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Abstract

Devices exhibiting the integer quantum Hall effect can be modeled by one-
electron Schrodinger operators describing the planar motion of an electron
in a perpendicular, constant magnetic field, and under the influence of an
electrostatic potential. The electron motion is confined to bounded or un-
bounded subsets of the plane by confining potential barriers. The edges of the
confining potential barriers create edge currents. This is the second of two
papers in which we review recent progress and prove explicit lower bounds
on the edge currents associated with one- and two-edge geometries. In this
paper, we study various unbounded and bounded, two-edge geometries with
soft and hard confining potentials. These two-edge geometries describe the
electron confined to unbounded regions in the plane, such as a strip, or to
bounded regions, such as a finite length cylinder. We prove that the edge
currents are stable under various perturbations, provided they are suitably
small relative to the magnetic field strength, including perturbations by ran-
dom potentials. The existence of, and the estimates on, the edge currents
are independent of the spectral type of the operator.
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1 Introduction

This is the second of two papers dealing with lower bound estimates on edge
currents associated with quantum Hall devices. The integer quantum Hall
effect (IQHE) refers to the quantization of the Hall conductivity in integer
multiples of 2re?/h. The IQHE is observed in planar quantum devices at
zero temperature and can be described by a Fermi gas of noninteracting
electrons. This simplification reduces the study of the dynamics to the one-
electron approximation. Typically, experimental devices consist of finitely-
extended, planar samples subject to a constant perpendicular magnetic field
B. An applied electric field in the x-direction induces a current in the y-
direction, the Hall current, and the Hall conductivity o, is observed to be
quantized. Furthermore, the Hall conductivity is a function of the electron
Fermi energy, or, equivalently, the electron filling factor, and plateaus of
the Hall conductivity are observed as the filling factor is increased. It is
now accepted that the occurrence of the plateaus is due to the existence
of localized states near the Landau levels that are created by the random
distribution of impurities in the sample. We refer to [10] and references
mentioned there for a more detailed discussion. Since the earliest theoretical
discussions, the existence of edge currents has played a major role in the
explanation of the quantum Hall effect.

To describe the two-edge geometries dealt with in the paper, we first
recall the theory for the plane. The Landau Hamiltonian H; describes a
particle constrained to R?, and moving in a constant, transverse magnetic
field with strength B > 0. Let p, = —i0, and p, = —i0, be the two
momentum operators. The operator Hj is defined on the dense domain

C5°(R?) C L*(R?) by
H = (=iV = A)? = p + (p, — Bx)*, (1.1)

in the Landau gauge for which the vector potential is A(x,y) = B(0,x). This
extends to a selfadjoint operator with point spectrum given by {E,(B) =
(2n+1)B|n=0,1,2,...}, and each eigenvalue is infinitely degenerate.

Asin [10], we define the edge current as the expectation of the y-component
of the velocity operator V,, = (p, — Bx) in certain states that will be specified
below. These are states with energy concentration between two successive
Landau levels E,(B) and E,.(B).



1.1 Edge Currents in Two-Edge Geometries

Our main results in this paper can be grouped together as follows.

1. Two-Edge, Unbounded Geometries: We study the strip case for which
the electron is constrained to the region —¢/2 < x < /2, a strip of
width ¢ > 0, by the sharp confining potential

Vo(x) = Voxypai>e/2 (), Vo >0, (1.2)
where y; denotes the characteristic function of the set J.

2. Two-Edge, Bounded Geometries: We study models for which the elec-
tron on a cylinder Cp = R x [-D/2,D/2], for D > 0, is confined to
the bounded region [—¢/2,¢/2] x [-D/2, D/2] by the sharp confining
potential (1.2).

In all cases, the unperturbed Hamiltonian has the form
Hy=Hp + W, (1.3)

acting on the Hilbert space L?(R?). This is a nonnegative, self-adjoint op-
erator. Our strategy is to analyze the unperturbed operator via the partial
Fourier transform in the y-variable. We write f (z, k) for the partial Fourier
transform of the function f(z,y). For the case of unbounded geometry, we
have k € R, whereas for the case of bounded geometry, the allowable k val-
ues are discrete. In either case, this decomposition reduces the problem to a
study of the fibered operators of the form

ho(k) = p} + (k — Bx)* + Vo (x), (1.4)

acting on L*(R). Since the effective, nonnegative, potential (k— Bz)?+ V()
is unbounded as © — 400, the resolvent of hy(k) is compact and the spectrum
is discrete. We denote the eigenvalues of ho(k) by w;(k), with corresponding
normalized real eigenfunctions ¢;(z; k), so that

ho(k)e;(2; k) = wi(k)ps(x; k), e (5 k)] = 1. (1.5)

As in [2] and [10], the properties of the curves k € R — w;(k) play an
important role in the proofs. These curves are called the dispersion curves
for the unperturbed Hamiltonian (1.3). The importance of the properties of
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the dispersion curves comes from an application of the Feynman-Hellmann
formula. To illustrate this, let us first consider the two-edge geometry of a
half-plane with the sharp confining potential. We note that unlike for the
case of one-edge geometries, the dispersion curves are no longer monotonic
in k.

