data of —A + q.
More precisely, we are interested in two types of results:

o A uniqueness result, expressing that every two admissible potentials g;, j = 1,2, are
equal whenever the spectral data of —A + ¢; coincide with the ones of —A + ¢, i.e.
we seek the following implication:

(Spectral data of — A 4 ¢; = Spectral data of — A+ ¢2) = (¢1 = ¢2).

o A stability result, claiming that any unknown admissible potential ¢ is not only
uniquely determined (in the sense of the above implication) by the spectral data
of —A + ¢, but also that it depends continuously on these data.

1.1. Self-adjointness, spectral data and all that. For M € (0,+o00) fixed, let ¢ €
L*>(Q,R) fulfill

||Q||Loo(sz) < M. (1.1)
We define A, as the operator in L?((2), associated with the closed sesquilinear form
aq(u,v) = /Q (Vu(x) -Vo(z) + q(x)u(x)v(x)) dz, u,v € D(a,) = Hy(Q), (1.2)

where H}(€2) denotes the closure of C§°(€2), the set of infinitely differentiable and compactly
supported functions in €2, for the topology of the first-order Sobolev space H'(€). The
operator A, is self-adjoint in L?(2) and acts on its domain® as

Agu=(=A+q)u, u€ D(A,) = Hy(Q) N H*(Q). (1.3)

Here, the notation H?(2) stands for the usual second-order Sobolev space in 2, and we recall
that the graph norm of A, is equivalent to the one of H?(Q), i.e.

" Hlull ooy < lullpga,) = lullzz@) + [Agull 2y < cllull ey, w € D(4,),  (1.4)

for some constant ¢ € (1,+00) that depends only on 2 and M.

Next, since the injection Hj(Q2) < L?(Q) is compact, then the same is true for the
resolvent? of A,, and the spectrum of A, is discrete. We denote by {\,, n € N} the non-
decreasing sequence of eigenvalues of A,, repeated with their multiplicity,

)\1<...<)\n<)\n+1<..., n € N.

IThe assumption 992 € C! is needed for applying the classical elliptic regularity theory that establishes
that D(A,) C H*(Q).

2This is provided 0 is in the resolvent set of Ay, but since ¢ is bounded as in (1.1), one can assume that
this is the case without restricting the generality of the reasoning, upon possibly substituting A, + M for
Ay
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In view of (1.1)-(1.2), we infer from the Min-Max principle that

/\1 2 _MJ
and we recall for further use that
dim A, = o0 (1.5)

Let {¢n, n € N} be an orthonormal basis in L?(Q2) of eigenfunctions of A,, such that
Agon = Apn, n €N

With reference to (1.4)-(1.5), there exist two constants ny, € N and ¢ € (0, 4+00), both of
them depending only on 2 and M, such that

¢\, < ||g0n||H2(Q) <ch,, n=nyy. (1.6)
Put
Un = Oy, n €N,
where v denotes the outward normal vector to 02 and d,u := Vu-v is the normal derivative

of ¢. Then, it follows from (1.6) and the continuity of the trace operator 7, : u — (9,u)90
from H2(Y) into HY/2(09), that we have

||¢n||H1/2(aQ) < A, 2 N, (1.7)

for some positive constant ¢ that depends only on  and M.

1.2. Review of the one-dimensional case. Fix d = 1 and recall that we have 2 = (0, 1)
with
d2

Ag= 75 +alz), D(A) ={ue H*(0,1), u(0) = u(1) =0},

in this case.

1.2.1. An obstruction to identifiability. A very natural question that arises in this context
is to know whether ¢ can be determined by knowledge of Sp(A4,) = {\,, n € N}. But
the answer is negative as the spectrum does not discriminate between symmetric potentials.
This can be seen by noticing that we have

UAU™ = Ay, (1.8)

where we have set (Uf)(x) := f(1 —z) for all f € L*(Q) and a.e. z € Q. Since U is unitary
in L?(2), then the operators A, and Ay, are unitarily equivalent, by (1.8). Hence they are
iso-spectral: Sp(Ay,) = Sp(4,). Thus, one cannot distinguish between the potentials ¢ and
Ug, from knowledge of the two spectra Sp(4,) and Sp(Ay,), despite of the fact that ¢ # Uq
when ¢ is not symmetric about the midpoint = 1/2 of the interval €.

Therefore, the spectrum of A, does not uniquely determine ¢, and some additional spec-
tral data is needed for identifying the potential.
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1.2.2. One-dimensional Borg-Levinson theorem. Assuming that ¢/, (0) = d;i? (0) =1 for all

n € N, G. Borg [4] and N. Levinson [16] established when Sp(A4,) is known, that additional
knowledge of {[|¢nll 2y, 7 € N} uniquely determines g.

Theorem 1.1 (Borg (1946) and Levinson (1949)). For A € R and for ¢; € L*(0,1;R),
Jj=1,2, let u;(-,\) be the H*(0,1)-solution to the initial values problem

(_% + q¢;j(z))uj(x, N) = Auj(z, ), z€(0,1)
{ u;(0,A) - 0, u}(0,X) = 1. (1.9)

Denote by {\;,, n € N} the non-decreasing sequence of the Dirichlet eigenvalues associated
with Ay, , obtained by imposing:
ui(1,X;,) =0, neN.
Then, we have the implication:
(Mn = Ao and [Jur( M)l oy = N2 Aon) 20y » M €N) = (@1 = g2 in (0,1)).

Later on, I. M. Gel'fand and B. M. Levitan proved that uniqueness is still valid upon
substituting u}(1, Aj ) for [lu;(+, Ajn)ll 201y, J = 1,2, in Theorem 1.1:

Theorem 1.2 (Gel'fand-Levitan (1951)). Under the conditions of Theorem 1.1 we have:
(M = Ao and vy (1, M1,) = up(1, M), n € N) = (¢1 = g2 in (0,1)).

Remark 1.3. Let p, ¢q, p be real-valued and bounded functions in (0,1), with p and p
positive. Introduce the operator

. d d
AP#LP =—p 1% (pdl’> + q, D(Aqu’p) = {u S H01(07 1)7 pul S H1<07 1)}7

which is self-adjoint in L2(0,1), the usual L*(0,1)-space endowed with the weighted scalar
product (u,v)rz(,1) = I3 p(x)u(z)v(xr)dz. Denote by {\,, n € N} the sequence of the
eigenvalues of A, ,, and by {u,, n € N} a Lz(O, 1)-orthonormal basis of eigenfunctions of
Ay 4, Obeying A, u, = Myuy,. If p and p are CH1(0,1), then the boundary spectral data

BSD(p, ¢, p) = {(An, (1)), n € N}

uniquely determine either of the three coefficients p, ¢ and p, when the two others are known.
Indeed, one can check by using the Liouville transformation y(z) = L™ [ p~/2(t)p"/?(t)dt,
z € (0,1), where L = [} p~*/2(t)p'/?(t)dt, as a coordinate transformation, that the equation
—(pu') + qu — Apu =0 in (0, 1) reduces to its normal form —u” + Vu = Au in (0, 1), where
V =V, 4, is expressed in terms of p, ¢ and p, while the boundary spectral data is preserved,
i.e.
BSD(1,V;1) = BSD(p, q, p).

Thus, Theorem 1.2 yields recovery of V' from BSD(p, g, p), hence the result. Notice that this
change of coordinates is no longer valid for discontinuous p and p. We refer the reader to [7]
for a specific treatment of this problem.
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All the approaches from G. Borg, N. Levinson or I. M. Gel’fand and B. M. Levitan, were
based on highly one-dimensional techniques, but two great ideas emerged in the 80, that
paved the way toward solving the multidimensional Borg-Levinson inverse spectral problem.
The first one is called the C-property, see [21]. It is due to A. G. Ramm who showed
that the set {uy(-, \)ua(-,A), A € (0,400)} is dense in L'(0,1). The second one is called
the boundary control method, see [3]. It was established by M. I. Belishev upon applying
the boundary controllability theory to the hyperbolic equation associated with the Sturm-
Liouville system (1.9). One common nice feature of these two great ideas is that they apply
to higher dimensions d > 2 as well.

1.3. Multidimensional identification results.

1.3.1. Boundary spectral data. Let us recall that {\,, n € N} is the non-decreasing sequence
of the eigenvalues of A, (repeated with the multiplicity), that {¢,, n € N} is a L?(Q)-
orthonormal basis of eigenfunctions of A, such that A,¢, = A\, ¢,, and that ¢, = 0,p,. We
define the boundary spectral data (BSD) of A,, or the BSD associated with ¢, as:

BSD(q) := {(An, ), n € N}.

