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ABSTRACT. We consider the inverse coefficient problem of simultaneously determining the space dependent
electric potential, the zero-th order coupling term and the first order coupling vector of a two-state Schrödinger
equation in an infinite cylindrical domain of Rn, n ≥ 2, from finitely many partial boundary measurements
of the solution. We prove that these n + 3 unknown scalar coefficients can be Hölder stably retrieved by
(n+ 1)-times suitably changing the initial condition attached at the system.
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1. Introduction

The present article deals with a system of two Schrödinger equations on an infinite cylindrical domain, that are
interconnected through a linear gradient coupling. This formalism is used to describe the simple mixing of quantum
states, leading to physical phenoma with significant applications such as lasers or quantum computers.

1.1. Settings. Throughout this article, ω is a bounded domain of Rn−1, n ≥ 2, with smooth boundary γ := ∂ω, and
Ω := ω × R. For T > 0, we consider the following initial-boundary value problem (IBVP) with initial states u±0 and
non-homogenous Dirichlet boundary conditions g±, for the coupled Schrödinger equations in the unknowns u±,

(1.1)



−i∂tu+ −∆u+ + q+u+ +A · ∇u− + pu− = 0 in Q := Ω× (0, T )

−i∂tu− −∆u− + q−u− −A · ∇u+ + pu+ = 0 in Q

u+(·, 0) = u+
0 , u

−(·, 0) = u−0 in Ω

u+ = g+, u− = g− on Σ := Γ× (0, T ),

where Γ := γ × R. Since Γ is unbounded, let us make the above boundary condition more precise. For all x ∈ Ω, we
write x = (x′, xn) where x′ = (x1, . . . , xn−1) ∈ ω and xn ∈ R, and using a standard density argument we extend the
mapping

C∞0 (R× (0, T ), H2(ω)) → L2(R× (0, T ), H
3
2 (ω))

w 7→
[
(xn, t) ∈ R× (0, T ) 7→ w(·, xn, t)|γ

]
,

to a bounded operator γ0 acting from L2(R × (0, T ), H2(ω)) into L2(R × (0, T ), H
3
2 (γ)). Then, for all u± ∈

L2(0, T,H2(Ω)), the boundary condition in (1.1) reads γ0u
± = g±.

In the present paper we aim to stably retrieve the electric potentials q± : Ω → R, the zero-th order coupling term
p : Ω → R and the first order coupling vector A : Ω → Rn, by finitely many partial boundary measurements over
the entire time-span (0, T ) of the solution u± to (1.1). In contrast with [20] where the spatial domain Ω is bounded,
here we consider an infinitely extended cylindrical domain and we address the problem of simultaneous identification
of non-compactly supported unknown coefficients p, q± and A. This requires a slightly different and technically more
demanding approach than the one implemented in [20].
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1.2. Motivations. Two-state (or two level) quantum systems are the simplest non-trivial quantum systems found
in nature. The best-known example of a two-state system is the spin (an intrinsic form of angular momentum) of
an electron, where the two levels are represented by spin-up and spin-down states. Electrons can behave as the
combination of both states at the same time. This quantum feature called superposition is a fundamental concept in
quantum mechanics where quantum systems can exist in multiple states simultaneously. Being in two states at the
same time makes electrons good candidates for quantum bits or qubits, which is the fundamental unit of information
in quantum computing. Unlike classical bits, which can only be in one state (0 or 1), qubits can exist in a superposition
of both states simultaneously. This superposition property is essential for the field of quantum computing, see [32, 36],
because it allows quantum computers to process vast amounts of information at once.

Spin qubits need a suitable material to house and control them, as well as read out information in them. Taking that
into consideration materials scientists introduced spinning electrons as qubits in a host carbon nanotube. A carbon
nanotube is a nomaterial made from carbon atoms only, that has a hollow tubular shape and has thickness of about
one nanometer. A great deal of research has been done over the last decade on using carbon nanotubes in complex
computing systems, see [16, 28, 31]. This is because carbon-nanotube-based computing promises to start a new era
of electronics that are faster and more energy efficient, see [17, 29]. Since carbon nanotubes are highly elongated
cylindrical structures with a length-to-diameter ratio of up to 108, they enjoy valuable physical properties relevant
to electronics, optics, and materials science, see [1, 25, 30, 33]. In a carbon nanotube, electrons are essentially
free to propagate along the wire axis (their motion is confined in directions orthogonal to it), resulting in enhanced
electrical conductivity, see [24, 37]. As a matter of fact, carbon nanotubes ferry electricity so well that they make
better semiconductors than silicon: carbon nanotube processors can run three times faster than silicon ones, and they
consume about one-third as much energy as silicon processors, see [29]. Moreover, carbon nanotubes are mostly free
of fluctuating nuclear spins that would interfere with the spin of the electron and reduce its coherence time, which is
the key property for any practical qubit because it defines the number of quantum operations that can be performed in
the lifetime of the qubit, see [12].

It is still a long way from spin qubit in a carbon nanotube to practical technologies, but for all the above mentioned
reasons materials scientists are aiming to use carbon nanotubes for spin-based quantum computing, in which the spin
of a single electron would represent a bit of data. In view of the foregoing, the IBVP (1.1) may be regarded as a
tentative (simplified) mathematical model for carbon-nanotube-based spin-quantum computing, describing the time
evolution of a spin- 1

2 particle such as an electron, confined in an idealized carbon nanotube Ω. The particle’s spin
can assume values ±~

2 , where ~ represents the reduced Planck constant but, for the sake of notational simplicity,
the various physical constants including ~, the charge and the mass of the particle, are taken equal to one in (1.1).
Following [20, 26, 35, 39], the two states u± governed by (1.1) are strongly bound together through linear gradient
coupling pu∓ ± A · ∇u∓, which guarantees that there is a non zero probability for a spin-qubit to go from one state
u+ to the other u−, or vice versa. We refer the reader to [14, 20, 27] and the references therein for the relevance of
gradient coupling in the context of partial differential equations.

1.3. Bibliography. The mathematical literature devoted to inverse coefficient problems for the dynamic Schrödinger
equation is so extensive that this presentation is not intended to be exhaustive, but we can mention [3, 4, 6, 9, 23]
where zero-th or/and first order unknown coefficients of the Schrödinger equation are determined by the Dirichlet-
to-Neumann map. These articles assume knowledge of infinitely many boundary data, but in [2, 38] the real-valued
electric potential is stably retrieved by one partial lateral observation of the solution. This result was extended to
complex-valued electric potentials in [18]. The boundary measurement in [2, 18, 38] is taken on a subpart of the
boundary fulfilling a geometric condition related to geometric optics condition insuring observability. This condi-
tion was relaxed to arbitrarily small sub-boundaries in [4], provided the potential is known in the vicinity of the
boundary. The inverse problem of determining the magnetic vector potential of the autonomous Schrödinger equation
is addressed in [18]. The same problem for the space-varying part of the magnetic potential appearing in a non-
autonomous Schrödinger equation is treated in [13]. In both cases, the n-th dimensional unknown magnetic vector
potential, n ≥ 1, is retrieved from n partial Neumann data obtained by n-times suitably selecting the initial condition
attached at the magnetic Schrödinger equation.