0
Figure 1: Dispersion curves of H,

For simplicity, we consider in this introduction a closed interval Ag C (B, 3B)
and a normalized wave function v satisfying ¢ = Ey(Ag)1, where Ey(Ay)
denotes the spectral projection of Hy associated with Ag. Such a function
admits a decomposition of the form

W e Bo(k)po(w; k) dk,

1
-t

27 Jwg ' (Ao)
where the coefficient (k) is defined by

~

Bo(k) = (& (5 k), @0l k). (1.6)

The matrix element of the current operator V; in such a state is
WV = [ dn [ dkBP( - Ba)oo(ask)
R wy ' (Bo)

4



From (1.5) and the Feynman-Hellmann Theorem, we find that

wy(k) = 2/]R dx (k — Bx)po(x; k)?, (1.7)

so that we get
(0. V) = 5 [ 16utk . (18)

It follows from (1.8) that in order to obtain a lower bound on the expectation
of the current operator in the state ¢ we need to bound the derivative wj(k)
from below for k € wy ' (Ag). The next step of the proof involves relating the
derivative wj(k) to the trace of the eigenfunction ¢(z; k) on the boundary
9(k—Bx)?

of the strip Taking into account the eigenvalue equation that ==~ =

5205 and (k= Be)po(: k) = @j(a: k) + (wo(k) = Vo(w))po(a; k), we
integrate by parts in (1.7), and find that

Vo
B

W) = 22 (0(0/2: k)2 — o2, K)?). (1.9)
Consequently, we are left with the task of estimating the trace of the eigen-
function along the two boundary components at x = +£/2.

The key point that allows us to distinguish these two traces is the follow-
ing. The dispersion curves are symmetric about k£ = 0 if V() is an even
function. Consequently, if a wave function ¢ satisfies 1) = Ey(Ag)1, we have
to study the decomposition of ¢ in k-space according to the decomposition
Wyt (Ag) = wyH(Ag) - Uwy(Ag)y, where wy ' (Ag)+ = wy ' (Ag) NRy. These
two components correspond to currents propagating in opposite directions
along the left and right edges of the band, respectively. To construct a left-
edge current, we construct states ¢ so that the coefficients fy(k) in (1.6)
satisfy supp Bo(k) C wy'(Ag)_. Such a state is spatially concentrated near
the left edge z = —¢/2. Hence, the contribution to the left-edge current
coming from ¢o(¢/2; k) will be exponentially small since the domain x ~ (/2
is in the classically forbidden region for energies wy(k), for k € wy'(Ao)-_.
Consequently, the contribution to the integral in (1.8) will be exponentially
small. Thus, we prove that if ) = Fy(Ag) is spectrally concentrated in the
set wy ' (Ag)_, then the matrix element (1, V1) is bounded from below by a
constant times B'/2||[+s||2. Much of our technical work, therefore, is devoted
to obtaining lower bounds on quantities of the form Vypo(+£/2; k)? for such
left-edge current states. We also mention that similar results hold for the



right-edge current. Of course, in the unperturbed case with a symmetric
confining potential, we expect that the net current across any line y = C
is zero for the unperturbed problem. We will prove this in Proposition 2.1
below.

1.2 Contents

This paper is organized as follows. Section 2 is devoted to the estimation
of edge currents. In section 3, the spectral properties of the model are in-
vestigated. Using the Mourre commutator method, we exhibit a class of
potentials V; (periodic or decreasing in the y-direction) preserving nonempty
absolutely continuous spectrum in intervals lying between two consecutive
Landau levels for the perturbed Hamiltonian Hy + V;. In section 4, we ad-
dress cylinder geometries models and prove the existence of edge currents
for Hamiltonians with pure point spectrum in this framework. Appendix 1
in section 5 presents basic properties of the dispersion curves needed in the
proofs.

1.3 Acknowledgments

We thank J.-M. Combes for many discussions on edge currents and their
role in the IQHE. We thank E. Mourre for discussions on the commutator
method used in section 3. We also thank F. Germinet, G.-M. Graf, and H.
Schulz-Baldes for fruitful discussions. Some of this work was done when ES
was visiting the Mathematics Department at the University of Kentucky and
he thanks the Department for its support.

