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Abstract. This text deals with multidimensional Borg-Levinson inverse theory. Its main
purpose is to establish that the Dirichlet eigenvalues and Neumann boundary data of the
operator −∆+q, acting in a bounded domain of Rd with d > 2, uniquely determine the real-
valued bounded potential q. We first address the case of incomplete spectral data, where
finitely many boundary spectral eigen-pairs remain unknown. Under suitable summability
condition on the Neumann data, we also consider the case where only the asymptotic behav-
ior of the eigenvalues is known. Finally, we use the multidimensional Borg-Levinson theory
for solving parabolic inverse coefficient problems.
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1. A short introduction to inverse spectral problems

Let Ω ⊂ Rd, where d ∈ N := {1, 2, . . .}, be a bounded domain with C1,1 boundary ∂Ω.
In the particular case where d = 1, we set Ω := (0, 1). Given q ∈ L∞(Ω), real-valued, we
perturb the Dirichlet Laplacian in L2(Ω) by q, i.e. we consider the operator acting in L2(Ω)
as −∆ + q, that is endowed with homogeneous Dirichlet boundary conditions.

We investigate the inverse problem of determining the operator −∆ + q, that is of de-
termining the perturbation potential q, from knowledge of partial spectral data of −∆ + q.
More precisely, we are interested in two types of results:

• A uniqueness result, expressing that every two admissible potentials qj, j = 1, 2, are
equal whenever the spectral data of −∆ + q1 coincide with the ones of −∆ + q2, i.e.
we seek the following implication:

(Spectral data of −∆ + q1 = Spectral data of −∆ + q2) =⇒ (q1 = q2).
• A stability result, claiming that any unknown admissible potential q is not only
uniquely determined (in the sense of the above implication) by the spectral data
of −∆ + q, but also that it depends continuously on these data.

1.1. Self-adjointness, spectral data and all that. For M ∈ (0,+∞) fixed, let q ∈
L∞(Ω,R) fulfill

‖q‖L∞(Ω) 6M. (1.1)
We define Aq as the operator in L2(Ω), associated with the closed sesquilinear form

aq(u, v) :=
∫

Ω

(
∇u(x) · ∇v(x) + q(x)u(x)v(x)

)
dx, u, v ∈ D(aq) := H1

0 (Ω), (1.2)

where H1
0 (Ω) denotes the closure of C∞0 (Ω), the set of infinitely differentiable and compactly

supported functions in Ω, for the topology of the first-order Sobolev space H1(Ω). The
operator Aq is self-adjoint in L2(Ω) and acts on its domain1 as

Aqu = (−∆ + q)u, u ∈ D(Aq) = H1
0 (Ω) ∩H2(Ω). (1.3)

Here, the notation H2(Ω) stands for the usual second-order Sobolev space in Ω, and we recall
that the graph norm of Aq is equivalent to the one of H2(Ω), i.e.

c−1 ‖u‖H2(Ω) 6 ‖u‖D(Aq) := ‖u‖L2(Ω) + ‖Aqu‖L2(Ω) 6 c ‖u‖H2(Ω) , u ∈ D(Aq), (1.4)

for some constant c ∈ (1,+∞) that depends only on Ω and M .
Next, since the injection H1

0 (Ω) ↪→ L2(Ω) is compact, then the same is true for the
resolvent2 of Aq, and the spectrum of Aq is discrete. We denote by {λn, n ∈ N} the non-
decreasing sequence of eigenvalues of Aq, repeated with their multiplicity,

λ1 6 . . . 6 λn 6 λn+1 6 . . . , n ∈ N.
1The assumption ∂Ω ∈ C1,1 is needed for applying the classical elliptic regularity theory that establishes

that D(Aq) ⊂ H2(Ω).
2This is provided 0 is in the resolvent set of Aq, but since q is bounded as in (1.1), one can assume that

this is the case without restricting the generality of the reasoning, upon possibly substituting Aq + M for
Aq.
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In view of (1.1)-(1.2), we infer from the Min-Max principle that

λ1 > −M,

and we recall for further use that
lim
n→∞

λn = +∞. (1.5)

Let {ϕn, n ∈ N} be an orthonormal basis in L2(Ω) of eigenfunctions of Aq, such that

Aqϕn = λnϕn, n ∈ N.

With reference to (1.4)-(1.5), there exist two constants nM ∈ N and c ∈ (0,+∞), both of
them depending only on Ω and M , such that

c−1λn 6 ‖ϕn‖H2(Ω) 6 cλn, n > nM . (1.6)

Put
ψn := ∂νϕn, n ∈ N,

where ν denotes the outward normal vector to ∂Ω and ∂νu := ∇u ·ν is the normal derivative
of ϕ. Then, it follows from (1.6) and the continuity of the trace operator τ1 : u 7→ (∂νu)|∂Ω
from H2(Ω) into H1/2(∂Ω), that we have

‖ψn‖H1/2(∂Ω) 6 cλn, n > nM , (1.7)

for some positive constant c that depends only on Ω and M .

1.2. Review of the one-dimensional case. Fix d = 1 and recall that we have Ω = (0, 1)
with

Aq = − d2

dx2 + q(x), D(Aq) = {u ∈ H2(0, 1), u(0) = u(1) = 0},

in this case.

1.2.1. An obstruction to identifiability. A very natural question that arises in this context
is to know whether q can be determined by knowledge of Sp(Aq) = {λn, n ∈ N}. But
the answer is negative as the spectrum does not discriminate between symmetric potentials.
This can be seen by noticing that we have

UAqU
−1 = AUq, (1.8)

where we have set (Uf)(x) := f(1− x) for all f ∈ L2(Ω) and a.e. x ∈ Ω. Since U is unitary
in L2(Ω), then the operators Aq and AUq are unitarily equivalent, by (1.8). Hence they are
iso-spectral: Sp(AUq) = Sp(Aq). Thus, one cannot distinguish between the potentials q and
Uq, from knowledge of the two spectra Sp(Aq) and Sp(AUq), despite of the fact that q 6= Uq
when q is not symmetric about the midpoint x = 1/2 of the interval Ω.

Therefore, the spectrum of Aq does not uniquely determine q, and some additional spec-
tral data is needed for identifying the potential.
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1.2.2. One-dimensional Borg-Levinson theorem. Assuming that ϕ′n(0) = dϕn
dx

(0) = 1 for all
n ∈ N, G. Borg [4] and N. Levinson [16] established when Sp(Aq) is known, that additional
knowledge of {‖ϕn‖L2(Ω) , n ∈ N} uniquely determines q.

Theorem 1.1 (Borg (1946) and Levinson (1949)). For λ ∈ R and for qj ∈ L∞(0, 1;R),
j = 1, 2, let uj(·, λ) be the H2(0, 1)-solution to the initial values problem{

(− d2

dx2 + qj(x))uj(x, λ) = λuj(x, λ), x ∈ (0, 1)
uj(0, λ) = 0, u′j(0, λ) = 1. (1.9)

Denote by {λj,n, n ∈ N} the non-decreasing sequence of the Dirichlet eigenvalues associated
with Aqj , obtained by imposing:

uj(1, λj,n) = 0, n ∈ N.
Then, we have the implication:(

λ1,n = λ2,n and ‖u1(·, λ1,n)‖L2(0,1) = ‖u2(·, λ2,n)‖L2(0,1) , n ∈ N
)

=⇒ (q1 = q2 in (0, 1)) .

Later on, I. M. Gel’fand and B. M. Levitan proved that uniqueness is still valid upon
substituting u′j(1, λj,n) for ‖uj(·, λj,n)‖L2(0,1), j = 1, 2, in Theorem 1.1:

Theorem 1.2 (Gel’fand-Levitan (1951)). Under the conditions of Theorem 1.1 we have:
(λ1,n = λ2,n and u′1(1, λ1,n) = u′2(1, λ2,n), n ∈ N) =⇒ (q1 = q2 in (0, 1)) .

Remark 1.3. Let p, q, ρ be real-valued and bounded functions in (0, 1), with p and ρ
positive. Introduce the operator

Ap,q,ρ = −ρ−1 d

dx

(
p
d

dx

)
+ q, D(Ap,q,ρ) = {u ∈ H1

0 (0, 1), pu′ ∈ H1(0, 1)},

which is self-adjoint in L2
ρ(0, 1), the usual L2(0, 1)-space endowed with the weighted scalar

product 〈u, v〉L2
ρ(0,1) =

∫ 1
0 ρ(x)u(x)v(x)dx. Denote by {λn, n ∈ N} the sequence of the

eigenvalues of Ap,q,ρ and by {un, n ∈ N} a L2
ρ(0, 1)-orthonormal basis of eigenfunctions of

Ap,q,ρ, obeying Ap,q,ρun = λnun. If p and ρ are C1,1(0, 1), then the boundary spectral data
BSD(p, q, ρ) = {(λn, u′n(1)), n ∈ N}

uniquely determine either of the three coefficients p, q and ρ, when the two others are known.
Indeed, one can check by using the Liouville transformation y(x) = L−1 ∫ x

0 p
−1/2(t)ρ1/2(t)dt,

x ∈ (0, 1), where L =
∫ 1

0 p
−1/2(t)ρ1/2(t)dt, as a coordinate transformation, that the equation

−(pu′)′ + qu− λρu = 0 in (0, 1) reduces to its normal form −u′′ + V u = λu in (0, 1), where
V = Vp,q,ρ is expressed in terms of p, q and ρ, while the boundary spectral data is preserved,
i.e.

BSD(1, V, 1) = BSD(p, q, ρ).
Thus, Theorem 1.2 yields recovery of V from BSD(p, q, ρ), hence the result. Notice that this
change of coordinates is no longer valid for discontinuous p and ρ. We refer the reader to [7]
for a specific treatment of this problem.
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All the approaches from G. Borg, N. Levinson or I. M. Gel’fand and B. M. Levitan, were
based on highly one-dimensional techniques, but two great ideas emerged in the 80’, that
paved the way toward solving the multidimensional Borg-Levinson inverse spectral problem.
The first one is called the C-property, see [21]. It is due to A. G. Ramm who showed
that the set {u1(·, λ)u2(·, λ), λ ∈ (0,+∞)} is dense in L1(0, 1). The second one is called
the boundary control method, see [3]. It was established by M. I. Belishev upon applying
the boundary controllability theory to the hyperbolic equation associated with the Sturm-
Liouville system (1.9). One common nice feature of these two great ideas is that they apply
to higher dimensions d > 2 as well.

1.3. Multidimensional identification results.

1.3.1. Boundary spectral data. Let us recall that {λn, n ∈ N} is the non-decreasing sequence
of the eigenvalues of Aq (repeated with the multiplicity), that {ϕn, n ∈ N} is a L2(Ω)-
orthonormal basis of eigenfunctions of Aq such that Aqϕn = λnϕn, and that ψn = ∂νϕn. We
define the boundary spectral data (BSD) of Aq, or the BSD associated with q, as:

BSD(q) := {(λn, ψn), n ∈ N}.
Remark 1.4. For all n ∈ N, one may replace ϕn by eiθnϕn with θn ∈ R, in the above
definition. Thus it is clear that the BSD are not defined in a unique way: they depend on
the choice of the L2(Ω)-orthonormal basis {ϕn, n ∈ N} of eigenfunctions of Aq.
1.3.2. Multidimensional identifiability. In 1988, it was proved for d > 2 by A. Nachman,
J. Sylvester and G. Uhlmann in [17], and independently by R. Novikov in [18], that the
potential q is uniquely determined by BSD(q), i.e. that the following implication

(BSD(q1) = BSD(q2)) =⇒ (q1 = q2),
holds for any two suitable potentials qj, j = 1, 2. This result has been improved in several
ways by various authors.