The strategy of [2, 13, 18, 38] relies on a Carleman inequality specifically designed for the Schrödinger equation,
see [18, 34, 38] for actual examples of such weighted energy estimates. The idea of using a Carleman estimate for



DETERMINING THE POTENTIAL AND THE GRADIENT COUPLING OF TWO-STATE QUANTUM SYSTEMS IN AN INFINITE WAVEGUIDE 3

solving inverse problems goes back to 1981 and was introduced by A. L. Bukhgeim and M. V. Klibanov in their seminal
article [11]. Since then, the Bukhgeim-Klibanov approach has been successfully applied to parabolic, hyperbolic and
Schrödinger systems and even to coupled systems of partial differential equations. We refer the reader to [19] and
references therein, for a complete survey of multidimensional inverse problems solved by the Bukhgeim-Klibanov
method.

In all the aforementioned papers, the Schrödinger equation under study is stated on a bounded spatial domain.
The inverse problem of determining the electric potential of the Schrödinger equation stated in an infinite waveguide
is examined in [5, 22]. This is achieved by mean of a specifically designed Carleman estimate for the Schrödinger
equation in an unbounded cylindrical domain, which is established in [21]. All the articles listed above are concerned
with the regular (“one state”) Schrödinger equation. In [26], assuming that the gradient coupling vector is known, the
authors show that the zero-th order coupling term of a two state magnetic Schrödinger equation is uniquely determined
by one partial Neumann data. Recently in [39], the electric potential of a strongly coupled Schrödinger equations in
a bounded spatial domain was Lipschitz stably retrieved by one partial (internal or boundary) measurement of the
solution to the system. In [20], the zero-th and first order coefficients of the coupling are Lipschitz stably recovered
by finitely many partial boundary observations of the solution.

All the coupled Schrödinger equations under study in [20, 26, 39] were stated on a bounded spatial domain. The
main purpose of the present paper is to extend the result of [20] to the case of an unbounded waveguide. Namely, it was
proved in [20] that when two states are confined to a bounded spatial domain, the electric potential and the coupling
coefficients can be stably determined by a finite number of partial boundary observations of the system. Here, we aim
for the same identification result when the motion of the quantum particle is no longer bounded and may escape to
infinity in one direction over time.

1.4. Notations. Throughout this text x = (x1, ..., xn) is a generic point of Ω that is sometimes written x = (x′, xn)
where x′ = (x1, · · · , xn−1) ∈ ω is the variable of the transverse section of Ω and xn ∈ R is the longitudinal variable.
For all x = (x′, xn) ∈ Γ, the outward unit normal ν to Γ reads ν(x) = ν(x′) = (ν′(x′), 0)T , where ν′(x′) ∈ Rn−1 is
the outgoing normal vector to γ at x′ and aT denotes the transpose of the row vector a.

For all i = 1, . . . , n we set ∂i := ∂
∂xi

in such a way that ∇ := (∂1, . . . , ∂n)T (resp., ∇′ := (∂1, . . . , ∂n−1)T ) is
the gradient operator with respect to x = (x1, . . . , xn) (resp., x′ = (x1, . . . , xn−1)). Similarly, we write ∂t = ∂

∂t . For
the sake of shortness we write ∂2

ij , i, j = 1, . . . , n, instead of ∂i∂j and as usual we denote by ∆ the Laplace operator
∂2

1 + . . .+ ∂2
n. Next, for any multi-index k = (k1, . . . , kn) ∈ Nn0 , where N0 := {0} ∪N, we put |k| := k1 + . . .+ kn

and ∂kx = ∂k11 . . . ∂knn . .
Further, the symbol · denotes the scalar product in Cm, m ∈ N, and we set |ζ| :=

√
ζ · ζ for all ζ ∈ Cm. We simply

write ∇· for the divergence operator in Rn and we set ∂νu := ∇u · ν = ∇′ · ν′.
Finally, for all r > 0 and s > 0, we introduce Hr,s(Σ) := L2(0, T ;Hr(Γ)) ∩ Hs(0, T ;L2(Γ)) where Hs(Γ)

denotes the usual Sobolev space on Γ of order s.

1.5. Main results. Prior to investigating the inverse problem under study in this article, we examine the well-
posedness issue for the forward problem associated with (1.1). For this purpose we introduce the Hamiltonian operator
acting on (C∞0 (Q)′)2,

H(A, p, q±) :=

 −∆ + q+ A · ∇+ p

−A · ∇+ p −∆ + q−


and state the following existence, uniqueness and regularity result for the solution to the IBVP (1.1).

Proposition 1.1. Let m ∈ N and assume that γ is C2(m+1). Let A ∈ W 2m+1,∞(Ω,Rn) ∩ C2(m−1)(Ω,Rn) be such
that∇·A = 0 a.e. in Ω, let p ∈W 2m+1,∞(Ω,R)∩C2(m−1)(Ω,R) and let q± ∈W 2m+1,∞(Ω,R)∩C2(m−1)(Ω,R)
satisfy

‖A‖W 2m+1,∞(Ω) + ‖p‖W 2m+1,∞(Ω) +
∥∥q+

∥∥
W 2m+1,∞(Ω)

+
∥∥q−∥∥

W 2m+1,∞(Ω)
≤M,

for some a priori fixed positive constant M . Then, for all g = (g+, g−)T ∈ H2(m+7/4),m+7/4(Σ)2 and all u0 =
(u+

0 , u
−
0 )T ∈ H2m+3(Ω)2 fulfilling the following compatibility conditions

(1.2) ∂`tg(·, 0) = (−i)`H(A, p, q±)`u0 on Γ, ` = 0, · · · ,m,
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the IBVP (1.1) admits a unique solution u = (u+, u−)T ∈ ∩m+1
`=0 H

m+1−`(0, T ;H2`(Ω)2). Moreover, there exists a
positive constant C, depending only on ω, T and M such that

(1.3)
m+1∑
`=0

‖u‖Hm+1−`(0,T ;H2`(Ω)2) ≤ C
(
‖u0‖H2m+3(Ω)2 + ‖g‖H2(m+7/4),m+7/4(Σ)2

)
.