2 Edge Currents for Two-Edge Geometries

Many quantum devices can be modeled by a confining potential forcing the
electrons into a strip of infinite extent in one direction. The dynamics of
electrons in an infinite-strip are different from the half-plane cases treated in
[10]. We study an electron in a strip of width ¢ > 0 in the z-direction, and
unbounded in the y-direction. We consider confining potential Vy(x) that
are step functions, or parabolic functions. After some basic analysis of these
models that is independent of the precise form of the confining potential,



we study edge currents for parabolic confining potential and sharp confining
potential.

2.1 Basic Analysis of Two-Edge Geometries

As in [10], we study the existence of edge currents for a general confining
potential Vy(z). We obtain lower bounds on the appropriately localized ve-
locity along the y-direction V,. The strip geometry is a two-edge geometry.
Thus, we expect that there is a current associated with each edge. Classi-
cally, these currents propagate along the edges in opposite directions. For
the unperturbed system, one expects that the net current flow across the line
y = C, for any C' € R, to be zero, and we prove this in Proposition 2.2. Once
a perturbation Vj is added, this may no longer be true, and the persistence
of edge currents may depend upon a relationship between B and /.

We continue to use the same notation as in [10]. That is, we write Hy =
Hp +V, for the unperturbed operator. Since we have translational invariance
in the y-direction, this operator admits a direct sum decomposition

-
R
We write ho(k) for the fibered operator acting on L?(R), where
ho(k) = p? + (k — Bx)* + Vo (x), (2.2)

with an even, two-edge confining potential V4. Although some of our argu-
ments hold for a general confining potential that is monotone on the left and
the right, we will explicitly treat the case of the sharp confining potential
given in (1.2). We first prove that the total edge current carried by certain
symmetric states of finite energy vanishes. For this, it is essential that the
confining potential be an even function. We consider states of finite energy
¥, with ¢ € Ey(A,)L*(R?), for an interval A, C (E,(B), E,+1(B)), for
any n > 0. The partial Fourier transform 1& of ¢ in the y-variable can be
expressed in terms of the eigenfunctions ¢;(z; k) as

Yl k) = Z Xoo 1 (a) (R)Bi(R) s (2 k), (2.3)



or equivalently as
1 < ;
V) = <=3 [ i BB ask) db. 24
=0

where the coefficients 3;(k) are defined by

Bi(k) = (( k), (3 k). (2.5)
and the normalization condition
ol = > [ IB®F dk (26)
j=0 7w (An)

We recall that the properties of the dispersion curves w;(k) result in the
disjoint decomposition w; ' (A,) = w; (An)- Uw; ' (An)4 with wiH(A,): =
Wi (A,) NR..

J

VY e 0 P o
« @). a Q). Figure 2 @), « @),



Lemma 2.1 Letn € N and A,, C (E,(B), E,11(B)). Then there is 6, =
dn(B, 1, Vo) > 0 such that if |A,| < 0, we have
wi ' (Ay) =0, j>n+1, (2.7)

J

and, if n > 1,

WA Nw (A =0, §#1, j,1=0,1,...,n. (2.8)

J

Proof.

First (2.7) is evident since w,.1(k) > E,.1(B) for all £ € R. Next set
O = 0p(B, 0, V) = ming<j<,—1 infrer (Wjp1(k) —wj(k)). Due to Lemma
5.2(ii), we have §,, > 0. For all {,5 =0,1,...,nand k € w]-’l(An) Nw; Y (A,),
we have |w;(k) — w;(k)| < |A,|, which leads to a contradiction if |A,| < 4,
and j # I. Henceforth w; ' (A,) Nw, (A,) =0if j #1. m

It is clear from the fact the potential in ho(k) is centered at xy = k/B
that the wave function 1) may be more localized near one edge or another
depending upon the properties of the weights 3;(k). For example, if the 3;(k)
are supported only by negative wave numbers k, then the wave function will
be localized near the left edge.

Proposition 2.1 Letn € N and A,, be given by
A, =[(2n+a)B,(2n+c)B], forl <a<c<3. (2.9)
Let ¢ € Eo(A,)LA(R?), as in (2.4), be a finite energy state, such that
Bi(k) =0, k€ w; (An)4, j=0,1,...,n.

Then there are two constants o, = ay(a) > 0, depending only on n and
a, and 0, = 0,(a,c) > 0, depending only on n, a and ¢, such that for all
Vo > Eni1(B), all B2 > 0, and all Axy > 0, we have

/M | g [Py > (1= gem(ee DRSS — (@A
T4 )X

where

I(Azy) =[—0/2 — Ax_,—€/2 + a, B~V* + Az,].