Firstly, H. Isozaki [11] (see also M. Choulli [8]) extended the result of [17, 18] when
finitely many eigenpairs remain unknown.
Theorem 1.5. For j = 1, 2, let qj ∈ L∞(Ω,R) and write3 BSD(qj) = {(λj,n, ψj,n), n ∈ N}.
Then, for all N ∈ N, we have the following implication:

((λ1,n, ψ1,n) = (λ2,n, ψ2,n), n > N) =⇒ (q1 = q2).
Recently, uniqueness in the determination of q was proved in [9, 13] from the knowledge

of the asymptotic behavior of BSD(q) when n→ +∞.
Theorem 1.6. Let qj for j = 1, 2, and the notations, be the same as in Theorem 1.5.
Assume that the asymptotics of BSD(q1) and BSD(q2) coincide, in the sense that

lim
n→∞

(λ1,n − λ2,n) = 0 and
+∞∑
n=1
‖ψ1,n − ψ2,n‖2

L2(∂Ω) <∞.

3That is to say that {λj,n, n ∈ N} is the non-decreasing sequence of the eigenvalues of Aqj
and that

ψj,n = ∂νϕj,n for all n ∈ N, where {ϕj,n, n ∈ N} is a L2(Ω)-orthonormal basis of eigenvectors of Aqj
such

that Aqj
ϕj,n = λj,nϕj,n.
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Then, we have q1 = q2 in Ω.
The multidimensional Borg-Levinson theorem has been studied in many different kinds

of settings4 and it is not quite possible to give an extensive survey of this here, but we shall
mention a few results which are relevant for the problem under investigation in this text. In
[19], L. Päivärinta and V. Serov proved identifiability of unbounded potentials q ∈ Lp(Ω,R)
for p > d/2, by BSD(q). The case of p = d/2, d > 3, has been studied by V. Pohjola in [20].
As for Borg-Levinson inverse spectral theory with partial Neumann data, we refer the reader
to M. Bellassoued, M. Choulli and M. Yamamoto’s article [2], where a log-stability estimate
for electric potentials which are known in a neighborhood of the boundary, is established
with respect to the BSD measured on an arbitrary non-empty open subset of the boundary5.

1.3.3. Outline. The paper is organized as follows. In Section 2 we prove Theorems 1.5 and
1.6. In Subsection 2.1 we express the strong solution to the Dirichlet problem for −∆+q−λ,
λ ∈ C \ Sp(Aq), in terms of BSD(q). Subsection 2.2 contains the proof Isozaki’s formula,
which is useful for the derivation of Theorems 1.5 and 1.6, presented in Subsections 2.3
and 2.4, respectively. In Subsection 2.5 we examine the stability issue of the Borg-Levinson
inverse problem under study. Finally, we derive a parabolic identification result in Section
3, by means of Theorem 1.5.

2. Multidimensional Borg-Levinson theory

This section contains the proof of the incomplete Borg-Levinson theorem stated in The-
orem 1.5 and the asymptotic Borg-Levinson theorem stated in Theorem 1.6. We start by
establishing several technical results that are needed by the derivation of Theorems 1.5 and
1.6.

2.1. Preliminaries. For q ∈ L∞(Ω,R), f ∈ H3/2(∂Ω) and λ ∈ C, we consider the boundary
value problem (BVP) {

(−∆ + q − λ)u = 0 in Ω
u = f on ∂Ω. (2.1)

First, we establish that there exists a unique strong solution6 to the Cauchy problem
(2.1) that can be expressed in terms of BSD(q).
Lemma 2.1. Let q ∈ L∞(Ω,R) and f ∈ H3/2(∂Ω). Then, for each λ ∈ C \ Sp(Aq) there
exists a unique solution uλ ∈ H2(Ω) to (2.1). Moreover uλ reads

uλ =
+∞∑
n=1

〈f, ψn〉L2(∂Ω)

λ− λn
ϕn in L2(Ω), (2.2)

4Such as operators in the divergence form, see e.g. B. Canuto and O. Kavian’s paper [6], where two un-
known coefficients out of three are simultaneously identified by the BSD, or magnetic Schrödinger operators,
see e.g. Y. Kian’s article [14].

5The strategy that is used in this paper is quite the opposite of the one we apply in the last section of
this text for solving parabolic inverse coefficient problems by means of the Borg-Levinson theorem, in the
sense that the authors rather derive their spectral stability result from a hyperbolic stability inequality.

6A strong solution to (2.1) is a solution in H2(Ω), which satisfies the equation a. e. in Ω.
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and we have

lim
λ→−∞

‖uλ‖2
L2(Ω) = lim

λ→−∞

+∞∑
n=1

∣∣∣∣∣〈f, ψn〉L2(∂Ω)

λ− λn

∣∣∣∣∣
2
 = 0. (2.3)

Proof. We split the proof into three steps.

Step 1: Existence and uniqueness of the solution to (2.1). Since f ∈ H3/2(∂Ω) and since
the trace operator τ0 : v 7→ v|∂Ω is surjective from H2(Ω) onto H3/2(∂Ω), then there exists
F ∈ H2(Ω) such that τ0F = f . Thus, uλ is a solution to (2.1) iff vλ := uλ − F solves{

(−∆ + q − λ)v = G in Ω
v = 0 on ∂Ω, (2.4)

with G := −(−∆ + q − λ)F ∈ L2(Ω) ∈ L2(Ω). Next, λ being in the resolvent set of Aq, we
see that (2.4) admits a unique solution vλ = (Aq − λ)−1G. Thereofore, uλ = vλ + F is the
unique solution to (2.1), and uλ ∈ H2(Ω).

Step 2: Proof of (2.2). For all n ∈ N, we have

0 = 〈(−∆ + q − λ)uλ, ϕn〉L2(Ω) =
∫

Ω
(−∆ + q(x)− λ)uλ(x)ϕn(x)dx,

whence
0 = −

∫
∂Ω
∂νuλ(x)ϕn(x)dx+

∫
∂Ω
uλ(x)ψn(x)dx+

∫
Ω
uλ(x)(Aq − λ)ϕn(x)dx

=
∫
∂Ω
f(x)ψn(x)dx+ (λn − λ)

∫
Ω
uλ(x)ϕn(x)dx,

by integrating by parts. As a consequence we have 〈uλ, ϕn〉L2(Ω) = 〈f,ψn〉L2(∂Ω)
λ−λn , so (2.2) follows

readily from this and the L2(Ω)-decomposition uλ = ∑+∞
n=1〈uλ, ϕn〉L2(Ω)ϕn.

Step 3: Proof of (2.3). With reference to (1.1)-(1.2), we have for all n ∈ N,

λn = 〈Aqϕn, ϕn〉L2(Ω) = aq(ϕn, ϕn) =
∫

Ω
|∇ϕn(x)|2 dx+

∫
Ω
q(x) |ϕn(x)|2 dx > −M,

hence Sp(Aq) ⊂ [−M,+∞). Thus,we see that every λ ∈ (−∞,−(1+M)] lies in the resolvent
set of Aq, and that ∣∣∣∣∣〈f, ψn〉L2(∂Ω)

λ− λn

∣∣∣∣∣
2

6

∣∣∣∣∣〈f, ψn〉L2(∂Ω)

1 +M + λn

∣∣∣∣∣
2

, n ∈ N. (2.5)

Further, since ∑+∞
n=1

∣∣∣∣ 〈f,ψn〉L2(∂Ω)
1+M+λn

∣∣∣∣2 =
∥∥∥u−(1+M)

∥∥∥2

L2(Ω)
<∞, by (2.2) and the Parseval theorem,

and since limλ→−∞

∣∣∣∣ 〈f,ψn〉L2(∂Ω)
λ−λn

∣∣∣∣2 = 0 for all n ∈ N, we infer from (2.5) and the Lebesgue
dominated convergence theorem that

lim
λ→−∞

+∞∑
n=1

∣∣∣∣∣〈f, ψn〉L2(∂Ω)

λ− λn

∣∣∣∣∣
2
 =

+∞∑
n=1

 lim
λ→−∞

∣∣∣∣∣〈f, ψn〉L2(∂Ω)

λ− λn

∣∣∣∣∣
2
 = 0.
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Putting this, together with (2.2) and the Parseval formula, we obtain (2.3). �

Notice that the series in (2.2) converges in L2(Ω) and not in H2(Ω). Therefore, the
normal derivative ∂νuλ of the solution uλ to (2.1) cannot be obtained directly from (2.2),
by substituting ψn for ϕn in the right hand side. To achieve this, we need to introduce an
additional specific spectral parameter µ, and consider the difference uλ − uµ, as follows.

Lemma 2.2. Let q and f be the same as in Lemma 2.1. Then, for all λ and µ in C\Sp(Aq),
we have

∂ν(uλ − uµ) = (µ− λ)
+∞∑
n=1

〈f, ψn〉L2(∂Ω)

(λ− λn)(µ− λn)ψn in H1/2(∂Ω). (2.6)

Here uλ (resp., uµ) denotes the H2(Ω)-solution to (2.1) (resp., (2.1) where λ is replaced by
µ), given by Lemma 2.1.

Proof. In view of (2.1), we see that v := uλ − uµ solves{
(−∆ + q − λ)v = (λ− µ)uµ in Ω
v = 0 on ∂Ω. (2.7)

Since λ is in the resolvent set of Aq, (2.7) yields

v = (λ− µ)(Aq − λ)−1uµ = (λ− µ)
+∞∑
n=1

〈uµ, ϕn〉L2(Ω)

λn − λ
ϕn, (2.8)

the series being convergent in L2(Ω). Recall that we have

uµ =
+∞∑
n=1

〈f, ψn〉L2(∂Ω)

µ− λn
ϕn in L2(Ω), (2.9)

upon substituting µ for λ in (2.2). Putting this together with (2.8), we get that

v = (λ− µ)
+∞∑
n=1

〈f, ψn〉L2(∂Ω)

(λn − λ)(µ− λn)ϕn in L2(Ω), (2.10)

Next, since v ∈ D(Aq) and Aqv = (λ− µ)uµ + λv, we deduce from (2.9)-(2.10) that

Aqv = (λ− µ)
+∞∑
n=1

λn〈f, ψn〉L2(∂Ω)

(λn − λ)(µ− λn)ϕn in L2(Ω).

Therefore, the series in (2.10) converges for the topology of the norm of Aq, hence it converges
in H2(Ω), according to (1.4). Finally, we obtain (2.6) from this by invoking the continuity
of the trace operator τ1 : u 7→ (∂νu)|∂Ω from H2(Ω) into H1/2(∂Ω). �

The next lemma claims for any two real-valued bounded potentials q1 and q2, that the
solutions to (2.1) associated with either q = q1 or q = q2, are closed as λ → −∞: in some
sense the influence of the potential is dimmed when the spectral parameter λ goes to −∞.
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Lemma 2.3. Let f ∈ H3/2(∂Ω) and let qj ∈ L∞(Ω,R), j = 1, 2. For λ ∈ C \ (Sp(Aq1) ∪
Sp(Aq2)), let uj,λ be the solution to (2.1) where qj is substituted for q, which is given by
Lemma 2.1. Then, we have

lim
λ→−∞

‖∂νu1,λ − ∂νu2,λ‖L2(∂Ω) = 0. (2.11)

Proof. Set wλ := u1,λ − u2,λ, so we have{
(−∆ + q1 − λ)wλ = (q2 − q1)u2,λ in Ω
wλ = 0 on ∂Ω,

from (2.1), and hence wλ = (Aq1 − λ)−1(q2 − q1)u2,λ. Bearing in mind for all real number
λ < −‖q1‖L∞(Ω), that ‖(Aq1 − λ)−1‖B(L2(Ω)) = dist−1(λ, Sp(Aq1)) 6 1/(‖q1‖L∞(Ω) + λ), we
find that

‖wλ‖L2(Ω) 6
‖q2 − q1‖L∞(Ω) ‖u2,λ‖L2(Ω)

−λ− ‖q1‖L∞(Ω)
, λ ∈

(
−∞,−‖q1‖L∞(Ω)

)
.