Remark 1.4. For all n € N, one may replace ¢, by e, with 6, € R, in the above
definition. Thus it is clear that the BSD are not defined in a unique way: they depend on
the choice of the L?(2)-orthonormal basis {¢,, n € N} of eigenfunctions of A,.

1.3.2. Multidimensional identifiability. In 1988, it was proved for d > 2 by A. Nachman,
J. Sylvester and G. Uhlmann in [17], and independently by R. Novikov in [18], that the
potential ¢ is uniquely determined by BSD(q), i.e. that the following implication

(BSD(q1) = BSD(g2)) = (1 = 2),

holds for any two suitable potentials ¢;, j = 1,2. This result has been improved in several
ways by various authors.

Firstly, H. Isozaki [11] (see also M. Choulli [8]) extended the result of [17, 18] when
finitely many eigenpairs remain unknown.
Theorem 1.5. For j = 1,2, let ¢; € L™(, R) and write* BSD(q;) = {(Ajn, ¥jn), n € N}.
Then, for all N € N, we have the following implication:

((Al,na¢l,n) - (/\Q,nwa,n)a n 2 N) - ((h - q2)

Recently, uniqueness in the determination of ¢ was proved in [9, 13] from the knowledge

of the asymptotic behavior of BSD(q) when n — +o0.

Theorem 1.6. Let g; for j = 1,2, and the notations, be the same as in Theorem 1.5.
Assume that the asymptotics of BSD(q1) and BSD(qs) coincide, in the sense that

+o00
7}1_{1(;10(/\1’” - >\2,n) - 0 and Z ||7~p1,n - wQ,nHiz(aQ) < Q.
n=1

3That is to say that {)\;,, n € N} is the non-decreasing sequence of the eigenvalues of Ay, and that
VYjn = Oppjn for all n € N, where {¢;,, n € N} is a L?(Q2)-orthonormal basis of eigenvectors of A, such
that qu @j,n = /\j,n@j,n-
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Then, we have ¢ = qo in €.

The multidimensional Borg-Levinson theorem has been studied in many different kinds
of settings* and it is not quite possible to give an extensive survey of this here, but we shall
mention a few results which are relevant for the problem under investigation in this text. In
[19], L. Paivérinta and V. Serov proved identifiability of unbounded potentials ¢ € LP(£2, R)
for p > d/2, by BSD(q). The case of p = d/2, d > 3, has been studied by V. Pohjola in [20].
As for Borg-Levinson inverse spectral theory with partial Neumann data, we refer the reader
to M. Bellassoued, M. Choulli and M. Yamamoto’s article [2], where a log-stability estimate
for electric potentials which are known in a neighborhood of the boundary, is established
with respect to the BSD measured on an arbitrary non-empty open subset of the boundary®.

1.3.3. Outline. The paper is organized as follows. In Section 2 we prove Theorems 1.5 and
1.6. In Subsection 2.1 we express the strong solution to the Dirichlet problem for —A+¢— A,
A€ C\ Sp(4,), in terms of BSD(g). Subsection 2.2 contains the proof Isozaki’s formula,
which is useful for the derivation of Theorems 1.5 and 1.6, presented in Subsections 2.3
and 2.4, respectively. In Subsection 2.5 we examine the stability issue of the Borg-Levinson
inverse problem under study. Finally, we derive a parabolic identification result in Section
3, by means of Theorem 1.5.

2. MULTIDIMENSIONAL BORG-LEVINSON THEORY

This section contains the proof of the incomplete Borg-Levinson theorem stated in The-
orem 1.5 and the asymptotic Borg-Levinson theorem stated in Theorem 1.6. We start by
establishing several technical results that are needed by the derivation of Theorems 1.5 and
1.6.

2.1. Preliminaries. For ¢ € L®(Q,R), f € H*?(98) and A € C, we consider the boundary
value problem (BVP)
{(—A+q—>\)u:0 in Q 2.1)

u=f on 0f2.

First, we establish that there exists a unique strong solution® to the Cauchy problem
(2.1) that can be expressed in terms of BSD(q).

Lemma 2.1. Let ¢ € L®(Q,R) and f € H*?(0S). Then, for each A € C\ Sp(A,) there
exists a unique solution uy € H?(Q) to (2.1). Moreover uy reads

+oo
uy =" (f, ¥n) 2 00) o in L2(9), (2.2)
n=1 A— )\n
4Such as operators in the divergence form, see e.g. B. Canuto and O. Kavian’s paper [6], where two un-
known coefficients out of three are simultaneously identified by the BSD, or magnetic Schrédinger operators,
see e.g. Y. Kian’s article [14].
5The strategy that is used in this paper is quite the opposite of the one we apply in the last section of
this text for solving parabolic inverse coefficient problems by means of the Borg-Levinson theorem, in the
sense that the authors rather derive their spectral stability result from a hyperbolic stability inequality.
6A strong solution to (2.1) is a solution in H2(£2), which satisfies the equation a. e. in €.



MULTIDIMENSIONAL BORG-LEVINSON INVERSE SPECTRAL THEORY 7

2):0 (2.3)

Step 1: Ezistence and uniqueness of the solution to (2.1). Since f € H3/?(9Q) and since
the trace operator Ty : v — vjaq is surjective from H?(2) onto H*?(912), then there exists
F € H?(Q) such that 7oF' = f. Thus, u, is a solution to (2.1) iff vy := uy — F solves

(“A+qg—Aw=G inQ
v=20 on 0f),
with G := —(=A+q— \F € L*(Q) € L*(Q2). Next, A being in the resolvent set of A,, we

see that (2.4) admits a unique solution vy = (4, — A\)"'G. Thereofore, uy = vy + F' is the
unique solution to (2.1), and uy € H?*(Q).

and we have

+o00
. 2 (fs V) L2 00)
i eaallie e = lim (Z A

A— =l

Proof. We split the proof into three steps.

(2.4)

Step 2: Proof of (2.2). For all n € N, we have
0= ((~A+q=Nun pa)r) = [ (~A+ (@) = Nur(@)o (@)de,

whence
0 = — [ du@ea@)de + [ n@n@de+ [ w@)(4,— Nea(@)ds
= | F@@de+ 0= ) [ us(e)oa@de,
by integrating by parts. As a consequence we have (uy, ¢,)r2) = %, so (2.2) follows

readily from this and the L?(Q)-decomposition uy = 3,2 (ux, ©n) 12(0)@n-

Step 3: Proof of (2.3). With reference to (1.1)-(1.2), we have for all n € N,

An = (Agpn, Pn) 12() = g(Pn, on) = /W% MM+/ ) ln(2)|? da > —M,

hence Sp(4,) C [-M, +00). Thus,we see that every A € (—oo, —(1+4M)] lies in the resolvent
set of A,, and that

|<f> ¢n>L2(aQ) |<f> Un) 12(00) neN (2.5)
A=A, L+MA4 A, |7 ' '
2 2
Further, since 3729 %712;1” = Hu—(HM) ey < O by (2.2) and the Parseval theorem,
<f’wn>L2<aQ) 2

= 0 for all n € N, we infer from (2.5) and the Lebesgue

.

and since limy_,_ S
n

dominated convergence theorem that

| (S n) 2000 |
A=A,

o1 A——00 n
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Putting this, together with (2.2) and the Parseval formula, we obtain (2.3). O

Notice that the series in (2.2) converges in L*(Q) and not in H?(Q2). Therefore, the
normal derivative d,uy of the solution uy to (2.1) cannot be obtained directly from (2.2),
by substituting 1, for ¢, in the right hand side. To achieve this, we need to introduce an
additional specific spectral parameter u, and consider the difference uy — u,, as follows.

Lemma 2.2. Let ¢ and f be the same as in Lemma 2.1. Then, for all A and p in C\Sp(A4,),
we have

= <f 77ZJ7’L>L2(6Q)

Oy (ux — up) = (= A) :

8 nzz:l (A=) (k= An)

Here uy (resp., u,) denotes the H?*(Q)-solution to (2.1) (resp., (2.1) where X is replaced by
i), given by Lemma 2.1.