Proof.
In light of (2.3) and the Parseval’s Theorem we have

1 n
[ sy =5 3 [ e ( / w(a:;k)?dx) i
I(Az+)xR 7Tj:0 w; ' (An) I(Azy)

Hence the result follows from this, (2.6) and Lemma 5.7. =

Such a wave function should carry a net left-edge current. We will prove this
below. We will first prove that if the Fourier Transform of a wave function
symmetrically localized with respect to the Fourier variable k, then it carries
no net edge current: The left-edge current cancels the right-edge current.

Proposition 2.2 Let n € N and A,, C (E,(B), E,+1(B)) be small enough
so Lemma 2.1 holds true. Let ¢ € Eo(A,)L*(R?), as in (2.3), be a finite
enerqy state. Then, the current carried by such a state has the following
ETPression:

(¥, Vy) = Z/_I(An ) (16;(B)[? — 18;(—k)|*)w (k) dk. (2.10)

Henceforth, if 1 is such that

18;(k)| = 18;(=k), 7=0,1,---,n, (2.11)

then the current carried by 1 vanishes:

(v, Vyh) = 0. (2.12)

Proof.

The velocity V,, = p, — Bx has a Fourier transform that we write as f/y =
Vy(k) = k — Bz. Using the Fourier decomposition (2.3), the matrix element
of the velocity operator V}, is

<1/17Vy¢> (2.13)
S [ s 0010, (B, ()1 ), V5 )
ji=07R



As a consequence of the result of Lemma 2.1 below, the cross-terms in (2.13)
vanish, at least for |A,| sufficiently small, giving

W, Vi) = Z/le ay (B850 P05 ), Vi ()5 (5 )l

+\@-(—k)\zm(-;—km(—km«;—k>>}dk, (2.14)

where we used the fact, proved in Lemma 5.1 in Appendix, that the dispersion
curves are even functions of k, that is, w;(k) = w;(—k). We also note that the
Hamiltonian ho(k) commutes with the operation P that implements (z, k) —
(—x,—k). The simplicity of the eigenfunctions then implies (this is shown in
Lemma 5.1) that P(,oj = 0,p; with 6; = £1. Hence the last term in the r.h.s.

of (2.14), (p;(-; —k), V,(—k)p;(-; —k)) becomes
/Rgo —k — Bx)dr = /Rgoj(—x;—kf(—kvLBx)dx
— — [ itk Bayis

= —(@i(5 k), Vy(R)g; (5 K)),
and the result follows from this, (2.14) and the Feynman-Hellmann formula

wi(k) = 2(p;( k), (k — Bx)p; (-5 k)) (2.15)

It can be seen from Lemma 5.1 that a state ¢ defined by (2.4)-(2.5) and
symmetric about O (i.e. ¢¥(—z, —y) = ¥(x,y) for (x,y) € R?) is characterized
by Fourier coefficients 3;, j = 0,1,...,n, satisfying the condition

ﬁ](_k) = jﬁj(k)a ke wj_l(An),, j = O, 1, oo,
Consequently symmetric states about O are among states satisfying (2.11),
though a state satisfying (2.11) is not necessarily symmetric about O. More-
over it should be noticed that states satisfying the condition (2.11) are not

necessarily symmetric about the y-axis either, since the condition ¢ (—z,y) =
Y(x,y) for (z,y) € R? is equivalent to

Bi(k)=0if ;= -1, ke w; ' (Ay)—, j=0,1,...,n

11



2.2 Estimation of the Edge Current for a Strip

We turn now to the estimation of the left-edge current for a strip of width
¢ > 0. We want to estimate the total current along both edges, carried by
appropriately chosen states . That is, for all n € N we want to obtain a
lower bound on the matrix element of the localized velocity operator (2.10),
carried by a state ¢ € Ey(A,,)L*(R?) associated to the energy interval A,, C
(En(B), Eng1(B)) . Much of the technical work in this paper is devoted to
bounding (—wj(k)), j = 0,1,..., n, from below, uniformly for k in w; ' (A,)_.

Lemma 2.2 Let n € N and A, be given by (2.9). Then, there are two
constants B, = Pn(a) > 0, depending only onn and a, and C,, > 0, depending
only on n, such that we have

—wi(k) > Cola—1)*(3=¢)*B?, k€ w;'(An)—, j=0,1,....n, (2.16)
provided B? > 3, and Vo > E,11(B).

The proof of Lemma 2.2 being rather technical, it is postponed to section
2.3.