Here and in the remaining part of this text, B(L2(Ω)) denotes the space of linear bounded
operators7 in L2(Ω). From this and (2.3) it then follows that

lim
λ→−∞

λ ‖wλ‖L2(Ω) = 0. (2.12)

Next, since Aq1wλ = (q2 − q1)u2,λ + λwλ, it holds true for every λ < −‖q1‖L∞(Ω) that
‖Aq1wλ‖L2(Ω) 6 ‖q2 − q1‖L∞(Ω) ‖u2,λ‖L2(Ω) − λ ‖wλ‖L2(Ω) ,

so we get limλ→−∞ ‖Aq1wλ‖L2(Ω) = 0, from (2.3) and (2.12). As a consequence we have

lim
λ→−∞

(
‖wλ‖L2(Ω) + ‖Aq1wλ‖L2(Ω)

)
= 0.

This and (1.4) entail
lim

λ→−∞
‖u1,λ − u2,λ‖H2(Ω) = 0

which together with the continuity of the trace operator τ1 : u 7→ (∂νu)|∂Ω from H2(Ω) into
H1/2(∂Ω), yield (2.11). �

2.2. Isozaki’s asymptotic representation formula. Let qj ∈ L∞(Ω,R) satisfy
‖qj‖L∞(Ω) 6M, j = 1, 2, (2.13)

for some a priori fixed constant M ∈ (0,+∞). In [11], H. Isozaki gives a simple represen-
tation formula, expressing the difference q1 − q2 in terms of the Dirichlet-to-Neumann (DN)
operator associated with the BVP obtained by substituting qj for q in (2.1). More precisely,
adapting the argument of [11] to fit our aim in this text, we fix τ ∈ (1,+∞) and we consider
the BVP (2.1) with λ = λ+

τ := (τ + i)2 and q = qj, i.e.{
(−∆ + qj − λ+

τ )u = 0 in Ω
u = f on ∂Ω. (2.14)

7The usual norm of T ∈ B(L2(Ω)) is defined by ‖T‖B(L2(Ω)) = supf∈L2(Ω)\{0}
‖Tf‖L2(Ω)
‖f‖L2(Ω)

.
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We denote by uj,λ+
τ
the H2(Ω)-solution to (2.14) (for the sake of notational simplicity we

drop the dependence of uj,λ+
τ
on f). Let us introduce the DN map associated with (2.14), as

Λj,λ+
τ

: H3/2(∂Ω) → H1/2(∂Ω)
f 7→

(
∂νuj,λ+

τ

)
|∂Ω

.
(2.15)

Given two test functions f±τ , we shall make precise below, we aim to link the difference q1−q2
to the asymptotic behavior of

Sτ := S1,τ − S2,τ , where Sj,τ := 〈Λj,λ+
τ
f+
τ , f

−
τ 〉L2(∂Ω), (2.16)

as τ → +∞.

2.2.1. Test functions. For ξ ∈ Rd fixed, and for every τ ∈ (|ξ|+1,+∞), we set λ±τ := (τ±i)2,
and we seek two functions f±τ such that

(−∆− λ±τ )f±τ = 0 in Ω
limτ→+∞ f

+
τ (x)f−τ (x) = e−iξ·x, x ∈ Ω

supτ∈(|ξ|+1,+∞) ‖f±τ ‖C(Ω) <∞.
(2.17)

Here and in the remaining part of this text, the notation · (resp., |·|) stands for the Euclidian
product (resp., norm) in Rd.

Pick η ∈ Sd−1 such that ξ · η = 0, and put

βτ :=

√
1− |ξ|

2

4τ 2 and η±τ := βτη ∓
ξ

2τ , (2.18)

in such a way that |η±τ | = 1. Then, the two following functions

f±τ (x) := ei(τ±i)η
±
τ ·x, x ∈ Ω, (2.19)

fulfill the conditions of (2.17). As a matter of fact, it can be checked through direct com-
putation from (2.18)-(2.19), that ∆f±τ = −λ±τ |η±τ |

2
f±τ = −λ±τ f±τ in Ω, that f+

τ (x)f−τ (x) =
e−i

τ+i
τ
ξ·x for all x ∈ Ω, and that∣∣∣f±τ (x)

∣∣∣ 6 e|η
±
τ ||x| 6 e|x|, x ∈ Ω. (2.20)

We notice for further use from (2.20) that the estimate∥∥∥f±τ ∥∥∥Lp(X)
6 c∗ :=

(
1 + |Ω|1/2 + |∂Ω|1/2

)
sup
x∈Ω

e|x|, (2.21)

holds with X = Ω or X = ∂Ω, and with p = 2 or p =∞. Here |Ω| (resp., |∂Ω|) denotes the
diameter of Ω (resp., the length of ∂Ω).
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2.2.2. Probing (2.1) with f±τ . For j = 1, 2 and z ∈ C\Sp(Aqj), we denote by u±j,z the H2(Ω)-
solution to the BVP (2.1), where (qj, z, f±τ ) is substituted for (q, λ, f). The function u±j,z is
characterized by {

(−∆ + qj − z)u±j,z = 0 in Ω
u±j,z = f±τ on ∂Ω, (2.22)

hence v±j,z := u±j,z − f±τ solves{
(−∆ + qj − z)v±j,z = −(−∆ + qj − z)f±τ in Ω
v±j,z = 0 on ∂Ω. (2.23)

Moreover, since (−∆ + qj − z)f±τ = (qj + λ±τ − z)f±τ , by the first line in (2.17), it follows
from (2.23) that

v±j,z = −(Aqj − z)−1(qj + λ±τ − z)f±τ . (2.24)
Let us now examine the case where z = λ±τ , which is permitted since λ±τ belongs to the
resolvent set of the self-adjoint operator Aqj , as we have:

Im
(
λ±τ
)

= ±2τ 6= 0. (2.25)

We shall establish that the L2(Ω)-norm of v±
j,λ±τ

scales like τ−1 as τ becomes large, whereas
the one of u±

j,λ±τ
is bounded uniformly in τ ∈ (1+|ξ| ,+∞). To do that, we substitute λ±τ for z

in (2.24) and get that v±
j,λ±τ

= −(Aqj −λ±τ )−1qjf
±
τ . Next, using that

∥∥∥(Aqj − λ±τ )−1
∥∥∥
B(L2(Ω))

=
dist−1(λ±τ , Sp(Aqj)) 6 (2τ)−1, according to (2.25), we obtain

∥∥∥v±
j,λ±τ

∥∥∥
L2(Ω)

6
‖qj‖L∞(Ω) ‖f

±
τ ‖L2(Ω)

2τ 6
Mc∗
2τ , j = 1, 2, (2.26)

upon applying (2.13) and (2.21) with (X, p) = (Ω, 2). Now, bearing in mind that τ > 1 and
recalling that u±j,z = v±j,z + f±τ , we derive from (2.26) that∥∥∥u±

j,λ±τ

∥∥∥
L2(Ω)

6
M + 2

2 c∗, j = 1, 2. (2.27)

2.2.3. Isozaki’s formula.

Proposition 2.4. For j = 1, 2, let qj ∈ L∞(Ω,R) satisfy (2.13). Then, for all ξ ∈ Rd, we
have ∫

Ω
(q1(x)− q2(x))e−iξ·xdx = lim

τ→+∞
Sτ , (2.28)

where Sτ is defined by (2.15)-(2.16).

Proof. For j = 1, 2, we consider the H2(Ω)-solution u+
j,λ+

τ
to the BVP (2.14) with f = f+

τ :{ (−∆ + qj − λ+
τ )u+

j,λ+
τ

= 0 in Ω
u+
j,λ+

τ
= f+

τ on ∂Ω. (2.29)
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Upon left-multiplying the first line of (2.29) by f−τ , integrating over Ω, and applying the
Green formula, we obtain with the aid of (2.17) that

0 =
∫

Ω
(−∆ + qj − λ+

τ )u+
j,λ+

τ
(x)f−τ (x)dx

= 〈f+
τ , ∂νf

−
τ 〉L2(∂Ω) − 〈∂νu+

j,λ+
τ
, f−τ 〉L2(∂Ω) +

∫
Ω
u+
j,λ+

τ
(x)(−∆ + qj − λ−τ )f−τ (x)dx

= 〈f+
τ , ∂νf

−
τ 〉L2(∂Ω) − Sj,τ +

∫
Ω
qj(x)u+

j,λ+
τ

(x)f−τ (x)dx, j = 1, 2.

Thus, we have Sj,τ = 〈f+
τ , ∂νf

−
τ 〉L2(∂Ω) +

∫
Ω qj(x)u+

j,λ+
τ

(x)f−τ (x)dx for j = 1, 2, and conse-
quently

Sτ = S1,τ − S2,τ =
∫

Ω

(
q1(x)u+

1,λ+
τ

(x)− q2(x)u+
2,λ+

τ
(x)
)
f−τ (x)dx. (2.30)

Next, taking into account that u+
j,λ+

τ
= v+

j,λ+
τ

+ f+
τ for j = 1, 2, we deduce from (2.30) that

Sτ −
∫

Ω
(q1(x)− q2(x))f+

τ (x)f−τ (x)dx =
∫

Ω
(q1(x)v+

1,λ+
τ

(x)− q2(x)v+
2,λ+

τ
(x))f−τ (x)dx.

Therefore, by applying (2.21) with (X, p) = (Ω, 2) and (2.26), we get∣∣∣∣Sτ − ∫
Ω

(q1(x)− q2(x))f+
τ (x)f−τ (x)dx

∣∣∣∣ 6
 2∑
j=1
‖qj‖L∞(Ω)

∥∥∥v+
j,λ+

τ

∥∥∥
L2(Ω)

∥∥∥f−τ ∥∥∥L2(Ω)
6
M2c2

∗
τ

,

which leads to:
lim

τ→+∞

(
Sτ −

∫
Ω

(q1(x)− q2(x))f+
τ (x)f−τ (x)dx

)
= 0. (2.31)

Finally, as we have

lim
τ→+∞

∫
Ω

(q1(x)− q2(x))f+
τ (x)f−τ (x)dx =

∫
Ω

(q1(x)− q2(x))e−iξ·xdx,

by the second line of (2.17), (2.21) with (X, p) = (Ω,+∞), (2.13), and the dominated
convergence theorem, the desired result follows directly from this and from (2.31). �

Armed with Proposition 2.4 we turn now to proving Theorems 1.5 and 1.6.