Notice that the divergence-free condition on A requested by Proposition 1.1 is to guarantee that H(A, p, q±) en-
dowed with homogeneous Dirichlet boundary condition on Γ, has a self-adjoint realization H(A, p, q±) in L2(Ω)2,
see [20, Lemma 2.1]. As a consequence the operator −iH(A, p, q±) is m-dissipative in L2(Ω)2, and since the IBVP
(1.1) is equivalently rewritten as 

−i∂tu+H(A, p, q±)u = 0 in Q

u(·, 0) = u0 in Ω

u = g on Σ,

the statement of Proposition 1.1 follows by arguing in the same way as in the proof of [20, Lemma 2.3].
We point out that the regularity assumptions on the coefficients A, p and q±, the initial states u±0 and the boundary

conditions g±, in Proposition 1.1, are only sufficient conditions ensuring a higher order of regularity of the solution
u± to (1.1), as requested by the analysis of the inverse problem under study in this article. As a matter of fact the
Bukhgeim-Klibanov method requires ∂tu± and ∂t∇u± to be bounded in Q, which can be achieved upon taking m in
Proposition 1.1, sufficiently large relative to n. Namely, we choose

(1.4) N ∈ N ∩
(
n+ 2

4
+ 1,

n+ 2

4
+ 2

]
,

pick M , κ, %, a, p and q in R+, and for A0 ∈ W 2N+1,∞(Ω,Rn) ∩ C2(N−1)(Ω,Rn), p0 ∈ W 2N+1,∞(Ω,R) ∩
C2(N−1)(Ω,R) and q±0 ∈W 2N+1,∞(Ω,R) ∩ C2(N−1)(Ω,R), we introduce the set of unknown electric potentials as

Pp(p0) :=
{
p ∈W 2N+1,∞(Ω,R) ∩ C2(N−1)(Ω,R) s.t. ‖p‖W 2N+1,∞(Ω) ≤M,(1.5)

∂kxp = ∂kxp0 on Γ, k = 0, . . . , 2(N − 1) and |(p− p0)(·, xn)| ≤ pe−κ〈xn〉
%

, xn ∈ R
}
,

the set of unknown zero-th order coupling coefficients as Pq(q±0 ), and the set of unknown first order coupling vectors
as

Aa(A0) :=
{
A ∈W 2N+1,∞(Ω,Rn) ∩ C2(N−1)(Ω,R) s.t. ‖A‖W 2N+1,∞(Ω)n ≤M, ∇ ·A = 0 in Ω,(1.6)

∂kxA = ∂kxA0 on Γ, |k| = 0, . . . , 2(N − 1) and |(A−A0)(·, xn)| ≤ ae−κ〈xn〉
%

, xn ∈ R
}
.

Here, the notation ∂kx for |k| = m ∈ N0 is a shorthand for ∂k11 . . . ∂knn where k = (k1, . . . , kn) ∈ Nn0 satisfies
|k| = k1 + . . .+ kn = m.

Then, the main result of this article can be stated as follows.

Theorem 1.2. Assume that γ is C2(N+1). For j = 1, 2, let Aj ∈ Aa(A0) satisfy

(1.7) ∃y∗ ∈ R+, a1,n(x′, xn) = a2,n(x′, xn), x′ ∈ ω, xn ∈ (−y∗, y∗),

let pj ∈ Pp(p0) and let q±j ∈ Pq(q±0 ).
Then, there exist a sub-boundary γ∗ ⊂ ∂ω and a set of n + 1 initial states uk0 = (u+,k

0 , u−,k0 )T ∈ H2N+3(Ω)2

and boundary conditions gk = (g+,k, g−,k)T ∈ H2(N+7/4),N+7/4(Σ)2, k = 1, . . . , n+ 1, fulfilling the compatibility
conditions

(1.8) ∂`tg
k(·, 0) = (−i)`H(A0, p0, q

±
0 )`uk0 on Γ, ` = 0, · · · , N,
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such that for all θ ∈
(
0, 1

2

)
, the following estimate

‖A1 −A2‖2L2(Ω) + ‖p1 − p2‖2L2(Ω) +
∥∥q+

1 − q
+
2

∥∥2

L2(Ω)
+
∥∥q−1 − q−2 ∥∥2

L2(Ω)
(1.9)

≤ C

n+1∑
k=1

(∥∥∥∂ν∂tu−,k1 − ∂ν∂tu−,k2

∥∥∥θ
L2(Σ∗)

+
∥∥∥∂ν∂tu+,k

1 − ∂ν∂tu+,k
2

∥∥∥θ
L2(Σ∗)

)
,

holds for some positive constant C depending only on ω, T , γ∗, M , y∗, θ, κ, %, a, p, q and (u±,k0 , g±,k), k =

1, . . . , n + 1. Here, Σ∗ := γ∗ × R × (0, T ) and ukj = (u+,k
j , u−,kj )T , for j = 1, 2, is the solution to (1.1) given by

Proposition 1.1, where (Aj , pj , q
±
j , u

±,k
0 , g±,k) is substituted for (A, p, q±, u±0 , g

±).

1.6. Brief comments. Theorem 1.2 claims that n + 1 Neumann data stably determine n + 2 unknown scalar coeffi-
cients (strictly speaking there are n+3 unknown scalar coefficients in the inverse problem that Theorem 1.2 is dealing
with, but since the n components of the gradient coupling vector are bound together through the divergence free con-
dition, they only amount for n − 1 free unknown scalar coefficients). This may seem surprising from the viewpoint
of the analysis of inverse problems, but it should be noticed that Assumption (1.7) implies full knowledge of the n-th
component of A on a bounded subpart of Ω.

The statement and the strategy of the proof of Theorem 1.2 are very similar to the ones of [20, Theorem 1.2], which
holds for a bounded spatial domain Ω. Nevertheless, there are two major differences in the derivation of Theorem
1.2 as compared to the one of [20, Theorem 1.2]. Firstly, the Carleman estimate that is used in the present article is
specifically designed for a Schrödinger equation in an unbounded cylindrical domain, and it is quite different from
the one used in [20]. Secondly, the construction of the initial states u0 used for probing the system in the analysis of
the inverse problem under examination in this article, is more delicate than in [20]. This can be understood from the
fact that it is technically more challenging to design a suitable set of square integrable initial states u0 in an infinitely
extended domain than in a bounded one. As a matter of fact, we shall see in Section 3 that an an additional decay
condition with respect to the infinite direction of the waveguide is needed on u0.