Y, in HY?(0Q). (2.6)

Proof. In view of (2.1), we see that v := uy — u,, solves

(—A+qg—XNv=A—pu, inQ
{ v=20 on 0f). (2.7)
Since A is in the resolvent set of A,, (2.7) yields
-1 = <U;u <Pn>L2(Q)
b= O Ay = N = (- ) 3 IR (2.9
n=1 n
the series being convergent in L?(€2). Recall that we have
+o0 5
n=1 = /\”
upon substituting p for A in (2.2). Putting this together with (2.8), we get that
+o0
v=A—p) > {, ¥nd 2oy ©n in L*(Q), (2.10)

2 = Ni— )
Next, since v € D(A4,) and Ajv = (A — p)u, + Av, we deduce from (2.9)-(2.10) that

= Al n) L2(00)

Av=(\—p ’

=0T 5 TN - A

Therefore, the series in (2.10) converges for the topology of the norm of A, hence it converges
in H?(Q2), according to (1.4). Finally, we obtain (2.6) from this by invoking the continuity
of the trace operator 7 : u — (9,u)pq from H?(Q) into HY/2(09Q). O

©n in L2(€).

The next lemma claims for any two real-valued bounded potentials ¢; and ¢, that the
solutions to (2.1) associated with either ¢ = ¢; or ¢ = ¢o, are closed as A — —oo: in some
sense the influence of the potential is dimmed when the spectral parameter \ goes to —oc.
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Lemma 2.3. Let f € H*?(99Q) and let ¢; € L®(Q,R), j = 1,2. For A € C\ (Sp(A,,) U
Sp(Ag,)), let ujy be the solution to (2.1) where q; is substituted for q, which is given by
Lemma 2.1. Then, we have

l_i}r_noo [0urn = Ozl 250y = 0. (2.11)

Proof. Set wy 1= uy \ — ug ), so we have

(A +q — Nwy = (g2 — q1)ug in Q
wy =10 on 0,

from (2.1), and hence wy = (A, — A)"*(¢2 — q1)uzx. Bearing in mind for all real number
A< =gl gy that [[(Ag = A) ey = dist™ (A, Sp(Ag,)) < 1/(la1ll o) + A), we
find that

g2 — q1||L°°(Q) [Z%Y L2(9)

lwAll 2oy < 3 e (=00, = llarll ooy -

A = [l oo o
Here and in the remaining part of this text, B(L?*(£2)) denotes the space of linear bounded
operators’ in L2(£2). From this and (2.3) it then follows that

i A ]y = 0. (2.12)
Next, since Agwx = (g2 — ¢1)ua,x + Awy, it holds true for every A < —|[|q1| o (o) that
||Aq1wA||L2(Q) < g2 — ql”LOO(Q) ||U2,A||L2(Q) —A ||w>\||L2(Q) ,
so we get limy, oo [[Ag wall 12y = 0, from (2.3) and (2.12). As a consequence we have
dim (Jlwall gz + A wall 2 q)) = 0.
This and (1.4) entail

lim [Jugyx —u =
Jim gy = ugall ) = 0

which together with the continuity of the trace operator 7 : u — (9,u)jsq from H?(Q) into
HY2(0Q), yield (2.11). O

2.2. Isozaki’s asymptotic representation formula. Let ¢; € L>*(Q, R) satisfy

for some a priori fixed constant M € (0,+00). In [11], H. Isozaki gives a simple represen-
tation formula, expressing the difference ¢; — g2 in terms of the Dirichlet-to-Neumann (DN)
operator associated with the BVP obtained by substituting ¢; for ¢ in (2.1). More precisely,
adapting the argument of [11] to fit our aim in this text, we fix 7 € (1, +00) and we consider
the BVP (2.1) with A = A\f := (7 +¢)? and ¢ = ¢, i.e.

{ (—A+¢ —AHu=0 inQ

u=f on 5. (2.14)

. 1Tl .:
"The usual norm of T' € B(L?(Q)) is defined by 1Tl 52y = SUPseL2(@)\{0} HfHLL;(S:)'
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We denote by u, \+ the H?(Q)-solution to (2.14) (for the sake of notational simplicity we
drop the dependence of u; ,+ on f). Let us introduce the DN map associated with (2.14), as

Ao HY2(09) —  H'Y?(09)

Fooe () (2.15)

Given two test functions f=, we shall make precise below, we aim to link the difference ¢; — g5
to the asymptotic behavior of

S, =51, —Sy,, where S, := <Aj,,\ifr+a I 200, (2.16)

as 7 — +o0.

2.2.1. Test functions. For £ € R fixed, and for every 7 € (|¢|+1, +00), we set AT 1= (7414)?,
and we seek two functions f* such that

(A — A5 f£=0in Q
lim, s o [ (2)f () =% 2€Q (2.17)

SUPre(|¢]+1,400) ||f7'i||C(§) < 00.

Here and in the remaining part of this text, the notation - (resp., |-|) stands for the Euclidian
product (resp., norm) in R<.
Pick n € S%! such that £ -n = 0, and put

. € 14
/87— = 1-— R and T]T ﬁ»,— 7' (218)

in such a way that |nF| = 1. Then, the two following functions
fE(z) = ei(Tii)n’#'r, x €, (2.19)

fulfill the conditions of (2.17). As a matter of fact, it can be checked through direct com-

putation from (2.18)-(2.19), that AfE = -\ [pE]° /£ = —X\EfF in Q, that f}(2)f-(z) =
Tl

e =87 for all x € Q, and that

@) < el <ol z e (2.20)

We notice for further use from (2.20) that the estimate

< ¢y = (1 + QM2+ \89[1/2> sup ell, (2.21)

P
Lr(X) el

holds with X = or X = 99, and with p = 2 or p = co. Here || (resp., |0€2]) denotes the
diameter of Q (resp., the length of 02).
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2.2.2. Probing (2.1) with f*. For j = 1,2 and z € C\Sp(4,,), we denote by ujE the H?(2)-
solution to the BVP (2.1), where (g;, z, fF) is substituted for (g, A\, f). The functlon uy, is
characterized by

(-A+q;—z)uj, =0 inQ
{ ujfz = f* on 0, (2.22)
hence v;, := uj, — fF solves
(—A+q =2, = —(-A+q—2)f nQ
{ vfz =0 on 0f). (2.23)

Moreover, since (—A + q; — 2)f = (¢; + \X — 2) fF, by the first line in (2.17), it follows
from (2.23) that

vh = —(Agy — 2) Mgy + XE - 2) (2.24)

7,2

Let us now examine the case where z = \*, which is permitted since A\* belongs to the

resolvent set of the self-adjoint operator A4,;, as we have:
Im (AF) = 27 # 0. (2.25)

We shall establish that the L?*(Q)-norm of vi\i scales like 771 as 7 becomes large, whereas
18 bounded uniformly in 7 € (14€], +00). To do that, we substitute A for z
in (2.24) and get that fo\f = — (A, — X)) '¢; fF. Next, using that H — A5~

dist ™" (A, Sp(Ay,)) < (27)7, according to (2.25), we obtain

the one of u™

i P

1451l oo (e Hffi”p(g) Mec,
< <% 1,9 2.6
2T or 7 ( )
upon applying (2.13) and (2.21) with (X, p) = (2,2). Now, bearing in mind that 7 > 1 and
recalling that uj, = v}, + f£, we derive from (2.26) that
< M +2
L*(Q) 2

+
ij,xi

L2(Q)

Hi e, §=1,2. (2.27)

U’
GAE

2.2.3. Isozaki’s formula.

Proposition 2.4. For j = 1,2, let ¢; € L™(Q,R) satisfy (2.13). Then, for all £ € RY, we
have

/g(ql(x)-—-qg(x))e_jgxdlr::7Jig£ofﬂw (2.28)
where S; is defined by (2.15)-(2.16).
Proof. For j = 1,2, we consider the H?()-solution uj*)\+ to the BVP (2.14) with f = f:

{(A+%—Aﬂ Fe =0 in0

u;ﬁ = fr on 0N. (2.29)
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Upon left-multiplying the first line of (2.29) by f-, integrating over €2, and applying the
Green formula, we obtain with the aid of (2.17) that

0 = [(A+ =Mt (@) e
= (5, 0uf7 D1200) — (O] s, £7 ) 12000) + /Q ul s (@) (A + ¢ — A7)
= (5 0uf7 ) r200) — S + /QQj(x)U;:)\j(I)fr_(x)dxa J=12

Thus, we have S, = (fF,0,f7 )20 + Jo Qj(LU)’U/j)\Jr () f=(x)dx for 7 = 1,2, and conse-
quently

[ (x)dz

S, =S, — Sy, = /Q (01(@)uf o (0) = @) o (0)) T (@) (2.30)
Next, taking into account that u;“v = v;“/\Jr + fF for j = 1,2, we deduce from (2.30) that
S [ (@) — (o) @) T @ = [ (o (@) — mleed, s (2)
Therefore, by applying (2.21) with (X, p) = (£2,2) and (2.26), we get

[z (@)da.