2.3. Proof of the incomplete Borg-Levinson theorem. In this section we prove The-
orem 1.5. In view of Proposition 2.4, we have to show that

lim
τ→+∞

Sτ = 0, ξ ∈ Rd. (2.32)

Indeed, by combining the Isozaki formula (2.28) with (2.32), we get for every ξ ∈ Rd that
the Fourier transform

(Fq)(ξ) := 1
(2π)d/2

∫
Rd
q(x)e−iξ·xdx (2.33)

of the following function

q(x) :=
{
q1(x)− q2(x) if x ∈ Ω

0 if x ∈ Rd \ Ω, (2.34)
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reads (Fq)(ξ) = 1
(2π)d/2

∫
Ω(q1(x)− q2(x))e−iξ·xdx = 1

(2π)d/2 limτ→+∞ Sτ = 0. By the injectivity
of Fourier transform F , this entails that q = 0 in Rd, i.e. that q1 = q2 in Ω.

We turn now to establishing (2.32). To this purpose, we fix ξ ∈ Rd, pick τ ∈ (|ξ|+1,+∞),
and for j = 1, 2 and all z ∈ C \ Sp(Aqj), we consider the H2(Ω)-solution u+

j,z to the BVP
(2.1), where (qj, z, f+

τ ) is substituted for (q, λ, f), i.e.{
(−∆ + qj − z)u+

j,z = 0 in Ω
u+
j,z = f+

τ on ∂Ω.

For zj ∈ C \ Sp(Aqj), j = 1, 2, we put u+
j,z1,z2 := u+

j,z1 − u
+
j,z2 and recall from (2.16) that

Sτ = 〈Λ1,λ+
τ
f+
τ , f

−
τ 〉L2(∂Ω) − 〈Λ2,λ+

τ
f+
τ , f

−
τ 〉L2(∂Ω) = 〈∂νu+

1,λ+
τ
− ∂νu+

2,λ+
τ
, f−τ 〉L2(∂Ω).

Thus, for every µ ∈ (−∞,−M) we have
Sτ = 〈∂νu+

1,λ+
τ ,µ
, f−τ 〉L2(∂Ω) − 〈∂νu+

2,λ+
τ ,µ
, f−τ 〉L2(∂Ω) + 〈∂νu+

1,µ − ∂νu+
2,µ, f

−
τ 〉L2(∂Ω). (2.35)

In view of (2.11), we have limµ→−∞

∥∥∥∂νu+
1,µ − ∂νu+

2,µ

∥∥∥
L2(∂Ω)

= 0 so we get

Sτ = lim
µ→−∞

〈∂νu+
1,λ+

τ ,µ
− ∂νu+

2,λ+
τ ,µ
, f−τ 〉L2(∂Ω), (2.36)

upon sending µ to −∞ in (2.35).
Next, we introduce

κτ,µ(t) := µ− λ+
τ

(λ+
τ − t)(µ− t)

, t ∈ R \ {µ}, (2.37)

and set
ζτ (ψ, ϕ) := 〈f+

τ , ψ〉L2(∂Ω)〈f−τ , ϕ〉L2(∂Ω), ψ, ϕ ∈ L
2(∂Ω). (2.38)

In light of Lemma 2.2, the scalar product in the right hand side of (2.36) decomposes as

〈∂νu+
1,λ+

τ ,µ
− ∂νu+

2,λ+
τ ,µ
, f−τ 〉L2(∂Ω) =

+∞∑
n=1

(κτ,µ(λ1,n)ζτ (ψ1,n)− κτ,µ(λ2,n)ζτ (ψ2,n)) , (2.39)

where the notation ζτ (ψ) is a shorthand for ζτ (ψ, ψ). Further, as (λ1,n, ψ1,n) = (λ2,n, ψ2,n)
for every n > N , by assumption, (2.39) becomes

〈∂νu+
1,λ+

τ ,µ
− ∂νu+

2,λ+
τ ,µ
, f−τ 〉L2(∂Ω) =

N−1∑
n=1

(κτ,µ(λ1,n)ζτ (ψ1,n)− κτ,µ(λ2,n)ζτ (ψ2,n)) , (2.40)

the sum in the right hand side of the above equality being taken equal to zero when N = 1.
Further, taking into account that

lim
µ→−∞

κτ,µ(λj,n) = 1/(λ+
τ − λj,n), j = 1, 2, n = 1, . . . , N − 1,

we deduce from (2.36) and (2.40), that

Sτ =
N−1∑
n=1

(
ζτ (ψ1,n)
λ+
τ − λ1,n

− ζτ (ψ2,n)
λ+
τ − λ2,n

)
.
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Next, bearing in mind that Im (λ+
τ ) = 2τ , we see that |λ+

τ − λj,n| > 2τ for j = 1, 2 and for
all n = 1, . . . , N − 1, and hence that

|Sτ | 6
N−1∑
n=1

(|ζτ (ψ1,n)|+ |ζτ (ψ2,n)|) (2τ)−1

6
∥∥∥f+

τ

∥∥∥
L2(∂Ω)

∥∥∥f−τ ∥∥∥L2(∂Ω)

N−1∑
n=1

(
‖ψ1,n‖2

L2(∂Ω) + ‖ψ2,n‖2
L2(∂Ω)

)
(2τ)−1,

from (2.37)-(2.38). Now, applying (2.21) with X = ∂Ω and p = 2, we obtain that

|Sτ | 6 c2
∗

N−1∑
n=1

(
‖ψ1,n‖2

L2(∂Ω) + ‖ψ2,n‖2
L2(∂Ω)

)
τ−1,

which immediately entails (2.32).

2.4. Proof of the asymptotic Borg-Levinson theorem. In this section we prove The-
orem 1.6. We stick with the notations of Section 2.3 and recall from (2.36) and (2.39) that

Sτ = lim
µ→−∞

〈∂νu+
1,λ+

τ ,µ
− ∂νu+

2,λ+
τ ,µ
, f−τ 〉L2(∂Ω) = lim

µ→−∞

+∞∑
n=1

(An,τ,µ +Bn,τ,µ) , (2.41)

where
An,τ,µ := (κτ,µ(λ1,n)− κτ,µ(λ2,n)) ζτ (ψ1,n), (2.42)

and
Bn,τ,µ := κτ,µ(λ2,n) (ζτ (ψ1,n − ψ2,n, ψ1,n) + ζτ (ψ2,n, ψ1,n − ψ2,n)) . (2.43)

We split the proof into three steps. The first one, presented in Section 2.4.1, is to show that

lim
µ→−∞

+∞∑
n=1

An,τ,µ =
+∞∑
n=1

An,τ,∗, where An,τ,∗ := (λ1,n − λ2,n)ζτ (ψ1,n)
(λ+

τ − λ1,n)(λ+
τ − λ2,n) , (2.44)

while the second one, given in Section 2.4.2, establishes that

lim
µ→−∞

+∞∑
n=1

Bn,τ,µ =
+∞∑
n=1

Bn,τ,∗, where Bn,τ,∗ := ζτ (ψ1,n − ψ2,n, ψ1,n) + ζτ (ψ2,n, ψ1,n − ψ2,n)
λ+
τ − λ2,n

.

(2.45)
Finally, the end f the proof is displayed in Section 2.4.3.

2.4.1. Step 1: Proof of (2.44). Let us start by noticing that

|κτ,µ(λ1,n)− κτ,µ(λ2,n)| 6 2 |λ1,n − λ2,n| max
t∈[λ1,n,λ2,n]

(
1

|λ+
τ − t|

2 + 1
|µ− t|2

)
, n ∈ N.

This can be seen from the identity κτ,µ(λ1,n)− κτ,µ(λ2,n) = −
∫ λ2,n
λ1,n κ

′
τ,µ(t)dt, which yields

|κτ,µ(λ1,n)− κτ,µ(λ2,n)| 6 |λ1,n − λ2,n| max
t∈[λ1,n,λ2,n]

(
|λ+
τ − µ|

|λ+
τ − t| |µ− t|

2 + |λ+
τ − µ|

|λ+
τ − t|

2 |µ− t|

)
,
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and from the basic estimate |λ+
τ − µ| 6 |λ+

τ − t|+ |µ− t|, entailing:

|λ+
τ − µ|

|λ+
τ − t| |µ− t|

2 + |λ+
τ − µ|

|λ+
τ − t|

2 |µ− t|
6

1
|µ− t|2

+ 2
|λ+
τ − t| |µ− t|

+ 1
|λ+
τ − t|

2

6
2

|µ− t|2
+ 2
|λ+
τ − t|

2 .

Denote by λ∗,n a real number between λ1,n and λ2,n, where the maximum of the function
t 7→ |λ+

τ − t|
−2 + |µ− t|−2 is achieved, in such a way that we have

|κτ,µ(λ1,n)− κτ,µ(λ2,n)| 6 2 |λ1,n − λ2,n|
(

1
|λ+
τ − λ∗,n|

2 + 1
|µ− λ∗,n|2

)
, n ∈ N. (2.46)

Next, bearing in mind that limn→+∞ λ1,n = +∞, we pick N0 ∈ N so large, that

λ1,N0 >
∣∣∣λ+
τ

∣∣∣+ 4M. (2.47)

Since λ1,n > λ1,N0 for all n > N0, we have |λ+
τ − λ1,n| > λ1,n − |λ+

τ | > 4M in this case,
whence |λ+

τ − λ∗,n| > |λ+
τ − λ1,n| − |λ1,n − λ∗,n| > |λ+

τ − λ1,n| − 2M . Here, we used the basic
inequality |λ1,n − λ∗,n| 6 |λ1,n − λ2,n| and the estimate

|λ1,n − λ2,n| 6 ‖q1 − q2‖L∞(Ω) 6 2M, n ∈ N, (2.48)

arising from the Min-Max principle and the operator identity Aq2 = Aq1 +q2−q1. Therefore,
we have ∣∣∣λ+

τ − λ∗,n
∣∣∣ > |λ+

τ − λ1,n|
2 , n > N0. (2.49)

Similarly, taking µ ∈ (−∞,−(1 + 5M)), we have |µ− λ1,n| > −µ − M > 4M . Since
|λ1,n − λ∗,n| 6 2M , by (2.48), we get that |λ1,n − λ∗,n| 6 |µ− λ1,n| /2, and hence

|µ− λ∗,n| > |µ− λ1,n| − |λ1,n − λ∗,n| >
|µ− λ1,n|

2 , n ∈ N.

Putting this together with (2.42), (2.46) and (2.49), we obtain that

|An,τ,µ| 6 8δ1

(
|ζτ (ψ1,n)|
|λ+
τ − λ1,n|2

+ |ζτ (ψ1,n)|
|µ− λ1,n|2

)
, n > N0, (2.50)

where δ1 := supn∈N |λ1,n − λ2,n| <∞.
Further, in light of (2.38), we deduce from (2.3) that

+∞∑
n=1

|ζτ (ψ1,n)|
|`− λ1,n|2

6

+∞∑
n=1

∣∣∣∣∣〈f
+
τ , ψ1,n〉L2(∂Ω)

`− λ1,n

∣∣∣∣∣
2
1/2+∞∑

n=1

∣∣∣∣∣〈f
−
τ , ψ1,n〉L2(∂Ω)

`− λ1,n

∣∣∣∣∣
2
1/2

6
∥∥∥u+

1,`

∥∥∥
L2(Ω)

∥∥∥u−1,`∥∥∥L2(Ω)
, ` = λ+

τ , µ.
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Here, u±1,` denotes the H2(Ω)-solution to (2.1) where (`, q1, f
±
τ ) is substituted for (λ, q, f).

Thus, bearing in mind that λ+
τ = λ−τ , we derive from (2.50) that

+∞∑
n=N0

|An,τ,µ| 6 8δ1

(∥∥∥u+
1,λ+

τ

∥∥∥
L2(Ω)

∥∥∥u−1,λ−τ ∥∥∥L2(Ω)
+
∥∥∥u+

1,µ

∥∥∥
L2(Ω)

∥∥∥u−1,µ∥∥∥L2(Ω)

)
.