We point out that the method of derivation of Theorem 1.2 presented in this work does not apply to magnetic
Schrödinger equations. This is due to the time-symmetrization technique that we use to avoid observation data at
t = 0 over Ω, that is no longer valid in presence of a non-zero magnetic potential. Actually the magnetic case requires
a specific treatment for applying the Bukhgeim-Klibanov method to Schrödinger equations, and we refer the reader to
[18] for more details on this peculiar topic.

1.7. Outline. The paper is designed as follows: In the following section we collect several technical results needed
for the proof of Theorem 1.2, which is given in Section 3.

2. Preliminaries

We first establish that the solution to (1.1) is bounded in Q.

2.1. Boundedness of the solution. The result we have in mind is as follows.

Lemma 2.1. Assume that conditions of Proposition 1.1 are satisfied with m = N , where N is the same as in (1.4).
Then, the solution u to (1.1) lies in W 1,∞(0, T ;W 1,∞(Ω)2) and satisfies

‖u‖W 1,∞(0,T ;W 1,∞(Ω)2) ≤ C,

for some positive constant C depending only on ω, T , M , u0 and g.

Proof. We have u ∈ H2(0, T,H2(N−1)(Ω)2) by Proposition 1.1, with 2(N − 1) > n
2 + 1 from (1.4). Since Hk(Ω)

is continuously embedded in L∞(Ω) for all k > n
2 , according to [22, Lemma 2.7] (which extends the corresponding

well-known Sobolev embedding theorem in Rn, see e.g. [10, Corollary IX.13] or [15, Section 5.10, Problem 18], to
the case of the unbounded cylindrical domain Ω), the result follows from this and (1.3). �
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2.2. Global Carleman estimate for the Schrödinger equation in Ω = ω × R. In this section we establish a global
Carleman estimate specifically designed for the Schrödinger equation in the unbounded cylindrical domain Ω. This
estimate, which is our main tool in the proof of Theorem (1.2), is stated in Corollary 2.5, below. For this purpose we
pick a function α ∈ C4(ω,R+) and an open subset γ∗ ⊂ ∂ω satisfying the following conditions:

Assumption 2.2.
(H1) ∃c ∈ R+ s.t. |∇′α(x′)| ≥ c for all x′ ∈ ω.
(H2) ∀x′ ∈ γ \ γ∗, ∂να(x′) = ∇′α(x′) · ν′(x′) < 0.
(H3) ∃λ0 ∈ R+, ∃c ∈ R+ s.t.

λ |∇′α(x′) · ζ|2 +D2α(x′, ζ) ≥ c |ζ|2 , ζ ∈ Rn−1, x′ ∈ ω, λ ≥ λ0,

where D2α(x′) :=
(
∂2
i,jα(x

′)
)
1≤i,j≤n−1

and D2α(x′, ζ) denotes the Rn−1-scalar product of D2α(x′)ζ with ζ.

Remark 2.3. We point out that there exist α and γ∗ fulfilling the above conditions (H1), (H2) and (H3). As a matter
of fact, for all x′0 ∈ Rn−1 \ ω fixed, this is the case of the function α(x′) = |x′ − x′0|

2 and any open subset γ∗ ⊂ γ
such that {x′ ∈ γ; (x′ − x′0) · ν(x′) ≥ 0} ⊂ γ∗.

Next, we choose r ∈ (1,+∞), put K := r ‖α‖L∞(ω) and set

(2.10) β(x) := α(x′) +K, x = (x′, xn) ∈ Ω.

Then, for λ > 0 fixed, we introduce the weight functions,

(2.11) ϕ(t, x) :=
e2λβ(x)

(T + t)(T − t)
and η(t, x) :=

e2λK − eλβ(x)

(T + t)(T − t)
, (t, x) ∈ Q̃ := (−T, T )× Ω,

and for all s > 0, we define two operators Mj , j = 1, 2, acting in (C∞0 )′(Q̃), by

(2.12) M1 := i∂t + ∆ + s2|∇η|2 and M2 := isη′ + 2s∇η · ∇+ s(∆η).

Evidently, M1 (respectively, M2) is the adjoint (respectively, skew-adjoint) part of the operator e−sηLesη , where
L := −i∂t −∆.
Let us notice for further use that

(2.13) η(x, t) ≥ η0(x) > 0, (x, t) ∈ Q̃,
where η0(x) := η(0, x) for all x ∈ Ω. This being said, we may now state the following global Carleman estimate,
which is borrowed from [21, Proposition 3.3].

Proposition 2.4. Suppose that α and γ∗ fulfill Assumption 2.2. Let β be as in (2.10) and let ϕ and η be defined by
(2.11). Then, there exist two constants s0 > 0 and C > 0, depending only on T , ω and γ∗, such that the estimate

s‖e−sη∇x′w‖20,Q̃ + s3‖e−sηw‖2
0,Q̃

+
∑
j=1,2

‖Mje
−sηw‖2

0,Q̃

≤ C
(
s‖e−sηϕ1/2|∂νβ|1/2∂νw‖20,Σ̃∗ + ‖e−sηLw‖2

0,Q̃

)
,

holds for all s ≥ s0 and any functionw ∈ L2(−T, T ;H1
0 (Ω)) verifying Lw ∈ L2(Q̃) and ∂νw ∈ L2(−T, T ;L2(Γ∗)),

where Σ̃∗ = (−T, T )× Γ∗.

As a byproduct of Proposition 2.4, we have the following statement. Its proof can be found in [21, Section 4.1.1]
but for the sake of self-containedness and the convenience of the reader, we provide it below.

Corollary 2.5. Under the conditions of Proposition 2.4, we have

s−1/2
∥∥e−sη∇′w∥∥2

L2(Q̃)
+ s−1/2

∥∥e−sηw∥∥2

L2(Q̃)
+
∥∥e−sη0w(·, 0)

∥∥2

L2(Ω)

≤ Cs−3/2

(
s
∥∥∥e−sηϕ1/2 |∂νβ|

1
2 ∂νw

∥∥∥2

L2(Σ̃∗)
+
∥∥e−sηLw∥∥2

L2(Q̃)

)
holds whenever s ≥ s0 and w ∈ L2(−T, T ;H1

0 (Ω)) satisfies Lw ∈ L2(Q̃) and ∂νw ∈ L2(Σ̃∗). Here,
Σ̃∗ := (−T, T )× Γ∗ and Γ∗ := γ∗ × R.
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Proof. Put w := e−sηz. Since lim
t−→−T

η(x, t) = +∞ for all x ∈ Ω then lim
t−→−T

w(·, t) = 0 in L2(Ω) and hence

‖w(·, 0)‖20,Ω =

∫
(−T,0)×Ω

∂t|w(x, t)|2dxdt = 2<

(∫
(−T,0)×Ω

∂tww(x, t)dxdt

)
.