2 M22
- = - - *
S = [ (@) = qa(@)) £ ()7 (@] < (Z lsll e[| m)) o
which leads to:
dim (5, = [ (@) ~ w@)f; @F @) 0. (2.31)
Finally, as we have
, _ N T (Y e — _ —itw
Jim [ (o) - @) (@) F @de = [ (@) - ae)eda.
by the second line of (2.17), (2.21) with (X,p) = (2, +00), (2.13), and the dominated
convergence theorem, the desired result follows directly from this and from (2.31). O]

Armed with Proposition 2.4 we turn now to proving Theorems 1.5 and 1.6.

2.3. Proof of the incomplete Borg-Levinson theorem. In this section we prove The-
orem 1.5. In view of Proposition 2.4, we have to show that
lim S, =0, £ € RY (2.32)

T—+00

Indeed, by combining the Isozaki formula (2.28) with (2.32), we get for every ¢ € R? that

the Fourier transform )
(Fq)(§) == (27T)d/2/ q(z)e " dx (2.33)

R4

of the following function

. 1(z) — qoz) ifzeQ
q(z) = { Y e ere \ 0, (2.34)
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reads (Fq)(&) = W Jo(q1(x) — qo(x))e e dx = d/Q lim; 1 S; = 0. By the injectivity
of Fourier transform F, this entails that ¢ = 0 in Rd i.e. that ¢ = g2 in €L

We turn now to establishing (2.32). To this purpose, we fix ¢ € R?, pick 7 € (|¢]+1, +00),
and for j = 1,2 and all z € C\ Sp(4,,), we consider the H?*(Q)-solution u;, to the BVP
(2.1), where (gj, 2, f;7) is substituted for (g, A, f), i.e

{ (-A+¢ —zu,=0 inQ

ur, = fr on 5.
For z; € C\ Sp(A,,), j = 1,2, we put u},, _, := uj,, —uj;, and recall from (2.16) that

Sy = < ,\+fT ,f >L2(8Q) < ,\+f7 7f >L2 Q) (8 U1 AF 8Vu;:/\ir7f7—_>L2(aﬂ)'
Thus, for every p € (—oo, —M) we have
Sr = {0+ [ )r2ee) = (Ovtty 1 ;f7>L2(an) +(Oou,, = Oy, f ) 1200y (2.35)

: _ + _
In view of (2.11), dyugy , [ 0 so we get
ST = HEIEIQQ(@ ul At -0 u2 e ,f_>L2(3Q), (236)
upon sending p to —oo in (2.35).
Next, we introduce
p—AF
rul(t) = ,teR , 2.37
and set
G, 9) = () e2000) (7, 0D 12000y ¥, @ € L2(09). (2.38)
In light of Lemma 2.2, the scalar product in the right hand side of (2.36) decomposes as
+0o0
<a ul A &ju;)\i:/ﬂ f;)LQ(BQ) = Z (/i‘r,u()\l,n)G'(wl,n) - '%T,M<>\2,7L)C7'(w2,n)) ) (239)
n=1

where the notation (-(¢) is a shorthand for (, (¢, ). Further, as (A n, ¥1,) = (Aon, ¥2n)
for every n > N, by assumption, (2.39) becomes

N-1

Oty = 0l 200 = 2 (FrsOin)Gr (V1) = o) Go(tha) . (240)

n=1
the sum in the right hand side of the above equality being taken equal to zero when N = 1.
Further, taking into account that

lim HT,,u<)\j,n) = 1/()\j — )\jm), ] = 1,2, n = 1,. .. ,N — 1,

pr—
we deduce from (2.36) and (2.40), that

CT % n) €7(¢2,n)
Z ()\+ — Ain )\jf — )\2,n> '
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Next, bearing in mind that Im (A]) = 27, we see that |A\T — \;,| = 27 for j = 1,2 and for
allnm=1,..., N — 1, and hence that

N-1
1S < 30 (16 (@)l + 6 (@2a)]) (27) 7
n=1
N—
< 5 i 15 oy Z (Wl + el (2

from (2.37)-(2.38). Now, applying (2.21) with X = 02 and p = 2, we obtain that

N-1

2 2 -
1Se1 <Y (IbaallZzom) + 1¥2nl7200) 7"

n=

which immediately entails (2.32).

2.4. Proof of the asymptotic Borg-Levinson theorem. In this section we prove The-
orem 1.6. We stick with the notations of Section 2.3 and recall from (2.36) and (2.39) that

+oo
Sy = Ml_igloo(a Uy yr Oty i fr ) p2000) = ul_iglm; (Anrp+ Brrp) s (2.41)
where
Anrp = (Fru(Arn) = Frp(A2m)) G (Y1), (2.42)
and
By = Krp(Mon) (G010 — Yo, Y1n) + G (Yo, Y10 — Y2n)) - (2.43)

We split the proof into three steps. The first one, presented in Section 2.4.1, is to show that

()\1 n )‘2 n)CT(ﬂ“ N)
A = AN — o)’

“+00
lim Z Aprp = Z A+, Where A, ;. =

u—)oo

(2.44)

n=1
while the second one, given in Section 2.4.2, establishes that

C‘r (wl,n - w2,n7 Zﬂl,n) + C‘r(w2,n7 Zﬂl,n - w2,n>
A= Ao ‘

—+00
lim Z B, = Z By, -, where B, ., =

%
" e n=1

(2.45)
Finally, the end f the proof is displayed in Section 2.4.3.

2.4.1. Step 1: Proof of (2.44). Let us start by noticing that

1 1
Krp(AMn) = Brp(A2n)| < 2| 10 — Aoy + , n€N.
) = )] €200 = Al s (ot m_ﬂz)

This can be seen from the identity £ ,(Mn) — Krp(A2n) = f /\2 " ( )dt, which yields

AL —u AL —u
INE =t =t N =t | — 1]

A _ by < A A
|/€T’M( l,n) ’iT,u( 27n)| < Ln ™ 21| [Aln/\gn]<
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and from the basic estimate |\ — p| < |AF — t| + |u — t|, entailing:

AL —u A —u] 1 2 1
AT =t =" A =2 | =] =t N =t =t A ¢
2 2

+ :
=t X =t

Denote by M., a real number between A, and A;,, where the maximum of the function
t = [A\F —t|7% + | — | is achieved, in such a way that we have

1 N 1
AT = /\*,n|2 1= Ainl

’KT,/L()\LH) - K‘T,/L()\Zn)’ < 2 |)\1,n - )\2,n| ( 2) , n c N. (246)

Next, bearing in mind that lim,,_, ;. A1, = +00, we pick Ny € N so large, that

(2.47)

Since A1, = Ain, for all n > Ny, we have |A\f — X ,| = A, — [AF] = 4M in this case,
whence |A — A\on| = AT — An] = [ Ain — M| = A Al,n‘ — 2M. Here, we used the basic
inequality |A1, — Aun| < [A1n — A2, and the estimate

|)\17n - /\2,n| < ||CZ1 (]2||Loo Q) X 2M n c N (248)
arising from the Min-Max principle and the operator identity A,, = A, +¢2 —¢1. Therefore,

we have

+ _

)\:_r | > M’
’ 2
Similarly, taking p € (—oo, —(1+45M)), we have |u— M\,| > —pu — M > 4M. Since

A — An| < 2M, by (2.48), we get that [A;, — A\n| < | — A1n] /2, and hence

n > Np. (2.49)

[ = Al
2 Y
Putting this together with (2.42), (2.46) and (2.49), we obtain that

|C7(w1 n)‘ ‘Cf(wl n)’
A, <86 Iy : > N, 2.50
| > 7,U«| 1 <|)\i . )\17n|2 |Iu N )\17n|2 n 0 ( )

|M_A*,n| 2 |,u_)\17n| - |)\17n_/\*,n| 2 n € N.

where 01 1= Sup,,ey | A1n — A2n| < 00.
Further, in light of (2.38), we deduce from (2.3) that

2\ 2 /4o
) (2

, L= X,

(f7 ¥1n) L2000
0= Min

( ja¢1,n>L2(BQ)
=My

|CT wln < =
Zw Y (Z

n=1

u. -
L2() H 1l

+
u
H L L2(Q)
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Here, ufz denotes the H?(Q2)-solution to (2.1) where (¢, q, fF) is substituted for (), q, f).
Thus, bearing in mind that AT = A=, we derive from (2.50) that

+oo
+ - + -
zj:v [Anirnl < 801 (Huui L2(Q) Hum: L2(Q) * Hul’“ L2(9) Hul’# L2(Q)) '
n=IiNo
With reference to (2.3), we assume upon possibly enlarging —pu, that Huliu @) < 1, and
obtain
}: Al < 201 (M +2)%2 +4), (2.51)

n=Np

with the aid of (2.27). Now, since lim,_, o A, ., = A, .. for all n € N, we deduce (2.44)
from this and (2.51) by invoking the Lebesgue dominated convergence theorem.