In light of (2.10) and Lemma 2.2, let us see now the current carried by
a state 1, whose coeflicients 3;(k), j = 0,1,--- ,n, are mostly supported on
the set of negative wave numbers k, is of size B'/2.

More precisely, A being a subinterval of (E,(B), E,+1(B)) we consider
states of finite energy ¢ € Ey(A), whose Fourier coefficients f;(k), defined
by (2.5), satisfy the condition

|6J(k)|2 > (1 +72)|Bj(_k)‘27 ke wj_l(A>—7j = 07 17 (2 (217>

for some ~y > 0.

If v goes to infinity we find that 5;(—k) = 0, for k € wj_l(A)_ and
j = 0,1,---,n, whence 1 is localized in a strip of width O(B~'/2) along
the left edge x = —(¢/2) according to Proposition 2.1. Analogously we may
expect that all states satisfying (2.17) for some v > 0 are mostly supported
in the left side of the strip [—¢/2,¢/2] x R.

Theorem 2.1 Let n € N and A, be given by (2.9). Let 5, = Bn(a) and C,,
be defined as in Lemma 2.2. Then for all B(*> > B3, and Vo > E,1(B), there
is a constant 6, = 0,(B,¢,Vy) > 0 such that for all interval A C A, with
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size |A| < 6, and all states ¥ € FEo(A)L*(R?) satisfying the condition (2.17)
for the interval A, we have

2

~{0. Vi) 2 55 Cala = 123 = e BYw (2.18)

Proof.
Due to (2.17) we have |3;(k)|> — |8;(=k)|> > +*/(1 + 7?)|5;(k)|* for all
j=0,1,...,nand k € wj_l(A)_, whence

1
Z/_l 13,k QdszjEW (2.19)

from the normalization condition (2.6). Further, the size of A being suffi-
ciently small so Lemma 2.1 holds true, the total current carried by the state

P is
(0. V) = Z g 0 = 3P 1

so the result follows from this, (2.19) and Lemma 2.2 since w;'(A)_ C
Wl (Ay)_for j=0,1,...,n. =

J

2.3 Proof of Lemma 2.2 : Estimation of the Speed of
the Dispersion Relations

For all n € N, A,, defined by (2.9) and j = 0,1,...,n, it is clear from the
definition of w;'(A,)- that supw; ' (A,)- < 0. Actually, Lemma 5.4 tells
us this supremum can be bounded by any number greater than (—BY¢)/2
upon taking Bf? sufficiently large. Consequently, the region z > 0 is in
the classically forbidden zone for energies w;(k), k € w; '(A,)_, at least in
the intense magnetic field regime. This is because the parabolic part of the
effective potential

Wi k) = (k — Ba)? + V() — wy(k), (2.20)
is centered at the coordinate k/B.
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Henceforth the eigenfunctions ¢;(.; k) of ho(k) are exponentially decaying
in the region x > 0 for all k € wj_l(An),. This is not true in the region z <0,
and ¢;(¢/2;k)?* is also expected to be small relative to o;(—¢/2;k)?. Since

K = 0 (o, 02K — oy ~/2:RP) (2.21)

by arguing as in the derivation of (1.9), we then get that

Vo
(k) e =0y (/2 R
This remark is made precise below. Namely we know from Lemma 5.6 in

Appendix that upon choosing B¢? > (,, we have
Vow(€/2; k) < (un(BE) VB2 ke wiN(An)-, j=0,1,...,n, (222)

both constant ¢, > 0 and v, > 0 depending only on n and a. Hence the re-
maining term Vop;(¢/2; k)? is uniformly bounded by a constant times B¢~ 1.
We turn now to computing a lower bound on the main term Vo, (—£/2; k)?.
We shall show that it is of size B3?2. This will require several steps.

Step 1 : Harmonic Oscillator Eigenfunction Comparison Revisited
The proof of Lemma 2.2 in [10] (based on the properties of the eigenfunctions
¥y (.5 k) of the harmonic oscillator hr (k) = p2 + (Bx — k)?) applying with-
out change to the case of the strip geometry examined here, the following
estimate,

i) VoPags (R > 5 3(0) = Bu(B) (B (B) =y (8),
(2.23)

holds for all k € wj_l(An)_. We recall that P, denotes the projection on the
eigenspace spanned by the first n eigenfunctions ,,(.; k) of hy(k),

Pop;(x; k) Zoﬂ) Vo (x5 k), (2.24)
with '
o) (k) = (i (1 k), ¥m (5 K)), (2.25)

14



and that the explicit expression of ¥, (z; k) is

1/4
Um(z; k) = \/;n_w <§> H,,(BY?(x — k/B))e B/2@=k/BY = (9 96)

where H,, denotes the m™ Hermite polynomial function as in [10].