With reference to (2.3), we assume upon possibly enlarging −µ, that
∥∥∥u±1,µ∥∥∥L2(Ω)

6 1, and
obtain

+∞∑
n=N0

|An,τ,µ| 6 2δ1
(
(M + 2)2c2

∗ + 4
)
, (2.51)

with the aid of (2.27). Now, since limµ→−∞An,τ,µ = An,τ,∗ for all n ∈ N, we deduce (2.44)
from this and (2.51) by invoking the Lebesgue dominated convergence theorem.

2.4.2. Step 2: Proof of (2.45). For all n > N0, we infer from (2.47)-(2.48) that

λ2,n > λ1,n − |λ1,n − λ2,n| > λ1,N0 − 2M >
∣∣∣λ+
τ

∣∣∣ ,
whence |µ− λ2,n| = λ2,n − µ > |λ+

τ | − µ > |λ+
τ − µ|. Therefore, we get

|κτ,µ(λ2,n)| 6 1
|λ+
τ − λ2,n|

, n > N0,

from (2.37). This and (2.38) entail

|Bn,τ,µ| 6 ‖ψ1,n − ψ2,n‖L2(∂Ω)

(∥∥∥f+
τ

∥∥∥
L2(∂Ω)

∣∣∣∣∣〈f
−
τ , ψ1,n〉L2(∂Ω)

λ+
τ − λ2,n

∣∣∣∣∣+ ∥∥∥f−τ ∥∥∥L2(∂Ω)

∣∣∣∣∣〈f
+
τ , ψ2,n〉L2(∂Ω)

λ+
τ − λ2,n

∣∣∣∣∣
)

6 c∗ ‖ψ1,n − ψ2,n‖L2(∂Ω)

(∣∣∣∣∣〈f
−
τ , ψ1,n〉L2(∂Ω)

λ+
τ − λ2,n

∣∣∣∣∣+
∣∣∣∣∣〈f

+
τ , ψ2,n〉L2(∂Ω)

λ+
τ − λ2,n

∣∣∣∣∣
)
, (2.52)

by applying (2.21) with (X, p) = (∂Ω, 2).
Further, recalling from (2.47) that |λ+

τ − λ1,n| > 2 ‖q1 − q2‖L∞(Ω) for all n > N0, and
using the estimate |λ+

τ − λ2,n| > |λ+
τ − λ1,n| − ‖q1 − q2‖L∞(Ω) arising from (2.48), we find

that ∣∣∣λ+
τ − λ2,n

∣∣∣ > |λ+
τ − λ1,n|

2 = |λ
−
τ − λ1,n|

2 , n > N0. (2.53)

Putting this together with (2.52), we get for every µ ∈ (−∞,−(1 + 5M)], that

+∞∑
n=N0

|Bn,τ,µ| 6 2c∗ε1


 +∞∑
n=N0

∣∣∣∣∣〈f
−
τ , ψ1,n〉L2(∂Ω)

λ−τ − λ1,n

∣∣∣∣∣
2
1/2

+
 +∞∑
n=N0

∣∣∣∣∣〈f
+
τ , ψ2,n〉L2(∂Ω)

λ+
τ − λ2,n

∣∣∣∣∣
2
1/2

 ,
with ε1 :=

(∑+∞
n=1 ‖ψ1,n − ψ2,n‖2

L2(∂Ω)

)1/2
. This leads to

+∞∑
n=N0

|Bn,τ,µ| 6 2c∗ε1

(∥∥∥u−1,λ−τ ∥∥∥L2(Ω)
+
∥∥∥u+

2,λ+
τ

∥∥∥
L2(Ω)

)
6 8(M + 2)c2

∗,
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with the aid of Lemma 2.1 and (2.27). Now, (2.45) follows from this and the identities

lim
µ→−∞

Bn,τ,µ = Bn,τ,∗, n ∈ N,

by applying Lebesgue’s dominated convergence theorem.

2.4.3. Step 3: End of the proof. Putting (2.41) and (2.44)-(2.45) together, we obtain that

Sτ =
+∞∑
n=1

(An,τ,∗ +Bn,τ,∗) . (2.54)

Further, since Im (λ+
τ − λj,n) = 2τ for j = 1, 2 and all n ∈ N, by (2.25), we infer from (2.21)

with (X, p) = (∂Ω, 2), (2.38), and (2.44)-(2.45) that

|An,τ,∗| 6 c2
∗
|λ1,n − λ2,n| ‖ψ1,n‖2

L2(∂Ω)

τ 2

and

|Bn,τ,∗| 6 c2
∗

(
‖ψ1,n‖L2(∂Ω) + ‖ψ2,n‖L2(∂Ω)

)
‖ψ1,n − ψ2,n‖L2(∂Ω)

τ
.

Therefore, it holds true for all n ∈ N that limτ→+∞An,τ,∗ = limτ→+∞Bn,τ,∗ = 0, so it follows
from (2.54) that

lim sup
τ→+∞

|Sτ | 6 lim sup
τ→+∞

+∞∑
n=N
|An,τ,∗|+ lim sup

τ→+∞

+∞∑
n=N
|Bn,τ,∗| , N ∈ N. (2.55)

Moreover, setting δN := supn>N |λ1,n − λ2,n|, we infer from (2.38) and (2.44) that
+∞∑
n=N
|An,τ,∗| 6 δN

+∞∑
n=N

∣∣∣∣∣〈f
−
τ , ψ1,n〉L2(∂Ω)

λ+
τ − λ1,n

∣∣∣∣∣
∣∣∣∣∣〈f

+
τ , ψ1,n〉L2(∂Ω)

λ+
τ − λ2,n

∣∣∣∣∣
6 2δN

 +∞∑
n=N

∣∣∣∣∣〈f
−
τ , ψ1,n〉L2(∂Ω)

λ−τ − λ1,n

∣∣∣∣∣
2
1/2 +∞∑

n=N

∣∣∣∣∣〈f
+
τ , ψ1,n〉L2(∂Ω)

λ+
τ − λ1,n

∣∣∣∣∣
2
1/2

, N > N0.

In the last line we used the Cauchy-Schwarz inequality, the estimate (2.53) and the identity
|λ−τ − λ1,n| = |λ+

τ − λ1,n|. Therefore, applying Lemma 2.1 and (2.27), we obtain for all
N > N0, that

+∞∑
n=N
|An,τ,∗| 6 2δN

∥∥∥u−1,λ−τ ∥∥∥L2(∂Ω)

∥∥∥u+
1,λ+

τ

∥∥∥
L2(∂Ω)

6
(M + 2)2

2 c2
∗δN ,

which entails

lim sup
τ→+∞

+∞∑
n=N
|An,τ,∗| 6

(M + 2)2

2 c2
∗

(
sup
n>N
|λ1,n − λ2,n|

)
, N > N0. (2.56)
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Similarly, using (2.38) and (2.45), we can upper bound ∑+∞
n=N |Bn,τ,∗| by

+∞∑
n=N
‖ψ1,n − ψ2,n‖L2(∂Ω)

(∥∥∥f+
τ

∥∥∥
L2(∂Ω)

∣∣∣∣∣〈f
−
τ , ψ1,n〉L2(∂Ω)

λ+
τ − λ2,n

∣∣∣∣∣+ ∥∥∥f−τ ∥∥∥L2(∂Ω)

∣∣∣∣∣〈f
+
τ , ψ2,n〉L2(∂Ω)

λ+
τ − λ2,n

∣∣∣∣∣
)

6 εN

∥∥∥f+
τ

∥∥∥
L2(∂Ω)

 +∞∑
n=N

∣∣∣∣∣〈f
−
τ , ψ1,n〉L2(∂Ω)

λ+
τ − λ2,n

∣∣∣∣∣
2
1/2

+
∥∥∥f−τ ∥∥∥L2(∂Ω)

 +∞∑
n=N

∣∣∣∣∣〈f
+
τ , ψ2,n〉L2(∂Ω)

λ+
τ − λ2,n

∣∣∣∣∣
2
1/2

 ,
where εN :=

(∑+∞
n=N ‖ψ1,n − ψ2,n‖2

L2(∂Ω)

)1/2
. Next, applying Lemma 2.1 we get for all N ∈ N

that ∑+∞
n=N

∣∣∣∣ 〈f+
τ ,ψ2,n〉L2(∂Ω)
λ+
τ −λ2,n

∣∣∣∣2 6 ∥∥∥u+
2,λ+

τ

∥∥∥2

L2(Ω)
, and for every N > N0 that

+∞∑
n=N

∣∣∣∣∣〈f
−
τ , ψ1,n〉L2(∂Ω)

λ+
τ − λ2,n

∣∣∣∣∣
2

6 4
+∞∑
n=N

∣∣∣∣∣〈f
−
τ , ψ1,n〉L2(∂Ω)

λ+
τ − λ1,n

∣∣∣∣∣
2

6 4
∥∥∥u−1,λ−τ ∥∥∥2

L2(Ω)
,

by virtue of (2.53). Therefore, in light of (2.21) with (X, p) = (∂Ω, 2) and (2.27), we have
+∞∑
n=N
|Bn,τ,∗| 6 εN

(
2
∥∥∥f+

τ

∥∥∥
L2(∂Ω)

∥∥∥u−1,λ−τ ∥∥∥L2(Ω)
+
∥∥∥f−τ ∥∥∥L2(∂Ω)

∥∥∥u+
2,λ+

τ

∥∥∥
L2(Ω)

)
6

3(M + 2)
2 c2

∗εN ,

provided N > N0, and hence

lim sup
τ→+∞

+∞∑
n=N

∣∣∣Bn,λ+
τ ,∗

∣∣∣ 6 3(M + 2)
2 c2

∗

( +∞∑
n=N
‖ψ1,n − ψ2,n‖2

L2(∂Ω)

)1/2

, N > N0.

Putting this together with (2.55)-(2.56), we obtain

lim sup
τ→+∞

|Sτ | 6 c

( +∞∑
n=N
‖ψ1,n − ψ2,n‖2

L2(∂Ω)

)1/2

+ sup
n>N
|λ1,n − λ2,n|

 , N > N0, (2.57)

where the constant c := (M + 2)(M + 5)c2
∗/2 is independent of N . Now, by sending N to

+∞ in the right hand side of the above estimate, we get that lim supτ→+∞ |Sτ | = 0. Thus,
we have limτ→+∞ Sτ = 0, by virtue of Proposition 2.4. This entails in the same way as in
Section 2.3 that q1 = q2 in Ω, which terminates the proof of Theorem 1.6

2.5. The stability issue. The stability issue for the Borg-Levinson inverse problem was
first examined by G. Alessandrini and J. Sylvester in [1], who proved Hölder stable deter-
mination of q by BSD(q) (see also [8, Theorem 2.31] for a reformulation of their result).
We shall establish in this section, at the expense of stronger regularity on q, that it can be
Hölder-stably determined by the asymptotic behavior of its BSD, provided q is known on
the boundary ∂Ω.