2.4.2. Step 2: Proof of (2.45 ) For all n > Ny, we infer from (2.47)-(2.48) that

)\2,n = ’Aln_/\2n| )\lNo _2M )‘ )
whence |p — Agp| = Ao — p = |)\j| — p = [N — p|. Therefore, we get
1
T )\ n < N L N > N )
|"€ uU‘( 2, >| |A;|—_ _ A27n| n 0

from (2.37). This and (2.38) entail
(f7 V1n) L2000
)\7J-r - )\2,71

(f7 i) 200 (f Vo) 12000
< Gl = Yanll 20 <| e U

<f7—+7 77ZJ2,n>L2(BQ)
)\i - )\Q,n

T L2 (0Q)

L2(09)

)

), (2.52)

Bural < o = o (5

+

by applying (2.21) with (X, p) = (09, 2).

Further, recalling from (2.47) that [T — Ain| = 2(l¢1 — @2l (g for all n > No, and
using the estimate AT —Xou| 2 [AT — M| — [l¢1 — @2l e () arising from (2.48), we find
that

|)‘j _)‘17n| _ |)‘; _)‘1,n|
2 2 ’
Putting this together with (2.52), we get for every pu € (—oo, —(1 + 5M)], that

2\ /2 400
P>
n=Np
: 0 1/2 :
with g1 := (Z:{Zl |1 — 1/12n||i2 8Q)> . This leads to

Z | Bprul < 2¢.61 <Hu1A

n=Ny

A= Ao >

T

> N,. (2.53)

(f7 h1n) 12000
)\; - )\1,n

(fF, o) 200
)\7—!_ - )\2,71

n=~Np n=~Ng

+oo
Z | Bl < 2¢.81 (Z

+
T H“mi

< 2
12(2) m®>\&M+m@
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with the aid of Lemma 2.1 and (2.27). Now, (2.45) follows from this and the identities

lim By, = By,. n€N,

p—+—00

by applying Lebesgue’s dominated convergence theorem.

2.4.3. Step 3: End of the proof. Putting (2.41) and (2.44)-(2.45) together, we obtain that

—+00

S; = (Aprs + Bors). (2.54)

n=1

Further, since Im (Af — \;,,) = 27 for j = 1,2 and all n € N, by (2.25), we infer from (2.21)
with (X, p) = (09,2), (2.38), and (2.44)-(2.45) that

A -\ ¢ 2
’An,T,*‘ NS Cz| Ln 27n| |2| 1’n||L2(8Q)

T

and
2 (H@Zjl,n”m(ag) + ||¢2,n||L2(aQ)) ||¢1,n - 77Z}2,n||L2(8Q)

* .

T

|Bn,7'7>(<| < c

Therefore, it holds true for all n € N that lim, ;o Ay - = lim, 1 By, -« = 0, so it follows
from (2.54) that

+oo +oo
limsup S| < limsup > |A, .| +limsup Y [Bnr.|, N € N. (2.55)
T—+00 T—=+00 N T—=+00 N

Moreover, setting oy := sup,>y [Ai,n — A2,n|, we infer from (2.38) and (2.44) that

+Z°:° At < On Jio (f7 i) 200 ‘(fi,%,n)m(am
n=N n=N

A=A A= Ao
1/2 o\ 1/2
pe N e T oA X Yn) 2000
S 2w (n;v A7 — A HEN A=A V2 No.

In the last line we used the Cauchy-Schwarz inequality, the estimate (2.53) and the identity
A7 — Ainl = |AF —A1n]. Therefore, applying Lemma 2.1 and (2.27), we obtain for all
N = No, that

+o0 2
o (M + 2)

Z |[Anrs| < 20N HUI_,AI L2(89) H ! L20Q) 2

2
Uyt N,
n=

which entails

—+o0 M 2 2
limsup Y Ay .| < gci (sup |A1n — /\27n|> , N > Np. (2.56)

T—=+00 N 2 n>N
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Similarly, using (2.38) and (2.45), we can upper bound 3% |B,, ;.| by

oo (f7 V1) 12000 )
n;\{”%,n Yol 200 ( A — Ao

o\ 1/2 1/2

1/2
where ey := (Ziﬁoj\, |1m — wlﬂ”i%ag)) / . Next, applying Lemma 2.1 we get for all N € N

T IL2(69)

(JF,%2n) 1200
X — o

Z T 72[}2 ’I”L>L2(69)
L2(8Q A — Ao

L2(09)

T7¢17’L L2 BQ)
L2(69) (Z ‘ A — A

< &N

+ 2
“+00 <f7' ’¢27n>L2(BQ)
that > %% ‘M

< Hu2 A L2(Q), and for every N > Nj that

Jrzozo (f7 Y1) 1200 I n>L2(aQ <4 Hu
n=N A= Aan >\7J-r — A LQ(Q)’

by virtue of (2.53). Therefore, in light of (2.21) with (X, p) = (09,2) and (2.27), we have

= 3(M +2)
— + 2
H;V|B"’T’*| < L2(8%) H“m; L2 (Q) 7 1lL2(60) Humi L2(Q)> S 2 GEN,
provided N > Ny, and hence
1/2
3(M +2)
hmiup Z ’an < (7 (Z [ 1/)2,71”%2(39)) ; N = No.
T—r+00 n=N

Putting this together with (2.55)-(2.56), we obtain

+o0 1/2
lim sup ’ST‘ < c (( Z le,n - ¢2,n\|i2(39)> + sup P\l,n - )\2,n’) ) N 2 NO> (257)
T—~400 n=N n=N

where the constant ¢ := (M + 2)(M + 5)c?/2 is independent of N. Now, by sending N to
+00 in the right hand side of the above estimate, we get that limsup,_,, . |S;| = 0. Thus,
we have lim,_, S, = 0, by virtue of Proposition 2.4. This entails in the same way as in
Section 2.3 that ¢; = ¢9 in €2, which terminates the proof of Theorem 1.6

2.5. The stability issue. The stability issue for the Borg-Levinson inverse problem was
first examined by G. Alessandrini and J. Sylvester in [1], who proved Hélder stable deter-
mination of ¢ by BSD(q) (see also [8, Theorem 2.31] for a reformulation of their result).
We shall establish in this section, at the expense of stronger regularity on ¢, that it can be
Holder-stably determined by the asymptotic behavior of its BSD, provided ¢ is known on
the boundary 0.

2.5.1. Notations and stability inequality. We stick with the notations of Section 2. In partic-
ular, given two real-valued potentials ¢;, j = 1,2, we denote by {\;,, n € N} the sequence of
the eigenvalues of A,;, arranged in non- decreasmg order (and repeated with the multiplicity),

and we write 1, ,, instead of 9,¢;,, for all n € N, where {¢;,, n € N} is a L*(2)-orthonormal
basis of eigenvectors of Ay, such that Ay ;. = Ajn@jn-
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Theorem 2.5. For M € (0,+00) fized, pick ¢ and go in L¥(Q,R) N H'(QY), such that

H%Hpo(g) + ||qj||H1(Q) <M, j=12, (2-58)
and
q1 = q2 on S (2.59)
Assume moreover that
+00
S 1 = Yanll 20 < o0 (2.60)
n=1

Then, the following stability estimate

lan — Q2HL2(Q) < Climiup ’Al,n _ )\27n‘2/(d+2)
n—-—+0o0

Y

holds for some positive constant C' that depends only on €2 and M.
2.5.2. Proof of Theorem 2.5. Let us recall from (2.57) that for all N > Ny, we have