On the other hand, we have

=

(∫
(−T,0)×Ω

M1ww(x, t)dxdt

)

= <

(∫
(−T,0)×Ω

∂tww(x, t)dxdt

)
+ =

(∫
(−T,0)×Ω

(∆ww + s2|∇η|2ww)(x, t)dxdt

)

= <

(∫
(−T,0)×Ω

∂tww(x, t)dxdt

)
−=

(∫
(−T,0)×Ω

(|∇w|2 − s2|∇η|2|w|2)(x, t)dxdt

)

= <

(∫
(−T,0)×Ω

∂tww(x, t)dxdt

)
,

whence ‖w(·, 0)‖2L2(Ω) = 2=

(∫
(−T,0)×Ω

M1ww(x, t)dxdt

)
. Therefore, we get

‖e−sη(·,0)z(·, 0)‖2L2(Ω) ≤ 2‖M1w‖L2(Q̃)‖w‖L2(Q̃) ≤ s
−3/2

(
s3‖e−sηz‖2

L2(Q̃)
+ ‖M1e

−sηz‖2
L2(Q̃)

)
with the help of the Cauchy Schwarz and Hölder inequalities. As a consequence, we have

s−1/2
(
‖e−sηz‖2

L2(Q̃)
+ ‖e−sη∇z‖2

L2(Q̃)

)
+ ‖e−sη(·,0)z(·, 0)‖2L2(Ω)

≤ s−3/2
(
s‖e−sη∇z‖2

L2(Q̃)
+ s3‖e−sηz‖2

L2(Q̃)
+ ‖M1e

−sηz‖2
L2(Q̃)

)
≤ Cs−3/2

(
s‖e−sηϕ1/2(∂νβ)1/2∂ν z‖2L2(Σ̃∗)

+ ‖e−sηLz‖2
L2(Q̃)

)
,

by Proposition 2.4, which is the desired result. �

Armed with Corollary 2.5, we turn now to proving the main result of this article.

3. Proof of Theorem 1.2

We follow the strategy of Bukhgeim and Klibanov, which is to linearize the system and then differentiate it with
respect to the time variable. This will put the unknowns of the inverse problem in the initial condition of the obtained
system, which, in turn will be estimated in terms of the Neumann data with the aid of the Carleman estimate of
Corollary 2.5.

3.1. Linearization, time-differentiation and all that. We start by linearizing the system (1.1). For this purpose
we consider the two solutions uj = (u+

j , u
−
j )T , j = 1, 2, to the IBVP (1.1) where (Aj , pj , q

±
j ) is substituted for

(A, p, q±). Then, u± := u±1 − u
±
2 solves

(3.14)



−i∂tu+ −∆u+ + q+
1 u

+ = −A1 · ∇u− −A · ∇u−2 − q+u+
2 − p1u

− − pu−2 in Q

−i∂tu− −∆u− + q−1 u
− = A1 · ∇u+ +A · ∇u+

2 − q−u
−
2 − p1u

+ − pu+
2 in Q

u+(·, 0) = 0, u−(·, 0) = 0 in Ω

u+ = 0, u− = 0 on Σ,
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where A := A1 − A2, p := p1 − p2 and q± := q±1 − q
±
2 . Further, u± lies in H2(0, T ;L2(Ω)) ∩H1(0, T ;H2(Ω) ∩

H1
0 (Ω)), we differentiate (3.14) with respect to the time-variable and find that

−i∂tv+ −∆v+ + q+
1 v

+ = −A1 · ∇v− −A · ∇∂tu−2 − q+∂tu
+
2 − p1v

− − p∂tu−2 in Q

−i∂tv− −∆v− + q−1 v
− = A1 · ∇v+ +A · ∇∂tu+

2 − q−∂tu
−
2 − p1v

+ − p∂tu+
2 in Q

v+(·, 0) = −i(A · ∇u−0 + q+u+
0 + pu−0 ) in Ω

v−(·, 0) = −i(−A · ∇u+
0 + q−u−0 + pu+

0 ) in Ω

v+ = 0, v− = 0 on Σ,

where v± := ∂tu
±. The next step is to extend u±2 to Q̃ = Ω × (−T, T ) by setting u±2 (x, t) := u±2 (x,−t) for a.e.

(x, t) ∈ Ω × (−T, 0). Since u±0 , A, p and q± are-real valued, it is not hard to see that the function v±, extended to
Ω× (−T, 0) as v±(x, t) := −v±(x,−t), satisfies
(3.15)

−i∂tv+ −∆v+ + q+
1 v

+ = −A1 · ∇v− −A · ∇∂tu−2 − q+∂tu
+
2 − p1v

− − p∂tu−2 in Q̃

−i∂tv− −∆v− + q−1 v
− = A1 · ∇v+ +A · ∇∂tu+

2 − q−∂tu
−
2 − p1v

+ − p∂tu+
2 in Q̃

v+(·, 0) = −i(A · ∇u−0 + q+u+
0 + pu−0 ) in Ω

v−(·, 0) = −i(−A · ∇u+
0 + q−u−0 + pu+

0 ) in Ω

v+ = 0, v− = 0 on Σ̃ := Γ× (−T, T ).

The main benefit of this time-symmetrization method already used in [2, 13, 20, 21, 22] for Schrödinger systems, is to
apply the Carleman inequality of Corollary 2.5 on the extended domain Q̃ in order to avoid observation data at t = 0
over Ω, appearing in Carleman estimates on Q.

Put µ± :=
∥∥∥e−sη0ϕ1/2 |∂νβ|1/2 ∂νv±

∥∥∥2

L2(Σ̃∗)
. Then, applying Corollary 2.5 to (3.15), we get for all s ≥ s0 that

s−1/2
∥∥e−sη∇′v±∥∥2

L2(Q̃)
+ s−1/2

∥∥e−sηv±∥∥2

L2(Q̃)
+
∥∥e−sη0v±(·, 0)

∥∥2

L2(Ω)
(3.16)

≤ Cs−3/2
(
sµ± +

∥∥e−sη (±A1 · ∇v∓ ±A · ∇∂tu∓2 + q±∂tu
±
2 + p1v

∓ + p∂tu
∓
2

)∥∥2

L2(Q̃)

)
,

for some positive constantC depending only on ω, T and γ∗. Taking into account that ‖A1‖L∞(Ω) ≤M , ‖p1‖L∞(Ω) ≤
M , and that the two functions ∂tu±2 and ∇∂tu±2 are bounded on Q̃ by some positive constant depending only on ω,
T , M , u0 and g according to Lemma 2.1, (2.13) and (3.16) then yield that

s−1/2
∥∥e−sη∇′v±∥∥2

L2(Q̃)
+ s−1/2

∥∥e−sηv±∥∥2

L2(Q̃)
+
∥∥e−sη0v±(·, 0)