The strategy consists in computing an upper bound on [(p;(.; k), VoP.p;(.; k)|,
involving the trace Vi, (—€/2; k). To do that, we expand P,¢;(.;k) as in
(2.24), in (p;(; k), VoPup;(.; ), getting:

(@i (5 k), VoFap; (5 k)| < VOZ o) |05 (5 k)| [ (; k) |da.

2] >¢/2

(2.27)
The set |x| > ¢/2 is the classically forbidden region for electrons with energy
less than V), so

0 < @j(: k) < @ (0/2; k)eTVomes W) 2@F2) - 40> /9 (2.28)

according to Proposition 8.3 in [10]. Henceforth by substituting the corre-
sponding exponentially decreasing term for o;(.; k) in (2.27), we have

a5 ), VoPag (1)
< vozw (I )s(=t/2: k) + U2 )es (L/2 ), (2:29)

where
1), = / o (: ) [F V0= 2T E/D) g (2.30)
+x>0/2

Step 2 : Trace Function Estimate

In view of bounding the integrals I, G ) we first define the constant

H,n = sup Hy(w)e 72, (2.31)

u€R

Then we substitute the following obvious consequence of (2.26) and (2.31)

1/4
(2 )] < (5) Hn
2mm!

- , (2.32)

15



for |1, (z; k)| in (2.30), and get:

» B\'* 1
IV < (2 m . 2.33
mE = (W) V2rm! (Vo — w;(k))1/2 (2.33)

Now combining (2.29) with (2.33), provides
’<90j('7k)v%Pngpj(wk»Lz(Rzﬂ (2.34)

Vo B\ [~ Han j . .
< Vo — wj(k))1/2 (;) (T;) \/Tm,m?&)(k’”) (i (—L/2:k) + p;(£/2;k)) .

Let us define the constant H(™ by

22 1/2
7—[(")5<Z 2%!) . (2.35)

m<n

By applying the Cauchy-Schwarz inequality to the sum in (2.34), and using
the normalization condition

Y 1D (k)P = [ Pag (5 R) 17 < 1,
m=0

we end up getting:
’<90J'('a k)a ‘/Opngpj(a k)>L2(R2)‘

< Vo B B ’H(”)( (—0/2; k) + ¢;(0/2; k))
= Vo—wi(k)V2\ 7 v ’ v e
This together with (2.22) and (2.23) yield
V20, (—)2: k) > f.(BE*)B¥*, (2.36)
where
1/4 w; (k) 1/2
Bﬁzzw— 1— = 13 — ¢) — 2By 1/A
fn( ) 2(7’l+1)7‘[(n) ( VO ) (CL )(3 C) Vn ( ) ’
provided B¢* > (,. Further for all Vy > E,1(B) we have
1 w; (k) > 3—c |
Vo 2n+ 3

uniformly in k € w; ' (Ay)_, so fn(B¢?) can be made greater than (a—1)(3—
c)3%/(2(n + 1)(2n + 3)Y/2H™) by taking B¢? sufficiently large, and (2.16)
then follows from (2.36), (2.21) and (2.22).
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2.4 Perturbation of Edge Currents

We now consider the perturbation of the edge currents by adding a bounded
impurity Potential Vi(x,y) to Hy. As in section 2.3 of [10] for unbounded
geometries, we prove that the lower bound on the edge currents is stable with
respect to these perturbations provided ||Vi|| = ||Vl is sufficiently small.

Theorem 2.2 Let n € N and A, be as in (2.9). Let B, be defined as in
Lemma 2.2, B(*> > B3, and Vo > E,1(B). Let A be a subinterval of A,, with
|A| < 6, where 6, = 0,(B,¢,Vy) > 0 is as in Lemma 2.1. We consider a
larger interval A containing A, with same midpoint E,, and size |A] < Op-
Let Vi(z,y) be a bounded potential and let E(A) be the spectral projection
for Hi = Hy + Vy and the interval A. Let ¢ € L?*(R?) be a state satisfying
Y = E(AW. Let ¢ = Eo(A) and € = Eo(A°)Y, so that ¥ = ¢ + . Let ¢
have an expansion as in (2.4) with coefficients 5;(k) satisfying the condition
(2.17) for the interval A. Then we have

2
@) 2 (1Cla =123 o < R ) B I (23)

where C,, > 0 is the constant defined in Lemma 2.2, and

F, = F,(B, |V, 1Al |A])