+oo 1/2
lim sup ’ST‘ <c (( Z le,n - wZ,nHi2(QQ)> + sup |)\1,n - )\2,n|) )
T—400 n=N nzN

for some positive constant ¢ that is independent of N and £. Thus, in light of (2.60) we get
upon sending N to infinity, that

limsup |S;| < climsup | A1, — Aapl- (2.61)
n—o0

T—+00
Further, we recall from Proposition 2.4 that
Jim S = [ gla)e=Sdr = (2m)2G(8),

where ¢ is the same as in (2.34) and ¢ stands for the Fourier transform Fq of ¢, defined by
(2.33). This, (2.61) and the basic estimate |lim, . S;| < limsup,_, . |S;|, yield [g(§)] <
(2m)~42climsup,,_, . o |Mn — Aznl, uniformly in € € R? . Thus, we obtain
@1l oo (ray < climsup [A1, — Ao (2.62)
n——+o0o
upon substituting (27)~%2¢ for c.
On the other hand, we infer from (2.34) and the Plancherel theorem that

g1 — C]2||i2(n) = ||C]||i2(ued) = ||€7||i2(ﬂzad) = /Rd |QA(§)|2d§~ (2.63)
For R € (1,+00) fixed, set Br := {£ € R?, |¢| < R} and notice from (2.63) that
2 (2 2
~ gol3ee) = a+ [ 3 2.64
o~ el = [, @QPdE+ [, late) de (2.64)

The first term in the right hand side of (2.64) is easily treated, as we have

[ GO ds < Rl (2.65)
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for some positive constant ¢ that is independent of R. Further, since q; — g2 € H} () from
(2.59), we see that ¢ € H'(R?). Thus we may write

2
Loy APV d = el = los = o) < (Il + laslnce) < 402%
from (2.58), and consequently
Joop, TP dE <R [ (14 [P () dE < 4MR
RNBg
Putting this and (2.64)-(2.65) together, we ﬁnd that
lar = @2l2@) < & (RNl (5 + B7) (2.66)

upon possibly substituting max(¢, 4M?) for ¢.
Set 0 := limsup,_,, . [A1.n — A2n|. We shall examine the two cases 6 € (0,1) and § €
[1,4+00) separately. In the first case we plug the estimate ||q|| LBy S €0, arising from

(2.62), in (2.66), choose R = 6~%/(4*2) and get
g1 — QZHLQ(Q) < 0(52/(d+2), (2.67)

with C' = (¢(1 + 02))1/ ?. In the second case we have obviously
lar = @ll g0y < Narll 2y + g2l ooy < 2M < 2M&* 2, 5 € [1, +00),
so the desired result follows from this and (2.67).

3. APPLICATION TO PARABOLIC INVERSE COEFFICIENT PROBLEMS

Let T € (0,+00), let Q be as in the preceding sections, that is Q@ C R% d > 2, is a
bounded domain with boundary 9 € C*!. We consider the diffusion equation

(Oh—A+qu = 0 inQ:=Q2x(0,7)
u = f onX:=00x(0,T) (3.1)
u(-,0) = 0 inQ,

where ¢ is a real-valued bounded potential and f fulfills the compatibility condition:
f(-,0) =0 on 052

The inverse problem we examine in this section can be stated as follows. Given M €
(0, +00) and two open subsets Iy, and Iy of 082, determine

by knowledge of the parabolic partial DN map at one fixed time Ty € (0,7):
Aq . f E %ﬂ — 811('7T0)‘F0ut'

Here, we have set /%, := {f € A, suppf C I', x (0,Tp)}, with 22 := CY([0,T], H*>?(0Q))
for some a € (0, 1].

Remark 3.1. Since suppf C (0,7,) x I'y, for any f € %, then the compatibility condition
f(-,0) = 0 holds on 09.
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Evidently, the inverse problem under investigation can be reformulated as whether the
mapping ¢ € Qu — A, is injective.

3.1. Parabolic Dirichlet-to-Neumann map and identifiability. We start by recalling
the following uniqueness and existence result (see e.g. [8, Section 3.5]).

Proposition 3.2. For all ¢ € Qy; and all f € €, there exists a unique solution
we 2 = CV(0,T), HA(S)) N C([0, T, I3(5)
to (3.1).
Thus, by continuity of the trace operator g — (9,9)r,., from H?*(2) to H?*(Tyy), the
map
Aq : %n — H1/2<Fout>
f = aVu('7T0)‘Fout
is well-defined.

The main result if this section is as follows.

Theorem 3.3. Assume that T'y, U Toye = 0Q and that Ty, N Tow # 0. For j = 1,2, let
qj € Qu and put Aj := Ay,. Then, we have the implication:

(Vf € A, M(f) = Aa(f)) = (@1 = ¢2)-

Remark 3.4. This result was proved by B. Canuto and O. Kavian in [5]. Recently, in [15],
it was extended to the case of time-fractional diffusion equations (0% — A + ¢)u = 0 in Q,
with a € (0,1) U (1,2), and where ¢ denotes the Caputo fractional derivative of order a.
3.2. Technical tools. The proof of Theorem 3.3 consists of two steps.

e The first one is to show that knowledge of A, uniquely determines® BSD(q) :
(Vf € A, M(f) = As(f)) = (BSD(q1) = BSD(g2)) - (3:2)

e The second step is to identify ¢ through BSD(q), with the aid of Theorem 1.5.

In [12], A. Katchalov, Y. Kurylev, M. Lassas and C. Mandache have established the
equivalence between the full parabolic DN map and the BSD. Their statement is quite
similar to the claim of the first step, except that this is the partial data A, (and not the full
parabolic DN map) that is considered here and that we only seek determination of BSD(q)
by A, (and not equivalence of these two data).

3.2.1. Some notations and useful properties. We stick with the notations of Section 2. That
is to say that for j = 1,2, we write BSD(g;) = {(A\jn,¥jn), n € N} with ¢, = 0,¢; .

80r, equivalently, the BSD associated with the Dirichlet Laplacian Ay, defined by (1.2).
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Weyl’s law. 1t is well known (see e.g. [22, Section XIII.15]) that there exist two constants
ny € N and ¢ € (1,400), both of them depending only on Q and M, such that we have

c1n2/d <A\, < cn2/d, n=ny.

This entails for all £ € N and all € > 0, that the series

e I —1_.,.2/d
ST e L ST e e <o, (3.3)

n=njps n=nys

Linear independence of the Neumann data. Given a non-empty open subset I' of 0f), the
family {¢nr, n € N} is, in general, not linearly independent in L3(T"), but the normal
derivatives of the eigenfunctions associated with one eigenvalue are linearly independent.
More precisely, if m,, denotes the geometric multiplicity of A, let {¢,;, i =1,...,m,} be
an orthonormal basis of the L?(Q2)-subspace ker(A, — A\,,). Then, we have

dim{¢pip, 1 =1,...,mn} = my. (3.4)

The proof of (3.4) essentially relies on the following unique continuation principle for local
Cauchy data.

Lemma 3.5. For j,k =1,....d, let aj, = ar; € WHe(Q), b; € L®(Q) and ¢ € L™(9),
and suppose that the differential operator

d
P:==> aju(x @,ﬁZb x)0; + c(x),

7,k=1 j=1
fulfills the ellipticity condition:

3N e ( O—i-oo,Zajk 2)E6 = NEP, v e, £ eRY

Then, for all uw € H*(Y), we have:
(Pu=0, upr =0ur =0) = (u=01in Q).

To show (3.4), we pick m,, constants ¢;, i = 1,...,m,, such that

mn

Z Cini = 0on I

i=1
Putting ¢ := Y21 ¢, We see that ¢ solves
Agp = Mo in 2
p =0 on I'
al/SO = Z;Zi Ciwn,i =0 onlI.
Thus, upon applying Lemma 3.5 with a;;, = d,, and b; =0 for j,k =1,...,d, and c = ¢, we
get tat ¢ = 0 in ). Here and below, ¢ denotes the Kronecker symbol, i.e.

s o[ 1ifj=k
7* 71 0 otherwise.
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Next, since the family {¢,;, i = 1,...,m,} is linearly independent in L?(2), we obtain that
¢ =0foralli=1,...,m,. Therefore, the ¢n7i|rv t=1,...,m,, are linearly independent in

L*(T'), which establishes (3.4).

We may now prove the:

Lemma 3.6. Let I and I be two non-empty open subsets of ). Then, the function

mn

anz ¢nz )a (070/>€FXF,7

is not identically zero in T’ x I".

Proof. We prove Lemma 3.6 by contradiction. If we assume that 60,(0,0’) = 0 for a.e.
(0,0") € I' x I", then we would have

Mn

Z¢nz wnz_oonrl
and hence
Ypi=0onl, i=1...,m,,

from (3.4), which is in contradiction with (3.4). Therefore, 6,, is not identically zero in
I x I O

3.3. Proof of the parabolic uniqueness result. In this section we prove Theorem 3.3.
In light of Theorem 1.5, it is enough to show (3.2). More precisely, we shall establish the:

Theorem 3.7. Under the assumptions of Theorem 3.3, we have
(vf € jiaim Al(f) = A2<f)) — ()\l,n = )\Q,n and wl,n = wQ,n on Fin U F0ut> n e N)a
up to an appropriate choice of the eigenfunctions s, of As.