2.5.1. Notations and stability inequality. We stick with the notations of Section 2. In partic-
ular, given two real-valued potentials qj, j = 1, 2, we denote by {λj,n, n ∈ N} the sequence of
the eigenvalues of Aqj , arranged in non-decreasing order (and repeated with the multiplicity),
and we write ψj,n instead of ∂νϕj,n for all n ∈ N, where {ϕj,n, n ∈ N} is a L2(Ω)-orthonormal
basis of eigenvectors of Aqj , such that Aqjϕj,n = λj,nϕj,n.
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Theorem 2.5. For M ∈ (0,+∞) fixed, pick q1 and q2 in L∞(Ω,R) ∩H1(Ω), such that
‖qj‖L∞(Ω) + ‖qj‖H1(Ω) 6M, j = 1, 2, (2.58)

and
q1 = q2 on ∂Ω. (2.59)

Assume moreover that
+∞∑
n=1
‖ψ1,n − ψ2,n‖2

L2(∂Ω) <∞. (2.60)

Then, the following stability estimate

‖q1 − q2‖L2(Ω) 6 C lim sup
n→+∞

|λ1,n − λ2,n|2/(d+2) ,

holds for some positive constant C that depends only on Ω and M .

2.5.2. Proof of Theorem 2.5. Let us recall from (2.57) that for all N > N0, we have

lim sup
τ→+∞

|Sτ | 6 c

( +∞∑
n=N
‖ψ1,n − ψ2,n‖2

L2(∂Ω)

)1/2

+ sup
n>N
|λ1,n − λ2,n|

 ,
for some positive constant c that is independent of N and ξ. Thus, in light of (2.60) we get
upon sending N to infinity, that

lim sup
τ→+∞

|Sτ | 6 c lim sup
n→∞

|λ1,n − λ2,n| . (2.61)

Further, we recall from Proposition 2.4 that

lim
τ→+∞

Sτ =
∫

Ω
q(x)e−x·ξdx = (2π)d/2q̂(ξ),

where q is the same as in (2.34) and q̂ stands for the Fourier transform Fq of q, defined by
(2.33). This, (2.61) and the basic estimate |limτ→+∞ Sτ | 6 lim supτ→+∞ |Sτ |, yield |q̂(ξ)| 6
(2π)−d/2c lim supn→+∞ |λ1,n − λ2,n|, uniformly in ξ ∈ Rd . Thus, we obtain

‖q̂‖L∞(Rd) 6 c lim sup
n→+∞

|λ1,n − λ2,n| . (2.62)

upon substituting (2π)−d/2c for c.
On the other hand, we infer from (2.34) and the Plancherel theorem that

‖q1 − q2‖2
L2(Ω) = ‖q‖2

L2(Rd) = ‖q̂‖2
L2(Rd) =

∫
Rd
|q̂(ξ)|2 dξ. (2.63)

For R ∈ (1,+∞) fixed, set BR := {ξ ∈ Rd, |ξ| 6 R} and notice from (2.63) that

‖q1 − q2‖2
L2(Ω) =

∫
BR
|q̂(ξ)|2 dξ +

∫
Rd\BR

|q̂(ξ)|2 dξ. (2.64)

The first term in the right hand side of (2.64) is easily treated, as we have∫
BR
|q̂(ξ)|2 dξ 6 c̃Rd ‖q̂‖2

L∞(BR) , (2.65)
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for some positive constant c̃ that is independent of R. Further, since q1 − q2 ∈ H1
0 (Ω) from

(2.59), we see that q ∈ H1(Rd). Thus we may write∫
Rd\BR

(1 + |ξ|2) |q̂(ξ)|2 dξ = ‖q‖2
H1(Rd) = ‖q1 − q2‖2

H1(Ω) 6
(
‖q1‖H1(Ω) + ‖q2‖H1(Ω)

)2
6 4M2,

from (2.58), and consequently∫
Rd\BR

|q̂(ξ)|2 dξ 6 R−2
∫
Rd\BR

(1 + |ξ|2) |q̂(ξ)|2 dξ 6 4M2R−2.

Putting this and (2.64)-(2.65) together, we find that

‖q1 − q2‖2
L2(Ω) 6 c̃

(
Rd ‖q̂‖2

L∞(BR) +R−2
)
, (2.66)

upon possibly substituting max(c̃, 4M2) for c̃.
Set δ := lim supn→+∞ |λ1,n − λ2,n|. We shall examine the two cases δ ∈ (0, 1) and δ ∈

[1,+∞) separately. In the first case we plug the estimate ‖q̂‖L∞(BR) 6 cδ, arising from
(2.62), in (2.66), choose R = δ−2/(d+2), and get

‖q1 − q2‖L2(Ω) 6 Cδ2/(d+2), (2.67)

with C := (c̃(1 + c2))1/2. In the second case we have obviously
‖q1 − q2‖L2(Ω) 6 ‖q1‖L2(Ω) + ‖q2‖L2(Ω) 6 2M 6 2Mδ2/(d+2), δ ∈ [1,+∞),

so the desired result follows from this and (2.67).

3. Application to parabolic inverse coefficient problems

Let T ∈ (0,+∞), let Ω be as in the preceding sections, that is Ω ⊂ Rd, d > 2, is a
bounded domain with boundary ∂Ω ∈ C1,1. We consider the diffusion equation

(∂t −∆ + q)u = 0 in Q := Ω× (0, T )
u = f on Σ := ∂Ω× (0, T )

u(·, 0) = 0 in Ω,
(3.1)

where q is a real-valued bounded potential and f fulfills the compatibility condition:
f(·, 0) = 0 on ∂Ω.

The inverse problem we examine in this section can be stated as follows. Given M ∈
(0,+∞) and two open subsets Γin and Γout of ∂Ω, determine

q ∈ QM := {q ∈ L∞(Ω,R), ‖q‖L∞(Ω) 6M}

by knowledge of the parabolic partial DN map at one fixed time T0 ∈ (0, T ):
Λq : f ∈Hin 7→ ∂ν(·, T0)|Γout .

Here, we have set Hin := {f ∈H , suppf ⊂ Γin×(0, T0)}, with H := C1,α([0, T ], H3/2(∂Ω))
for some α ∈ (0, 1].

Remark 3.1. Since suppf ⊂ (0, T0)×Γin for any f ∈Hin, then the compatibility condition
f(·, 0) = 0 holds on ∂Ω.
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Evidently, the inverse problem under investigation can be reformulated as whether the
mapping q ∈ QM 7→ Λq is injective.

3.1. Parabolic Dirichlet-to-Neumann map and identifiability. We start by recalling
the following uniqueness and existence result (see e.g. [8, Section 3.5]).

Proposition 3.2. For all q ∈ QM and all f ∈H , there exists a unique solution

u ∈ Z := C1((0, T ], H2(Ω)) ∩ C0([0, T ], L2(Ω))

to (3.1).

Thus, by continuity of the trace operator g → (∂νg)|Γout from H2(Ω) to H1/2(Γout), the
map

Λq : Hin → H1/2(Γout)
f 7→ ∂νu(·, T0)|Γout

is well-defined.
The main result if this section is as follows.

Theorem 3.3. Assume that Γin ∪ Γout = ∂Ω and that Γin ∩ Γout 6= ∅. For j = 1, 2, let
qj ∈ QM and put Λj := Λqj . Then, we have the implication:

(∀f ∈Hin, Λ1(f) = Λ2(f)) =⇒ (q1 = q2).

Remark 3.4. This result was proved by B. Canuto and O. Kavian in [5]. Recently, in [15],
it was extended to the case of time-fractional diffusion equations (∂αt − ∆ + q)u = 0 in Q,
with α ∈ (0, 1) ∪ (1, 2), and where ∂αt denotes the Caputo fractional derivative of order α.

3.2. Technical tools. The proof of Theorem 3.3 consists of two steps.
• The first one is to show that knowledge of Λq uniquely determines8 BSD(q) :

(∀f ∈Hin, Λ1(f) = Λ2(f)) =⇒ (BSD(q1) = BSD(q2)) . (3.2)

• The second step is to identify q through BSD(q), with the aid of Theorem 1.5.
In [12], A. Katchalov, Y. Kurylev, M. Lassas and C. Mandache have established the

equivalence between the full parabolic DN map and the BSD. Their statement is quite
similar to the claim of the first step, except that this is the partial data Λq (and not the full
parabolic DN map) that is considered here and that we only seek determination of BSD(q)
by Λq (and not equivalence of these two data).

3.2.1. Some notations and useful properties. We stick with the notations of Section 2. That
is to say that for j = 1, 2, we write BSD(qj) = {(λj,n, ψj,n), n ∈ N} with ψj,n = ∂νϕj,n.

8Or, equivalently, the BSD associated with the Dirichlet Laplacian Aq, defined by (1.2).
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Weyl’s law. It is well known (see e.g. [22, Section XIII.15]) that there exist two constants
nM ∈ N and c ∈ (1,+∞), both of them depending only on Ω and M , such that we have

c−1n2/d 6 λn 6 cn2/d, n > nM .

This entails for all k ∈ N and all ε > 0, that the series
+∞∑
n=nM

λkne
−ελn 6 ck

+∞∑
n=nM

n2k/de−c
−1εn2/d

<∞. (3.3)

Linear independence of the Neumann data. Given a non-empty open subset Γ of ∂Ω, the
family {ψn|Γ, n ∈ N} is, in general, not linearly independent in L2(Γ), but the normal
derivatives of the eigenfunctions associated with one eigenvalue are linearly independent.
More precisely, if mn denotes the geometric multiplicity of λn, let {ϕn,i, i = 1, . . . ,mn} be
an orthonormal basis of the L2(Ω)-subspace ker(Aq − λn). Then, we have

dim{ψn,i|Γ, i = 1, . . . ,mn} = mn. (3.4)

The proof of (3.4) essentially relies on the following unique continuation principle for local
Cauchy data.

Lemma 3.5. For j, k = 1, . . . , d, let aj,k = ak,j ∈ W 1,∞(Ω), bj ∈ L∞(Ω) and c ∈ L∞(Ω),
and suppose that the differential operator

P := −
d∑

j,k=1
aj,k(x)∂2

j,k +
d∑
j=1

bj(x)∂j + c(x),

fulfills the ellipticity condition:
∃λ ∈ (0,+∞),

∑
j,k

aj,k(x)ξjξk > λ |ξ|2 , x ∈ Ω, ξ ∈ Rd.

Then, for all u ∈ H2(Ω), we have:
(Pu = 0, u|Γ = ∂νu|Γ = 0) =⇒ (u = 0 in Ω).

To show (3.4), we pick mn constants ci, i = 1, . . . ,mn, such that
mn∑
i=1

ciψn,i = 0 on Γ.

Putting ϕ := ∑mn
i=1 ciϕn,i, we see that ϕ solves

Aqϕ = λnϕ in Ω
ϕ = 0 on Γ

∂νϕ = ∑mn
i=1 ciψn,i = 0 on Γ.

Thus, upon applying Lemma 3.5 with ajk = δjk and bj = 0 for j, k = 1, . . . , d, and c = q, we
get tat ϕ = 0 in Ω. Here and below, δ denotes the Kronecker symbol, i.e.

δjk :=
{

1 if j = k
0 otherwise.
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Next, since the family {ϕn,i, i = 1, . . . ,mn} is linearly independent in L2(Ω), we obtain that
ci = 0 for all i = 1, . . . ,mn. Therefore, the ψn,i|Γ, i = 1, . . . ,mn, are linearly independent in
L2(Γ), which establishes (3.4).

We may now prove the:

Lemma 3.6. Let Γ and Γ′ be two non-empty open subsets of ∂Ω. Then, the function

θn(σ, σ′) =
mn∑
i=1

ψn,i(σ)ψn,i(σ′), (σ, σ′) ∈ Γ× Γ′,

is not identically zero in Γ× Γ′.