∥∥2

L2(Ω)

≤ Cs−3/2
(
sµ± +

∥∥e−sη∇x′v∓∥∥2

L2(Q̃)
+
∥∥e−sηv∓∥∥2

L2(Q̃)
+
∥∥e−sη0A∥∥2

L2(Ω)n
+
∥∥e−sη0q±∥∥2

L2(Ω)
+
∥∥e−sη0p∥∥2

L2(Ω)

)
,

provided s ≥ s0. Here and in the remaining part of this proof, C denotes a generic positive constant which may change
from line to line. Although the constant C depends only on ω, T , γ∗, M , u0 and g in the above estimate, in the sequel
it might also depend on one or several of the parameters n, y∗, κ, %, a, p, q and θ of the problem, as well. Nevertheless,
we shall not systematically specify the dependence of C with respect to the above mentioned parameters.

As a consequence we have

s−
1
2

(
1− Cs−1

)∑
`=±

(∥∥e−sη∇′v`∥∥2

L2(Q̃)
+
∥∥e−sηv`∥∥2

L2(Q̃)

)
+
∑
`=±

∥∥e−sη0v`(·, 0)
∥∥2

L2(Ω)

≤ Cs−
3
2

(∥∥e−sη0A∥∥2

L2(Ω)n
+
∥∥e−sη0p∥∥2

L2(Ω)
+
∥∥e−sη0q+

∥∥2

L2(Ω)
+
∥∥e−sη0q−∥∥2

L2(Ω)
+ s

(
µ+ + µ−

))
,
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provided s ≥ s0. Thus, taking s1 := max(s0, 2C) in the above estimate, we infer from (3.15) that∥∥e−sη0 (q+u+
0 +A · ∇u−0 + pu−0

)∥∥2

L2(Ω)
+
∥∥e−sη0 (q−u−0 −A · ∇u+

0 + pu+
0

)∥∥2

L2(Ω)
(3.17)

≤ Cs−
3
2

(∥∥e−sη0A∥∥2

L2(Ω)n
+
∥∥e−sη0p∥∥2

L2(Ω)
+
∥∥e−sη0q+

∥∥2

L2(Ω)
+
∥∥e−sη0q−∥∥2

L2(Ω)
+ s

(
µ+ + µ−

))
,

whenever s ≥ s1.
The rest of the proof is to adequately choose n + 1 initial states uk0 := (u+,k

0 , u−,k0 )T , k = 1, . . . , n + 1, in order
to estimate each of the four unknown functions A, p and q± separately, in terms of the corresponding boundary data

µ±k :=
∥∥∥e−sη0ϕ1/2 |∂νβ|1/2 ∂νv±,k

∥∥∥2

L2(Σ̃∗)
, where v±,k is the solution to (3.15) with u±0 = u±,k0 .

3.2. Building n+ 1 suitable initial data. We proceed in two steps.
Step 1: Estimation of p, q± and an. We pick ε ∈ (0, 1), put u+,1

0 (x′, xn) := 0, u−,10 (x′, xn) := 〈xn〉−
1+ε
2 for all

(x′, xn) ∈ Ω and take u±0 = u±,10 in (3.17). For all s ≥ s1, we get that∥∥∥e−sη0 (2〈xn〉−
1+ε
2 p− (1 + ε)〈xn〉−

5+ε
2 xnan

)∥∥∥2

L2(Ω)
+ 4

∥∥∥e−sη0〈xn〉− 1+ε
2 q−

∥∥∥2

L2(Ω)

≤ Cs−
3
2

(∥∥e−sη0A∥∥2

L2(Ω)n
+
∥∥e−sη0p∥∥2

L2(Ω)
+
∥∥e−sη0q+

∥∥2

L2(Ω)
+
∥∥e−sη0q−∥∥2

L2(Ω)
+ s

(
µ+,1 + µ−,1

))
,

which entails that∥∥∥e−sη0〈xn〉− 1+ε
2 q−

∥∥∥2

L2(Ω)
(3.18)

≤ Cs−
3
2

(∥∥e−sη0A∥∥2

L2(Ω)n
+
∥∥e−sη0p∥∥2

L2(Ω)
+
∥∥e−sη0q+

∥∥2

L2(Ω)
+
∥∥e−sη0q−∥∥2

L2(Ω)
+ s

(
µ+,1 + µ−,1

))
and ∥∥∥e−sη0 (2〈xn〉−

1+ε
2 p− (1 + ε)〈xn〉−

5+ε
2 xnan

)∥∥∥2

L2(Ω)
(3.19)

≤ Cs−
3
2

(∥∥e−sη0A∥∥2

L2(Ω)n
+
∥∥e−sη0p∥∥2

L2(Ω)
+
∥∥e−sη0q+

∥∥2

L2(Ω)
+
∥∥e−sη0q−∥∥2

L2(Ω)
+ s

(
µ+,1 + µ−,1

))
.

Doing the same with u±0 = u±,20 := u∓,10 , we obtain for all s ≥ s1 that∥∥∥e−sη0〈xn〉− 1+ε
2 q+

∥∥∥2

L2(Ω)
(3.20)

≤ Cs−
3
2

(∥∥e−sη0A∥∥2

L2(Ω)n
+
∥∥e−sη0p∥∥2

L2(Ω)
+
∥∥e−sη0q+

∥∥2

L2(Ω)
+
∥∥e−sη0q−∥∥2

L2(Ω)
+ s

(
µ+,2 + µ−,2

))
,

and ∥∥∥e−sη0 (2〈xn〉−
1+ε
2 p+ (1 + ε)〈xn〉−

5+ε
2 xnan

)∥∥∥2

L2(Ω)
(3.21)

≤ Cs−
3
2

(∥∥e−sη0A∥∥2

L2(Ω)n
+
∥∥e−sη0p∥∥2

L2(Ω)
+
∥∥e−sη0q+

∥∥2

L2(Ω)
+
∥∥e−sη0q−∥∥2

L2(Ω)
+ s

(
µ+,2 + µ−,2

))
.