Prior to proving Theorem 3.7, we establish a representation formula of the normal de-
rivative of the solution to (3.1).

3.3.1. A representation formula of the DN map. We start by expressing the solution to (3.1)
in terms of the BSD.

Lemma 3.8. For all f € 5, the solution u to (3.1), given by Proposition 3.2, reads
= u,(t)p, in L*(Q), t € (0,7, (3.5)

n>1

where

un(t) = — /Ot e s ( - Up (o) f(o,t — 5)d0> ds, n € N.
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Proof. Since {¢,, n € N} is an orthonormal basis of L*(Q) and u € C*([0,T7], L*(Q)) by
Proposition 3.2, we have

Vs € [0,T], ul-,s) = Y un(s)p, in L*(),

neN
with
s u,(s) = /Qu(ac, 8)pn(z)dx € C1([0, T).
Moreover, for all s € [0,T], we get that

u,(s) = /Qé?tu(a:,s)gon(x)dx

— /Q u(z, ) Aypn(@)dz + /8 du(0,)pu(0)do - /B (0. $)dual0)do,

upon applying the Green formula. As a consequence, we have

W(s) = —An /Q (@, 8)pn(x)da — /8 J(0.5)0u(0)do

— —/\nun(s)—/ f(o, s)¢n(0o)do,

and hence e ¢ L (eroy,(s)) = ul, (s) + A\un(s) = — [5q f(0, $)Y(0)do. Thus, taking into
account that u,(0) = 0, we get for every ¢ € [0, 7], that

(1) = - [ s ( [ s t)wn(a)da> ds,

upon integrating over [0, t]. O

In general the series in (3.5) converges in L?(£2) but the convergence can be upgraded to
H?(Q2) by assuming that the function f € J# satisfies the following condition

Jde € (O,Tg), V( ) € 00 x [ 0— € To] f(O', t) = O, (36)
for some fixed To € (0,7). Indeed, in this case we deduce from the identity u(-,Ty) =
I, TO) = 0 on 0N that u(-,Ty) € H*(Q) N H(Q2) = dom(A,). As a consequence we have
S5 A |un (To)|” < o0 and the series in (3.5) converges in H2(Q) for t = Ty:

u(-,Ty) = fun(To)gon in H*(9).

n=1

Thus, by continuity of the trace operator g — (9,9)90 from H*(Q) to H/2(9Q), we obtain
that

ou(-,Ty) = Jio un (To)

—+00

= — Z </€TO e~ ns (/asz flo, Ty — s)@bn(a)da) ds) 1y, in Hl/Q(é?Q). (3.7)

n=1



MULTIDIMENSIONAL BORG-LEVINSON INVERSE SPECTRAL THEORY 25

Having proved (3.7), we may now establish the:
Lemma 3.9. For all f € 5 fulfilling (3.6), it holds true that

_ /ETO Jio g~ Ans </ f(o V(o )da) Ynds in HY?(0Q).

Proof. In light of (3.7), we may write that
T
un(Ty) = — / " ey (5)ds with (s) = /8 F(0, Ty — 8)tn(0)do, s €[e,To].  (3.8)
€ 9]

As [y ()] < NG To = 8)l| 2o 19l 1290y we get from (1.7) that

+o0
Z e ()] 1eonll 120 < € (Z Aie‘A"ff) 1FCTo = )l msr2omy » 5 € e Tol-

n=npys n=1

Since 32,29 Ane " < +00 by (3.3), and s = || £ (-, To — 5)| ys/2(90) € L' (€, To), the Lebesgue

n=1""\n€
dominated convergence theorem then yields

Jio (/(E e sy, ds) Yy, = /T io “Ansy (8)nds,

n=1
where the convergence of the series is considered in H/2(99). U

Armed with Lemma 3.9, we turn now to proving Theorem 3.7.

3.3.2. Proof of Theorem 3.7. We split the proof into four steps.

First step: Set up. For f € J#, obeying the condition (3.6), we apply Lemma 3.9 and get

To £o°
—/E Z g Nims </1“ Yin(o)fo, Ty — s)da) Y nds in HI/Q(Fout), j=12.

This and the assumption A;(f) = As(f) for all f € J4,, yield for a.e. o’ € T'yy; that

/To tos ( (M @) ro) = € (00 (0) S0, Ty = $)dr ) ds = 0. (39

Let g € H??(0Q) be such that supp g C Ty, fix € € (0,Tp) and pick h € Cy(0, T — €), the
set of compactly supported continuous functions in (0,7 — €). Then, the function

o)h(t) if (o,t) € 092 x (0, Ty —
f(Uat)iz{g( 2)() ifga,tggaﬁxfo—eg)

lies in %, and verifies (3.6). Thus, by applying (3.9) with f expressed in this form, we find
for a.e. o’ € 'y that

/TO +o0 (/ _M,nwl,n(a)@bl,n(a’) — e—Az,nsw,n(U)wg,n(a’)) glo )do’) WTy — s)ds = 0.
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Since h is arbitrary in Cy(0, Tp —¢€), then s — h(Ty—s) is arbitrary in Cy(e, Tp), so the above
identity yields

Z/ 7/\1 "8% n )¢1,n(0/) - eiAQ’nstn(O—)wZn(OJ)) g(<7)d<7 = 07 ERS (57 TO)7 U/ € Fout:

(3.10)
by density of Cy(e,Ty) in L'(e,Tp). This follows from the fact that

wZe S ([ snl@)g(0)do ) U5 € L¥((e, To), HYA (Do),

arising from the estimate

> e

n=njs

+o0
| [ il @)g0)o| sl oy < Nz 3 € snlony

n=nps

+oo
llgllorzcom) ( S A) <,

n=npnr

which is derived for all s € (¢,Tj) from (1.7) and (3.3). Now, since ¢ is arbitrary in (0, Tp),
we infer from (3.10) that

Z/ My (0) 1 (0”) = 6_&’”81/12,71(‘7)1/12,71(‘7,)) g(o)do =0, o' € Toug, s € (0,Tp).
(3.11)

Second step: Analytic continuation. For j = 1,2, we set

(o', s) Z e Nims </ Yin(o da> Yin(c’), (0',8) € Toue x (0, +00), (3.12)

and we establish the:
Lemma 3.10. The HY/*(Tyy)-function s — Fj(-,s), j = 1,2, is analytic in (0, +00).

Proof. For K, a compact subset of (0,400), we set ¢ := inf{s, s € K} > 0. Then, with
reference to (1.7), we have

[ ia@)9( )0 3] 1500

B_Aj’ns

N

e Mgl e 190 ooy Wosal vz oy

: 2
< e ||¢jN||H1/2(aQ) ||g||H3/2(aQ)
< Allgllye MmN, s€ K, n€N,

g

for j = 1,2, where c is the constant appearing in (3.3). Therefore, the series

Ze ([ al@)a0)do ) v
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converges in H'/2(9€), uniformly for s € K. As a consequence, the mapping s F;i(-,s) is
analytic in K, since this is obviously the case for each function s — e ([, 1;,(0)g(0)do) V),
with n € N. Finally, K being arbitrary in (0,400), we end up getting from this that F} is
analytic in (0, +00). O

Now, putting (3.11)-(3.12) together, we infer from Lemma 3.10 that:
Fi(-,s) = Fy(-,8) in HY?(Toy), s € (0, +00). (3.13)
Next, for each s € (0, 400) fixed, we have

+oo oo
Z )\j’ne_Aj,nS ||¢j,n||L2(Fm) <c Z )\ine_)\j,ns < 00,

n=npnsr n=nmp
by (1.7) and (3.3), whence o — > e % |1); ,,(0)] [l mr1/2r,0) € L?(T'yy). Therefore, it
holds true that o — 32729 €% [10;,,(0) g(O)| [[¥jnll /2,y € L' (T'in) for all s € (0, +00).
Thus, by applying the Lebesgue dominated convergence theorem, we get that for every
€ (0, +00),

Z e (/ Yin(o dU) Vi = /Fm (ij €_Aj’"s¢j,n(0)¢j,n> g(o)do,

the convergence of the series being taken in the sense of H'/?(I'yy). This and (3.13) yield
for a.e. 0’ € I'yyy and all s € (0,400), that

/m <Z ey (0) (o )) g(o)do = /Fin (ZOO e_’\Q’"Swgm(a)wgm(a')> g(o)do. (3.14)

— n=1
Moreover, since o + Y312 e~ %8t (o), € L2 (Tin, HY?(Tow)), j = 1,2, and since g is
arbitrary in H%2(I'y,), we deduce from (3.14) and the density of H%?(I'y,) in L?(Ty,), that

for all s € (0, +00), the identity

400
Z e7)\1’nswl,n )% n Z e —2, "5¢2 n( )¢2,n(0/)7 (315)
n=1

holds in L?(Ty,, H?(Tgy;)), and consequently in L?(Ty, X Dout).