A 9 1/2
- (1S T (g ||v1|r)
] B

Y ertam 1o (2 (1AL 20
+toaCnla =13 )<|AI) ( I )].(2.38)

Further for a fived level n, if |A and ||Vi|| are sufficiently small compared
with |A|, there is a constant C,, > 0 independent of B such that

—(1, Vyu) = B2y (2.39)

Proof.
We write the function ¢ as

¥ = Eo(A) + Ey(A%) = ¢ + €, (2.40)
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use the self-adjointness of V,, in L*(R?),

WV, V) = (¢, Vy0) (2.41)
+ (W, V) + (Vig, ),

and find out that

— (W, V) 2 —(¢,Vy0) = 2|[Vi&li 2@ 141, (2.42)

by the Cauchy-Schwarz inequality. The result then follows from Theorem 2.1
provided we have a good bound on [|£|| and on ||V,£||. To this end we argue
as in section 2.3 in [10], write

IE* = (@,
= <(HO - Em)d’a (HO - Em)_1§>
< |(H — B = Vi)Y|l|(Ho — En) ]l

then we combine

A
It - 5 - vyl < (151t ) o

with

~ 2
|(Ho — )¢l < dist™(Eum, A% €]] = (E> lell

Al + 2|V
e < (2D oy, 243

and find that

Further we notice that

(& Hog) = (& HE) — (§,V1§) = (¥, HE) — (€, V1€)

so we end up getting

IVLENI* < (&, Hog) < ((2n+ ) B+ [[Vall) lIg]l [11]. (2.44)

The lower bound on the main term in (2.42) follows from the estimate (2.18):

n

Y BONCCTs dk)

2

(6, Vyd) > 1 —Cula— 13— 0)® Bl/?(

2+ ~2 g
2
il 2 3 pl/2 2 2
> - - - .
= 2+720n(a D73 =) B([wl” = IEl), (2.45)
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since

S [ 1BWR k=l = o - l€]

j=0 Jwj (A)
Combining this lower bound (2.45), with the estimate on ||£]| in (2.43), and
|V, in (2.44), we find (2.37) with the constant (2.38). This completes the

proof. m

If the distance from the midpoint E,, of A to A¢ is not smaller than 4,
we may choose an interval A with size of the order of 8,. In this case any
state ¢ = F(A)v satisfying the assumptions of Theorem 2.2 carries a current
of size BY/2 provided (||Vi]| + |Al)/6, is small enough. If §, is of size O(B),
this indicates that the edge current survives in presence of perturbations V;
sufficiently small compared with B.

2.5 Soft Confining Potentials

The estimation of edge currents can be generalized to the case of various
confining potentials like polynomial confining potentials

Vo(z) = B P (|z] — (€/2)"Xaf>e2(x), p > 1. (2.46)

As a preamble to the investigation of these models, we shall examine the
straight parabolic channel model studied by Exner, Joye and Kovarik in [3].
In this case the confining potential is defined by

‘/O(x) = Vgx27 VO > 07

and it turns out this model is completely solvable, making the estimation of
the edge currents rather straightforward in this particular case.

In both cases V4 is a function of z alone so the direct sum decomposition
(2.1)-(2.2) remains valid, the fibered operators hy(k), k € R, having compact
resolvent since limx_>+oo(‘7k(x) + Vo(z)) = +oo0. We use the same notations
as in the previous sections and note w;(k), j € N the eigenvalues of hgy(k).
In light of the proof of Theorem 2.1 we remark that it is enough to give
an estimation of wj(k) for k € w;'(A,) where A, is as in (2.9). In order
to avoid the inadequate increase of the size of the article we shall state the
corresponding results without proof. For more details we refer to the archived
version [11].
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As an introducing remark we first address the model studied by Exner,
Joye and Kovarik. For this model, the electron is confined to a parabolic
channel of infinite extent in the y-direction. For any E > 0, the plane
R? is divided into a classically allowed region given by |z| < \/E/Vy, and
the complementary classically forbidden region. The reduced, unperturbed
Hamiltonian is given by

ho(k) = pi+ (k— Bx)*+Va?

2 2
— pi + (Box — Bgﬂk}) —+ (%Z) k’2,

for the modified field strength By = (B?+V2)Y/2. Since this is simply a shifted

harmonic oscillator Hamiltonian, it is completely solvable. The dispersion

curves are parabolas with equation w;(k) = (2j + 1) By + (Vo/Bo)?k? so the

set wj_l(An) for the interval A,, = [(2n+a)By, (2n+¢)Byl, 1 <a < ¢ < 3, is

explicitly known:

BY?
Vo

2(n—j)+x—1)"% z =a,c.