Proof. We prove Lemma 3.6 by contradiction. If we assume that θn(σ, σ′) = 0 for a.e.
(σ, σ′) ∈ Γ× Γ′, then we would have

mn∑
i=1

ψn,i(σ)ψn,i = 0 on Γ′,

and hence
ψn,i = 0 on Γ, i = 1, . . . ,mn,

from (3.4), which is in contradiction with (3.4). Therefore, θn is not identically zero in
Γ× Γ′. �

3.3. Proof of the parabolic uniqueness result. In this section we prove Theorem 3.3.
In light of Theorem 1.5, it is enough to show (3.2). More precisely, we shall establish the:

Theorem 3.7. Under the assumptions of Theorem 3.3, we have

(∀f ∈Hin, Λ1(f) = Λ2(f)) =⇒ (λ1,n = λ2,n and ψ1,n = ψ2,n on Γin ∪ Γout, n ∈ N),

up to an appropriate choice of the eigenfunctions ϕ2,n of A2.

Prior to proving Theorem 3.7, we establish a representation formula of the normal de-
rivative of the solution to (3.1).

3.3.1. A representation formula of the DN map. We start by expressing the solution to (3.1)
in terms of the BSD.

Lemma 3.8. For all f ∈H , the solution u to (3.1), given by Proposition 3.2, reads

u(·, t) =
∑
n>1

un(t)ϕn in L2(Ω), t ∈ [0, T ], (3.5)

where
un(t) = −

∫ t

0
e−λns

(∫
∂Ω
ψn(σ)f(σ, t− s)dσ

)
ds, n ∈ N.
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Proof. Since {ϕn, n ∈ N} is an orthonormal basis of L2(Ω) and u ∈ C1([0, T ], L2(Ω)) by
Proposition 3.2, we have

∀s ∈ [0, T ], u(·, s) =
∑
n∈N

un(s)ϕn in L2(Ω),

with
s 7→ un(s) =

∫
Ω
u(x, s)ϕn(x)dx ∈ C1([0, T ].

Moreover, for all s ∈ [0, T ], we get that

u′n(s) =
∫

Ω
∂tu(x, s)ϕn(x)dx

= −
∫

Ω
(−∆ + q(x))u(x, t)ϕn(x)dx

= −
∫

Ω
u(x, s)Aqϕn(x)dx+

∫
∂Ω
∂νu(σ, s)ϕn(σ)dσ −

∫
∂Ω
u(σ, s)∂νϕn(σ)dσ,

upon applying the Green formula. As a consequence, we have

u′n(s) = −λn
∫

Ω
u(x, s)ϕn(x)dx−

∫
∂Ω
f(σ, s)ψn(σ)dσ

= −λnun(s)−
∫
∂Ω
f(σ, s)ψn(σ)dσ,

and hence e−λns d
ds

(eλnsun(s)) = u′n(s) + λnun(s) = −
∫
∂Ω f(σ, s)ψn(σ)dσ. Thus, taking into

account that un(0) = 0, we get for every t ∈ [0, T ], that

eλntun(t) = −
∫ t

0
eλns

(∫
∂Ω
f(σ, t)ψn(σ)dσ

)
ds,

upon integrating over [0, t]. �

In general the series in (3.5) converges in L2(Ω) but the convergence can be upgraded to
H2(Ω) by assuming that the function f ∈H satisfies the following condition

∃ε ∈ (0, T0), ∀(σ, t) ∈ ∂Ω× [T0 − ε, T0], f(σ, t) = 0, (3.6)
for some fixed T0 ∈ (0, T ). Indeed, in this case we deduce from the identity u(·, T0) =
f(·, T0) = 0 on ∂Ω that u(·, T0) ∈ H2(Ω) ∩ H1

0 (Ω) = dom(Aq). As a consequence we have∑+∞
n=1 λn |un(T0)|2 <∞ and the series in (3.5) converges in H2(Ω) for t = T0:

u(·, T0) =
+∞∑
n=1

un(T0)ϕn in H2(Ω).

Thus, by continuity of the trace operator g 7→ (∂νg)|∂Ω from H2(Ω) to H1/2(∂Ω), we obtain
that

∂νu(·, T0) =
+∞∑
n=1

un(T0)ψn

= −
+∞∑
n=1

(∫ T0

ε
e−λns

(∫
∂Ω
f(σ, T0 − s)ψn(σ)dσ

)
ds

)
ψn in H1/2(∂Ω). (3.7)
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Having proved (3.7), we may now establish the:

Lemma 3.9. For all f ∈H fulfilling (3.6), it holds true that

Λqf = −
∫ T0

ε

+∞∑
n=1

e−λns
(∫

∂Ω
f(σ, T0 − s)ψn(σ)dσ

)
ψnds in H1/2(∂Ω).

Proof. In light of (3.7), we may write that

un(T0) = −
∫ T0

ε
e−λnsγn(s)ds with γn(s) :=

∫
∂Ω
f(σ, T0 − s)ψn(σ)dσ, s ∈ [ε, T0]. (3.8)

As |γn(s)| 6 ‖f(·, T0 − s)‖L2(∂Ω) ‖ψn‖L2(∂Ω), we get from (1.7) that
+∞∑
n=nM

e−λns |γn(s)| ‖ψn‖H1/2(∂Ω) 6 c2
(+∞∑
n=1

λ2
ne
−λnε

)
‖f(·, T0 − s)‖H3/2(∂Ω) , s ∈ [ε, T0].

Since ∑+∞
n=1 λ

2
ne
−λnε < +∞ by (3.3), and s 7→ ‖f(·, T0 − s)‖H3/2(∂Ω) ∈ L1(ε, T0), the Lebesgue

dominated convergence theorem then yields
+∞∑
n=1

(∫ T0

ε
e−λnsγn(s)ds

)
ψn =

∫ T0

ε

+∞∑
n=1

e−λnsγn(s)ψnds,

where the convergence of the series is considered in H1/2(∂Ω). �

Armed with Lemma 3.9, we turn now to proving Theorem 3.7.

3.3.2. Proof of Theorem 3.7. We split the proof into four steps.

First step: Set up. For f ∈Hin obeying the condition (3.6), we apply Lemma 3.9 and get

Λj(f) = −
∫ T0

ε

+∞∑
n=1

e−λj,ns
(∫

Γin
ψj,n(σ)f(σ, T0 − s)dσ

)
ψj,nds in H1/2(Γout), j = 1, 2.

This and the assumption Λ1(f) = Λ2(f) for all f ∈Hin, yield for a.e. σ′ ∈ Γout that∫ T0

ε

+∞∑
n=1

(∫
Γin

(
e−λ1,nsψ1,n(σ)ψ1,n(σ′)− e−λ2,nsψ2,n(σ)ψ2,n(σ′)

)
f(σ, T0 − s)dσ

)
ds = 0. (3.9)

Let g ∈ H3/2(∂Ω) be such that supp g ⊂ Γin, fix ε ∈ (0, T0) and pick h ∈ C0(0, T0 − ε), the
set of compactly supported continuous functions in (0, T0 − ε). Then, the function

f(σ, t) :=
{
g(σ)h(t) if (σ, t) ∈ ∂Ω× (0, T0 − ε)

0 if (σ, t) ∈ ∂Ω× [T0 − ε, T0),

lies in Hin and verifies (3.6). Thus, by applying (3.9) with f expressed in this form, we find
for a.e. σ′ ∈ Γout that∫ T0

ε

+∞∑
n=1

(∫
Γin

(
e−λ1,nsψ1,n(σ)ψ1,n(σ′)− e−λ2,nsψ2,n(σ)ψ2,n(σ′)

)
g(σ)dσ

)
h(T0 − s)ds = 0.
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Since h is arbitrary in C0(0, T0−ε), then s 7→ h(T0−s) is arbitrary in C0(ε, T0), so the above
identity yields

+∞∑
n=1

∫
Γin

(
e−λ1,nsψ1,n(σ)ψ1,n(σ′)− e−λ2,nsψ2,n(σ)ψ2,n(σ′)

)
g(σ)dσ = 0, s ∈ (ε, T0), σ′ ∈ Γout,

(3.10)
by density of C0(ε, T0) in L1(ε, T0). This follows from the fact that

s 7→
+∞∑
n=1

e−λj,ns
(∫

Γin
ψj,n(σ)g(σ)dσ

)
ψj,n ∈ L∞((ε, T0), H1/2(Γout)),

arising from the estimate
+∞∑
n=nM

e−λj,ns
∣∣∣∣∫

Γin
ψj,n(σ)g(σ)dσ

∣∣∣∣ ‖ψj,n‖H1/2(Γout) 6 ‖g‖L2(Γin)

+∞∑
n=nM

e−λj,nε‖ψj,n‖2
H1/2(∂Ω)

6 c2‖g‖H3/2(∂Ω)

( +∞∑
n=nM

λ2
j,ne
−λj,nε

)
<∞,

which is derived for all s ∈ (ε, T0) from (1.7) and (3.3). Now, since ε is arbitrary in (0, T0),
we infer from (3.10) that

+∞∑
n=1

∫
Γin

(
e−λ1,nsψ1,n(σ)ψ1,n(σ′)− e−λ2,nsψ2,n(σ)ψ2,n(σ′)

)
g(σ)dσ = 0, σ′ ∈ Γout, s ∈ (0, T0).

(3.11)

Second step: Analytic continuation. For j = 1, 2, we set

Fj(σ′, s) =
+∞∑
n=1

e−λj,ns
(∫

Γin
ψj,n(σ)g(σ)dσ

)
ψj,n(σ′), (σ′, s) ∈ Γout × (0,+∞), (3.12)

and we establish the:

Lemma 3.10. The H1/2(Γout)-function s 7→ Fj(·, s), j = 1, 2, is analytic in (0,+∞).

Proof. For K, a compact subset of (0,+∞), we set ε := inf{s, s ∈ K} > 0. Then, with
reference to (1.7), we have

e−λj,ns
∣∣∣∣∫

Γin
ψj,n(σ)g(σ)dσ

∣∣∣∣ ‖ψj,n‖H1/2(∂Ω) 6 e−λj,nε ‖ψj,n‖L2(Γin) ‖g‖L2(Γin) ‖ψj,n‖H1/2(∂Ω)

6 e−λj,nε ‖ψj,n‖2
H1/2(∂Ω) ‖g‖H3/2(∂Ω)

6 c2 ‖g‖H e−λj,nελ2
j,n, s ∈ K, n ∈ N,

for j = 1, 2, where c is the constant appearing in (3.3). Therefore, the series
+∞∑
n=1

e−λj,ns
(∫

Γin
ψj,n(σ)g(σ)dσ

)
ψj,n
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converges in H1/2(∂Ω), uniformly for s ∈ K. As a consequence, the mapping s 7→ Fj(·, s) is
analytic inK, since this is obviously the case for each function s 7→ e−λj,ns(

∫
Γin
ψj,n(σ)g(σ)dσ)ψj,n

with n ∈ N. Finally, K being arbitrary in (0,+∞), we end up getting from this that Fj is
analytic in (0,+∞). �

Now, putting (3.11)-(3.12) together, we infer from Lemma 3.10 that:
F1(·, s) = F2(·, s) in H1/2(Γout), s ∈ (0,+∞). (3.13)

Next, for each s ∈ (0,+∞) fixed, we have
+∞∑
n=nM

λj,ne
−λj,ns ‖ψj,n‖L2(Γin) 6 c

+∞∑
n=nM

λ2
j,ne
−λj,ns <∞,

by (1.7) and (3.3), whence σ 7→ ∑+∞
n=1 e

−λj,ns |ψj,n(σ)| ‖ψj,n‖H1/2(Γout) ∈ L
2(Γin). Therefore, it

holds true that σ 7→ ∑+∞
n=1 e

−λj,ns |ψj,n(σ)g(σ)| ‖ψj,n‖H1/2(Γout) ∈ L
1(Γin) for all s ∈ (0,+∞).