Third step: Generalized Dirichlet series. Let {\;,, n € N} be the sequence of strictly in-
creasing eigenvalues of A; = A,., j = 1,2. For each n € N, we denote by m;,, the geometric
multiplicity” of the eigenvalue N, and we introduce a family {¢;,q, @ = 1,...,m;,} of
eigenfunctions of A;, which satisfy

A]'SOj,nﬂ; = )\;7n¢j,n,ia 1= 1, RN ,m]’m,
and form a L?(€2)-orthonormal basis of the eigenspace ker(A; — X, ). Next, we put

mMjn

Z ¢Jﬂ1 JnZ( /)’ (U’ U/) € I'ip x Do, (3.16)

9That is to say that m;,, is the dimension of the linear subspace ker(A4; — X, ) in L?(1).

7,
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where ©;,,; 1= 0,p;n;. For every fixed s € (0,+00), it is clear from (1.7) and (3.3) that
both series appearing in (3.15) are absolutely convergent in L*(T'j, X Toyi), so we infer from
(3.16) that

+oo +oo
ST et (0,0") = Y e Mm%y, (0,07), s € (0,400), (0,0") € Tin x Tous. (3.17)
n=1 n=1
Moreover, each function 0;,,, for j = 1,2 and n € N, being not identically zero in I'y, X oyt
according to Lemma 3.6, it follows from (3.17) and the standard theory of Dirichlet series,
that
N = Ay, and 0y, = 0, on Ty X Toue, n €N, (3.18)

Fourth step: End of the proof. We are left with the task of showing that m; , = my, for all
n € N, and that the eigenfunctions ¢, can be chosen in such a way that

wl,n,i = w2,n,i on Fin U 1—‘out7 1= 17 <oy My,

where we have set m;,, := my, = ma,. Prior to doing so, we recall that for all non empty
open subset I' C 0€2, the dimension of the subspace spanned by {(¢; i), @ =1,...,m;n}
in L*(T"), is equal to m;,,, i.e. that

min = dim{1/1j,n7z-, 1= 1, Ce ,mj,n}, ] = ]_, 2.
a) We start by establishing that m; ,, = may,, = m,, and that there exists M,, € O,,, (R),
the set of orthogonal matrices of size m,,, such that we have

\112,11 = Mn‘ljl,ru (319)

with \Ilj,n = (1/}]"“71, ce 71/)j,n,mj7n)T7 j = 1, 2,

To this end, we notice that the set I',,; := {0 € I'iy N Tout, ¥1n1(0) # 0} has positive
Lebesgue measure, since 9,1 is not identically zero in I';, N I'gy. Similarly, the functions
Y1n1 and Yy ,.2 being linearly independent in L*(Tyy N Tou), the Lebesgue measure of the
set

¢1,n,1 (02) ¢1,n,2(02)

is positive'®. Thus, by induction on i, we can build a subset L, © (Din N Tone) ™, with
positive Lebesgue measure, such that following matrix

Fn,2 = {(01702) € (Fin N Fout)27 det ( 1/)177%1(0-1) wl,n,2<0-1) ) 7é 0}

Vipalor) ... ¢1,n,m1,n(01)
P (o) = : :
Vi1 (Omi,) - Vi, (Omin)
is invertible for a.e. o := (01,...,0m,,) € [nm,.,.-

loOtherWise, we would have 1/}17%2(0'1)1,[}1@71 7’1/}17%1(0'1)’(/)17%2 =0in LQ(FmOI‘OHt) for a.e. o1 € Fin ﬂFout,
and hence 9y ,, 1(01) = 0 since 11 ,, 1 and vy ,, o are linearly independent in L?(T), which is a contradiction
with the fact that I', ; has non-zero Lebesgue measure.
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Next, with reference to (3.18), we get upon applying (3.16) with ¢’ = o; for j =
1,...,mq,, that

min man

Z wl,n,i(Uj)wl,n,i(U) = Z ¢2,n,i(0j)¢2,n,i(0)> o€y, o=(0y,... 70m1,n) S Fn,ml,n-
i=1 i=1

This can be equivalently rewritten as Py, (0)¥1,(0) = Py,(0)Vs,(0) for ae. o € Iy,
where P, (o) is the following my ,, X ma, matrix:

1/’2,71,1(01) - wa,n,mgm (01)
Py, (o) = : :

wQ,n,l(Jan) wanme,n(o-ml,n)

Therefore, putting M, (o) := Pi,(0) ' Py, (o) for a.e. o €Ty, ,, we get that Uy ,(0) =
M, (o)¥,,(0) for a.e. o € I'y,. Further, taking o = o; in (3.18), we get in the same way as
before that ¥, ,,(¢") = M,,(o)¥s,,(0") for a.e. 0’ € I'oyy. As a consequence, we have

Uy n(0) = My(o)Vs,(0), 0 €T UTgw, 0 € Ty, (3.20)

Since dim{¢; ., i =1,...,mjn} =mj, in L*(Tiy, Ulo), J = 1,2, we infer from (3.20) that
mi, < Mgy, Moreover, as j = 1 and j = 2 play symmetric roles here, we have mq,, < mjp,
so we end up getting that m; , = mo,,.

It remains to show that M, (o) € O, (R) for a.e. o € I',,,,,. This can be done by
plugging each of the two following equalities ¥y, (0) = M,(o)Vs,(0) for ae. o € I'y
and Uy ,(0") = M, (o)W, (0") for a.e. 0’ € T'yy, in (3.17). We obtain that M, (o)2n(0) -
M, (0)an(0") = 9,(0) 12, (0"), where the symbol - stands for the Euclidian scalar product
in R™". Therefore, we have (M, (0)T M,,(a) —I,n,, )t2.n(0) - t2.n(c") = 0 for a.e. (0,0”) € Ty, X
I'out, where I,,,, denotes the identity matrix of size m,,. The family {¢9,.;, i =1,...,m,},
being linearly independent in L?(Tyy), this entails that (M, (o))" M,,(a) — In, )t2.n(c) =0
for a.e. o € T'y. Similarly, using that {19, ¢ = 1,...,m,} is linearly independent in
L3(Ty,), we get that M, (o) M, (o) — I,,, = 0, which establishes that M, (o) € O,,, (R).

b) We turn now to showing that ¢;,; = o,; on 9 for all i € {1,...,m,}, up
to some appropriate choice of the eigenfunctions ¢s,,. To do that, we write ¢y, =
(P2m15- - <P2,n,mn)T and we consider

90,2,71 - <90/2,n,1’ s 7S0,2,n,mn)T = M’VL(U)TQOQJH

where o is arbitrary in I'y, ..
Writing M,, instead of M, (o) in the sequel, we have for all (i,k) € {1,...,m,}? that

Mn mMn

<§0/2,n,i7 90/2,n7k>L2(Q) — Z (MZ—‘)ZT(MEL—‘)]CS <902,n,7"7 @2,n,s>L2(Q) - Z (Mn>ri(Mn)sk5rsa

r,s=1 r,s=1
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where § denotes the Kronecker symbol'!. Thus it holds true for all (i, k) € {1,...,m,}? that
T

<90/2,n,z‘a‘pl2,n,k>L2(Q) = Zgl(Mn)M<Mn)rk = mn (MT)W(Mn)rk = (M
sequently, the family {¢5, ., i = 1,. mn} is orthonormal in L?(Q
ie{l,...,m,} and for a.e. o € 0N, we get upon ertlng v(o) = (n(

M, )k = 6zkz Con-
Moreover, for all

)-
o). va(o))T, that

zvbé,n,i (0) VSDQ n z : Z 65902 n z ( )

reads

Wy nilo) = Z@g (Z )w%m«(a)) ve(o)

_ i(Mnm <;38902,n,r(0)w(0)>
= g::;(Mn)m'l/}Zn,r (0) .

Therefore, we have W} = M!W,, and hence W), = Wy, on 99, by virtue of (3.19). This
terminates the proof of Theorem 3.7.
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