Since 8
∥∥∥e−sη0〈xn〉− 1+ε

2 p
∥∥∥2

L2(Ω)
is upper-bounded by the sum of

∥∥∥e−sη0 (2〈xn〉−
1+ε
2 p+ (1 + ε)〈xn〉−

5+ε
2 xnan

)∥∥∥2

L2(Ω)

and
∥∥∥e−sη0 (2〈xn〉−

1+ε
2 p− (1 + ε)〈xn〉−

5+ε
2 xnan

)∥∥∥2

L2(Ω)
, it follows from (3.19) and (3.21) that

∥∥∥e−sη0〈xn〉− 1+ε
2 p
∥∥∥2

L2(Ω)
(3.22)

≤ Cs−
3
2

(∥∥e−sη0A∥∥2

L2(Ω)n
+
∥∥e−sη0p∥∥2

L2(Ω)
+
∥∥e−sη0q+

∥∥2

L2(Ω)
+
∥∥e−sη0q−∥∥2

L2(Ω)
+ s

2∑
i=1

(
µ+,i + µ−,i

))
,
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whenever s ≥ s1. Similarly, upon estimating
∥∥∥e−sη0 (2〈xn〉−

1+ε
2 p+ (1 + ε)〈xn〉−

5+ε
2 xnan

)∥∥∥2

L2(Ω)
from below by

the difference (1+ε)2

2

∥∥∥e−sη0〈xn〉− 5+ε
2 xnan

∥∥∥2

L2(Ω)
− 4

∥∥∥e−sη0〈xn〉− 1+ε
2 p
∥∥∥2

L2(Ω)
, we get from (3.21)-(3.22) that

∥∥∥e−sη0〈xn〉− 5+ε
2 xnan

∥∥∥2

L2(Ω)
(3.23)

≤ Cs−
3
2

(∥∥e−sη0A∥∥2

L2(Ω)n
+
∥∥e−sη0p∥∥2

L2(Ω)
+
∥∥e−sη0q+

∥∥2

L2(Ω)
+
∥∥e−sη0q−∥∥2

L2(Ω)
+ s

2∑
i=1

(
µ+,i + µ−,i

))
,

for all s ≥ s1. Bearing in mind that |xnan| ≥ y∗ |an| in Ω, by virtue of the assumption (1.7), it follows from (3.23)
that ∥∥∥e−sη0〈xn〉− 5+ε

2 an

∥∥∥2

L2(Ω)
(3.24)

≤ Cs−
3
2

(∥∥e−sη0A∥∥2

L2(Ω)n
+
∥∥e−sη0p∥∥2

L2(Ω)
+
∥∥e−sη0q+

∥∥2

L2(Ω)
+
∥∥e−sη0q−∥∥2

L2(Ω)
+ s

2∑
i=1

(
µ+,i + µ−,i

))
,

provided we have s ≥ s1.

Step 2: Estimation of the n − 1 first components aj , j = 1, . . . , n − 1, of A. For all k = 1, · · · , n − 1 and all
x = (x1, . . . , xn) ∈ Ω, we put u±,k+2

0 (x) := xk〈xn〉−
1+ε
2 , substitute u±,k+2

0 for u±0 in (1.1) and then apply Corollary
2.5 to (3.15). We get for all s ≥ s1 that∥∥∥e−sη0 (pu−,k+2

0 +A · ∇u−,k+2
0 + q+u+,k+2

0

)∥∥∥2

L2(Ω)
+
∥∥∥e−sη0 (pu+,k+2

0 −A · ∇u+,k+2
0 + q−u−,k+2

0

)∥∥∥2

L2(Ω)

≤ Cs−3/2
(∥∥e−sη0A∥∥2

L2(Ω)n
+
∥∥e−sη0p∥∥2

L2(Ω)
+
∥∥e−sη0q+

∥∥2

L2(Ω)
+
∥∥e−sη0q−∥∥2

L2(Ω)
+ s

(
µ+,k+2 + µ−,k+2

))
.

Since
∣∣∣pu∓,k+2

0 ±A · ∇u∓,k+2
0 + q±u±,k+2

0

∣∣∣2 ≥ |A·∇u∓,k+2
0 |2
2 −

∣∣∣pu∓,k+2
0 + q±u±,k+2

0

∣∣∣2, this entails that

∥∥∥e−sη0A · ∇u+,k+2
0

∥∥∥2

L2(Ω)
+
∥∥∥e−sη0A · ∇u−,k+2

0

∥∥∥2

L2(Ω)
(3.25)

≤ Cs−3/2
(∥∥e−sη0A∥∥2

L2(Ω)n
+
∥∥e−sη0p∥∥2

L2(Ω)
+
∥∥e−sη0q+

∥∥2

L2(Ω)
+
∥∥e−sη0q−∥∥2

L2(Ω)
+ s(µ+,k+2 + µ−,k+2)

)
+
∥∥∥e−sη0 (pu+,k+2

0 + q−u−,k+2
0

)∥∥∥2

L2(Ω)
+
∥∥∥e−sη0 (pu−,k+2

0 + q+u+,k+2
0

)∥∥∥2

L2(Ω)
.

Moreover,
∥∥∥e−sη0 (pu±,k+2

0 + q∓u∓,k+2
0

)∥∥∥2

L2(Ω)
=
∥∥∥e−sη0xk〈xn〉− 1+ε

2 (p+ q∓)
∥∥∥2

L2(Ω)
being upper-bounded by

2 |ω|2
(∥∥∥e−sη0〈xn〉− 1+ε

2 p
∥∥∥2

L2(Ω)
+
∥∥∥e−sη0〈xn〉− 1+ε

2 q∓
∥∥∥2

L2(Ω)

)
, (3.18), (3.20), (3.22) and (3.25) then yield

∥∥∥e−sη0A · ∇u+,k+2
0

∥∥∥2

L2(Ω)
+
∥∥∥e−sη0A · ∇u−,k+2

0

∥∥∥2

L2(Ω)

≤ Cs−3/2
(∥∥e−sη0A∥∥2

L2(Ω)n
+
∥∥e−sη0p∥∥2

L2(Ω)
+
∥∥e−sη0q+

∥∥2

L2(Ω)
+
∥∥e−sη0q−∥∥2

L2(Ω)

+s

(
2∑
i=1

(
µ+,i + µ−,i

)
+ µ+,k+2 + µ−,k+2

))
, s ≥ s1,
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From this, (3.23) and the estimates
∣∣∣A.∇u±,k+2

0

∣∣∣2 ≥ 1
2

∣∣∣〈xn〉− 1+ε
2 ak

∣∣∣2 − (1+ε)2

4

∣∣∣〈xn〉− 5+ε
2 xkxnan

∣∣∣2 and∥∥∥e−sη0〈xn〉− 5+ε
2 xkxnan

∥∥∥
L2(Ω)

≤ |ω|
∥∥∥e−sη0〈xn〉− 5+ε

2 xnan

∥∥∥
L2(Ω)

, it then follows that∥∥∥e−sη0〈xn〉− 1+ε
2 ak

∥∥∥2

L2(Ω)

≤ Cs−3/2
(∥∥e−sη0A∥∥2

L2(Ω)n
+
∥∥e−sη0p∥∥2

L2(Ω)
+
∥∥e−sη0q+

∥∥2

L2(Ω)
+
∥∥e−sη0q−∥∥2

L2(Ω)

+s

(
2∑
i=1

(
µ+,i + µ−,i

)
+ µ+,k+2 + µ−,k+2

))
, s ≥ s1.