Thus, by applying the Lebesgue dominated convergence theorem, we get that for every
s ∈ (0,+∞),

Fj(·, s) =
+∞∑
n=1

e−λj,ns
(∫

Γin
ψj,n(σ)g(σ)dσ

)
ψj,n =

∫
Γin

(+∞∑
n=1

e−λj,nsψj,n(σ)ψj,n
)
g(σ)dσ,

the convergence of the series being taken in the sense of H1/2(Γout). This and (3.13) yield
for a.e. σ′ ∈ Γout and all s ∈ (0,+∞), that∫

Γin

(+∞∑
n=1

e−λ1,nsψ1,n(σ)ψ1,n(σ′)
)
g(σ)dσ =

∫
Γin

(+∞∑
n=1

e−λ2,nsψ2,n(σ)ψ2,n(σ′)
)
g(σ)dσ. (3.14)

Moreover, since σ 7→ ∑+∞
n=1 e

−λj,nsψj,n(σ)ψj,n ∈ L2(Γin, H
1/2(Γout)), j = 1, 2, and since g is

arbitrary in H3/2(Γin), we deduce from (3.14) and the density of H3/2(Γin) in L2(Γin), that
for all s ∈ (0,+∞), the identity

+∞∑
n=1

e−λ1,nsψ1,n(σ)ψ1,n(σ′) =
+∞∑
n=1

e−λ2,nsψ2,n(σ)ψ2,n(σ′), (3.15)

holds in L2(Γin, H
1/2(Γout)), and consequently in L2(Γin × Γout).

Third step: Generalized Dirichlet series. Let {λ′j,n, n ∈ N} be the sequence of strictly in-
creasing eigenvalues of Aj = Aqj , j = 1, 2. For each n ∈ N, we denote by mj,n the geometric
multiplicity9 of the eigenvalue λ′j,n and we introduce a family {ϕj,n,i, i = 1, . . . ,mj,n} of
eigenfunctions of Aj, which satisfy

Ajϕj,n,i = λ′j,nϕj,n,i, i = 1, . . . ,mj,n,

and form a L2(Ω)-orthonormal basis of the eigenspace ker(Aj − λ′j,n). Next, we put

θj,n(σ, σ′) :=
mj,n∑
i=1

ψj,n,i(σ)ψj,n,i(σ′), (σ, σ′) ∈ Γin × Γout, (3.16)

9That is to say that mj,n is the dimension of the linear subspace ker(Aj − λ′
j,n) in L2(Ω).
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where ψj,n,i := ∂νϕj,n,i. For every fixed s ∈ (0,+∞), it is clear from (1.7) and (3.3) that
both series appearing in (3.15) are absolutely convergent in L2(Γin × Γout), so we infer from
(3.16) that

+∞∑
n=1

e−λ
′
1,nsθ1,n(σ, σ′) =

+∞∑
n=1

e−λ
′
2,nsθ2,n(σ, σ′), s ∈ (0,+∞), (σ, σ′) ∈ Γin × Γout. (3.17)

Moreover, each function θj,n, for j = 1, 2 and n ∈ N, being not identically zero in Γin × Γout
according to Lemma 3.6, it follows from (3.17) and the standard theory of Dirichlet series,
that

λ′1,n = λ′2,n and θ1,n = θ2,n on Γin × Γout, n ∈ N. (3.18)

Fourth step: End of the proof. We are left with the task of showing that m1,n = m2,n for all
n ∈ N, and that the eigenfunctions ϕ2,n can be chosen in such a way that

ψ1,n,i = ψ2,n,i on Γin ∪ Γout, i = 1, . . . ,mn,

where we have set mj,n := m1,n = m2,n. Prior to doing so, we recall that for all non empty
open subset Γ ⊂ ∂Ω, the dimension of the subspace spanned by {(ψj,n,i)|Γ, i = 1, . . . ,mj,n}
in L2(Γ), is equal to mj,n, i.e. that

mj,n = dim{ψj,n,i, i = 1, . . . ,mj,n}, j = 1, 2.
a) We start by establishing that m1,n = m2,n = mn and that there exists Mn ∈ Omn(R),

the set of orthogonal matrices of size mn, such that we have
Ψ2,n = MnΨ1,n, (3.19)

with Ψj,n := (ψj,n,1, . . . , ψj,n,mj,n)T , j = 1, 2,
To this end, we notice that the set Γn,1 := {σ ∈ Γin ∩ Γout, ψ1,n,1(σ) 6= 0} has positive

Lebesgue measure, since ψ1,n,1 is not identically zero in Γin ∩ Γout. Similarly, the functions
ψ1,n,1 and ψ1,n,2 being linearly independent in L2(Γin ∩ Γout), the Lebesgue measure of the
set

Γn,2 :=
{

(σ1, σ2) ∈ (Γin ∩ Γout)2, det
(
ψ1,n,1(σ1) ψ1,n,2(σ1)
ψ1,n,1(σ2) ψ1,n,2(σ2)

)
6= 0

}
is positive10. Thus, by induction on i, we can build a subset Γn,m1,n ⊂ (Γin ∩ Γout)m1,n , with
positive Lebesgue measure, such that following matrix

P1,n(σ) :=


ψ1,n,1(σ1) . . . ψ1,n,m1,n(σ1)

... ...
ψ1,n,1(σm1,n) . . . ψ1,n,m1,n(σm1,n)


is invertible for a.e. σ := (σ1, . . . , σm1,n) ∈ Γn,m1,n .

10Otherwise, we would have ψ1,n,2(σ1)ψ1,n,1−ψ1,n,1(σ1)ψ1,n,2 = 0 in L2(Γin∩Γout) for a.e. σ1 ∈ Γin∩Γout,
and hence ψ1,n,1(σ1) = 0 since ψ1,n,1 and ψ1,n,2 are linearly independent in L2(Γ), which is a contradiction
with the fact that Γn,1 has non-zero Lebesgue measure.
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Next, with reference to (3.18), we get upon applying (3.16) with σ′ = σj for j =
1, . . . ,m1,n, that

m1,n∑
i=1

ψ1,n,i(σj)ψ1,n,i(σ) =
m2,n∑
i=1

ψ2,n,i(σj)ψ2,n,i(σ), σ ∈ Γin, σ = (σ1, . . . , σm1,n) ∈ Γn,m1,n .

This can be equivalently rewritten as P1,n(σ)Ψ1,n(σ) = P2,n(σ)Ψ2,n(σ) for a.e. σ ∈ Γin,
where P2,n(σ) is the following m1,n ×m2,n matrix:

P2,n(σ) :=


ψ2,n,1(σ1) . . . ψ2,n,m2,n(σ1)

... ...
ψ2,n,1(σm1,n) . . . ψ2,n,m2,n(σm1,n)

 .
Therefore, putting Mn(σ) := P1,n(σ)−1P2,n(σ) for a.e. σ ∈ Γn,m1,n , we get that Ψ1,n(σ) =
Mn(σ)Ψ2,n(σ) for a.e. σ ∈ Γin. Further, taking σ = σj in (3.18), we get in the same way as
before that Ψ1,n(σ′) = Mn(σ)Ψ2,n(σ′) for a.e. σ′ ∈ Γout. As a consequence, we have

Ψ1,n(σ) = Mn(σ)Ψ2,n(σ), σ ∈ Γin ∪ Γout, σ ∈ Γn,m1,n . (3.20)

Since dim{ψj,n,i, i = 1, . . . ,mj,n} = mj,n in L2(Γin∪Γout), j = 1, 2, we infer from (3.20) that
m1,n 6 m2,n. Moreover, as j = 1 and j = 2 play symmetric roles here, we have m2,n 6 m1,n,
so we end up getting that m1,n = m2,n.

It remains to show that Mn(σ) ∈ Omn(R) for a.e. σ ∈ Γn,mn . This can be done by
plugging each of the two following equalities Ψ1,n(σ) = Mn(σ)Ψ2,n(σ) for a.e. σ ∈ Γin
and Ψ1,n(σ′) = Mn(σ)Ψ2,n(σ′) for a.e. σ′ ∈ Γout, in (3.17). We obtain that Mn(σ)ψ2,n(σ) ·
Mn(σ)ψ2,n(σ′) = ψ2,n(σ)·ψ2,n(σ′), where the symbol · stands for the Euclidian scalar product
in Rmn . Therefore, we have (Mn(σ)TMn(σ)−Imn)ψ2,n(σ)·ψ2,n(σ′) = 0 for a.e. (σ, σ′) ∈ Γin×
Γout, where Imn denotes the identity matrix of size mn. The family {ψ2,n,i, i = 1, . . . ,mn},
being linearly independent in L2(Γout), this entails that (Mn(σ)TMn(σ) − Imn)ψ2,n(σ) = 0
for a.e. σ ∈ Γin. Similarly, using that {ψ2,n,i, i = 1, . . . ,mn} is linearly independent in
L2(Γin), we get that Mn(σ)TMn(σ)− Imn = 0, which establishes that Mn(σ) ∈ Omn(R).

b) We turn now to showing that ψ1,n,i = ψ2,n,i on ∂Ω for all i ∈ {1, . . . ,mn}, up
to some appropriate choice of the eigenfunctions ϕ2,n,i. To do that, we write ϕ2,n =
(ϕ2,n,1, . . . , ϕ2,n,mn)T and we consider

ϕ′2,n = (ϕ′2,n,1, . . . , ϕ′2,n,mn)T := Mn(σ)Tϕ2,n,

where σ is arbitrary in Γn,mn .
Writing Mn instead of Mn(σ) in the sequel, we have for all (i, k) ∈ {1, . . . ,mn}2 that

〈ϕ′2,n,i, ϕ′2,n,k〉L2(Ω) =
mn∑
r,s=1

(MT
n )ir(MT

n )ks〈ϕ2,n,r, ϕ2,n,s〉L2(Ω) =
mn∑
r,s=1

(Mn)ri(Mn)skδrs,
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where δ denotes the Kronecker symbol11. Thus it holds true for all (i, k) ∈ {1, . . . ,mn}2 that
〈ϕ′2,n,i, ϕ′2,n,k〉L2(Ω) = ∑mn

r=1(Mn)ri(Mn)rk = ∑mn
r=1(MT

n )ir(Mn)rk = (MT
nMn)ik = δik. Con-

sequently, the family {ϕ′2,n,i, i = 1, . . . ,mn} is orthonormal in L2(Ω). Moreover, for all
i ∈ {1, . . . ,mn} and for a.e. σ ∈ ∂Ω, we get upon writing ν(σ) = (ν1(σ), . . . , νd(σ))T , that

ψ′2,n,i(σ) := ∇ϕ′2,n,i(σ) · ν(σ) =
d∑
`=1

∂`ϕ
′
2,n,i(σ)ν`(σ)

reads

ψ′2,n,i(σ) =
d∑
`=1

∂`

(
mn∑
r=1

(MT
n )irϕ2,n,r(σ)

)
ν`(σ)

=
mn∑
r=1

(Mn)ri
(

d∑
`=1

∂`ϕ2,n,r(σ)ν`(σ)
)

=
mn∑
r=1

(Mn)riψ2,n,r(σ).

Therefore, we have Ψ′2,n = MT
n Ψ2,n and hence Ψ′2,n = Ψ1,n on ∂Ω, by virtue of (3.19). This

terminates the proof of Theorem 3.7.
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