Summing up the above inequality over k = 1, . . . , n− 1 and remembering (3.24), we obtain

∥∥∥e−sη0〈xn〉− 5+ε
2 A

∥∥∥2

L2(Ω)n
(3.26)

≤ Cs−3/2
(∥∥e−sη0A∥∥2

L2(Ω)n
+
∥∥e−sη0p∥∥2

L2(Ω)
+
∥∥e−sη0q+

∥∥2

L2(Ω)
+
∥∥e−sη0q−∥∥2

L2(Ω)
+ sξ

)
,

for s ≥ s1, where ξ :=
∑n+1
i=1

(
µ+,i + µ−,i

)
.

3.3. End of the proof. For all y > 0 we have(
〈y〉−(5+ε) − Cs− 3

2

)(∥∥e−sη0A∥∥2

L2(Ω)n
+
∥∥e−sη0p∥∥2

L2(Ωy)
+
∥∥e−sη0q+

∥∥2

L2(Ωy)
+
∥∥e−sη0q−∥∥2

L2(Ωy)

)
(3.27)

≤ Cs−
3
2

(∥∥e−sη0A∥∥2

L2(Ω\Ω)n
+
∥∥e−sη0p∥∥2

L2(Ω\Ωy)
+
∥∥e−sη0q+

∥∥2

L2(Ω\Ωy)
+
∥∥e−sη0q−∥∥2

L2(Ω\Ωy)
+ sξ

)
,

≤ Cs−
3
2

(
‖A‖2L2(Ω\Ω)n + ‖p‖2L2(Ω\Ωy) +

∥∥q+
∥∥2

L2(Ω\Ωy)
+
∥∥q−∥∥2

L2(Ω\Ωy)
+ sξ

)
, s ≥ s1,

by (3.18), (3.20), (3.22) and (3.26), where Ωy := ω × (−y, y). Notice that in the last line of (3.27), we used that

η0 is non-negative in Ω. Moreover, for all y ≥ y1 :=
(

(2C)−
2
3 s1

) 3
2(5+ε)

we have sy := (2C)
2
3 〈y〉

2(5+ε)
3 ≥ s1 and

2Cs
− 3

2
y ≤ 〈y〉−(5+ε). Therefore, applying (3.27) with s = sy and using that η0(x) ≤ e2K

T 2 for all x ∈ Ω, we obtain
that

(3.28) ΘΩy ≤ C
(

ΘΩ\Ωy + 〈y〉
2(5+ε)

3 ξ
)
, y ≥ y1,

where we set ΘX := ‖A‖20,X + ‖p‖20,X + ‖q+‖20,X + ‖q−‖20,X for any subset X ⊂ Ω. Next, using that pj ∈ Pp(p0)

for j = 1, 2, we infer from (1.5) upon writing ‖p‖L2(Ω\Ωy) ≤
∑
j=1,2 ‖pj − p0‖L2(Ω\Ωy), that

‖p‖2L2(Ω\Ωy) ≤ 4p2

∫
Ω\Ωy

e−2κ〈xn〉%dx′dxn(3.29)

≤ 4p2 |ω|
∫
|xn|>y

e−2κ〈xn〉%dxn

≤ 4p2 |ω|
(∫

R
e−δ〈xn〉

%

dxn

)
e−(2κ−δ)〈y〉% , δ ∈ (0, 2κ).

Similarly, since q±j ∈ Pq(q±0 ) and Aj ∈ Aa(A0) for j = 1, 2, we obtain

(3.30) ΘΩ\Ωy ≤ Ce
−(2κ−δ)〈y〉% , δ ∈ (0, 2κ),

from (1.6) and (3.29), where C = 4 |ω| (a2 + p2 + 2q2)
∫
R e
−δ〈xn〉%dxn. It follows from this and (3.28) that

(3.31) ΘΩy ≤ C
(
e−(2κ−δ)〈y〉% + 〈y〉

2(5+ε)
3 ξ

)
, y ≥ y1, δ ∈ (0, 2κ).
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Put ξ1 := e−(2κ−δ)〈y1〉% . We shall examine the two cases ξ ∈ (0, ξ1] and ξ ∈ (ξ1,+∞) separately. Let us start with

ξ ∈ (0, ξ1]. In this case, we pick y ∈ [y1,+∞) so large that e−(2κ−δ)〈y〉% = ξ, i.e., y =

((
− ln ξ

2κ−δ

) 2
% − 1

) 1
2

. Thus,

with reference to (3.30)-(3.31) we get for all ξ ∈ (0, ξ1] that ΘΩ\Ωy ≤ Cξ
1−2θ
1 ξ2θ and that ΘΩy ≤ C

(
ξ1−2θ
1 + C1(θ)

)
ξ2θ,

where C1(θ) := supξ∈(0,ξ1]

(
ξ1−2θ

(
− ln ξ
2κ−δ

) 2(5+ε)
3%

)
<∞ from the assumption % > 0. As a consequence we have

(3.32) ΘΩ ≤ C
(
2ξ1−2θ

1 + C1(θ)
)
ξ2θ, ξ ∈ (0, ξ1],

and the desired result follows. Now, when ξ ∈ (ξ1,+∞), we infer from (1.5) upon majorizing ‖p‖2L2(Ω) by

2
∑
j=1,2 ‖pj − p0‖2L2(Ω), that ‖p‖2L2(Ω) ≤ 4p2 |ω|

(∫
R e
−2κ〈xn〉%dxn

)
ξ−2θ
1 ξ2θ. Doing the same with q± and A,

with the aid of, respectively, (1.5) and (1.6), we find that ΘΩ ≤ C̃1(θ)ξ2θ, where the notation C̃1(θ) stands for the
constant 4

(
a2 + p2 + 2q2

)
|ω|
(∫

R e
−2κ〈xn〉%dxn

)
ξ−2θ
1 . This, (3.32) and the estimates µ±k ≤ C

∥∥∂νv±,k∥∥2

L2(Σ̃∗)

for all k = 1, . . . , n+ 1, yield (1.9), which completes the proof of Theorem 1.2.
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