From this and (—wj(k)) = —2(Vo/Bo)*k > Z(VO/BO)Qk](-n)(a) then follows
that

—wi(k) >2(2(n — j) +a—1)"/? (%) , kew i (A,)-.

For the polynomial model (2.46) the confining potential V4 is an even
function so this is the case for the dispersion curves too, by repeating the
arguments of Lemma 5.1. The corresponding fibered operators ho(k) still
depending analytically on k, these functions are differentiable (see [12] or
[16]). Their derivative can be estimated with the following

Lemma 2.3 Let n € N, A,, be the same as in (2.9), and (for the sake of
simplicity) Vo = (2n + ¢)B. Then, there are two constants ¢, = En(a) >0,
depending only on n and a, and C,,, = C, ,(a,c) > 0, depending on n, a, ¢
and p, such that we have

(—wi(k)) = Crpla—1)*(3 — ¢)’BY?, ke w;N(An)-, j=0,1,...,n,

provided B(? > (,.
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2.6 Dirichlet Boundary Conditions

We denote the Landau Hamiltonian H(B) on the space L*((—£/2,£/2) x R)
with Dirichlet boundary conditions along z = (££/2) by HP. This unper-
turbed operator admits a direct integral decomposition with respect to the
y-variable. We denote by h{’(k) the corresponding fibered operator with

eigenvalues w? (k) and eigenfunctions ¢ (x; k).

Figure 3: Dispersion Curves of Hg

These eigenfunctions provide an eigenfunction expansion of any state, as
in (2.4), and we denote the coefficients of this expansion by BJD (k). Many
properties of the dispersion curves w/(k) can be derived from [9] and [13],

such as
(Wi (k) —w? (k) >0, k eR. (2.47)

Since w? is a continuous function in R, (2.47) entails

J

S(K) = fnf [wP (k) —wP ()] > 0, j £1. (2.48)

for all compact subset K of R.
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The perturbed operator is denoted by Hp = HP +V;, on the same Hilbert
space. We let Ef(-) and Ep(-) denote the corresponding spectral families.

Theorem 2.3 Consider the operators HP and Hp = HP + Vi, on H =
L2((=£/2,0/2) x R), with Dirichlet boundary conditions along v = +£/2,
where Vi(x,y) is bounded. Letn € N and A, defined by (2.9), be sufficiently
small so that there is a larger interval A containing A, with same midpoint,
such that

@) AN (@) H(A) =0, 0<j#1<n.

J

Then for BO? sufficiently large (depending on a, ¢ and m), any state 1 €
Ep(A,)H with coefficients satisfying the condition (2.17) carries an edge
current satisfying the lower bound (2.39) provided |A,| and ||Vi|| are suffi-
ciently small compared with |A|.

We prove this theorem through a perturbation argument comparing HP
with Hy = H(B) 4+ Vj in the large V, regime. We begin with an estimate of
the traces of the eigenfunctions ¢;(z; k) of ho(k) on the lines x = (££/2).

Lemma 2.4 Let n € N, A, be given by (2.9). Let Vo > E,.1(B) and
B(? > 6,, where 0,, = 0,,(a,c) is as in Lemma 5.8 (and depends only on n, a
and c). Then there is a constant r,, = r,(a,c, B(*) > 0 depending only on n,
a, ¢ and Bl? such that for all j =0,1,...,n and all |l € N, we have

[+, _
PR kijl
Vo

0 < pi(£l/2; k) < (4me=3/?) (An) U (@) AL, (2.49)

Proof.
1. For all | € N we get that
/ o) (z; k)? + /((BJ: — k)? 4+ Vo(2))oi(x; k)2dr = wi(k), K €R, (2.50)
R R

by multiplying the eigenvalue equation (1.5) by ¢;(.; k) and integrating over
R. From this and the Feynmann-Hellmann formula then follows that

w (k) = Q/R(k — Bx)pi(z; k)2dx < 2(wi (k)2 (2.51)
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and consequently
wi (k)2 < w02 + |k|, k€R, 1 €N, (2.52)
by integrating (2.51) over [0, |k|]. Since
wi(k) <wP(k), keER, I €N, (2.53)
from the Max-Min principle, (2.52) then yields
wi(B)Y? < (WP (ONY? + k|, k€R, I €N, (2.54)

Further, the quadratic part B%z? in hZ(0) being bounded by (Bf/2)?, wP(0)
is easily seen (see [16]) to be bounded as

wp(0) < (2%1)2 + (376)2, l €N. (2.55)

Moreover taking into account (2.53) we deduce from Lemma 5.8 there are
two constants 7,, and 6,,, depending only on n, a and ¢, such that

BL
k| < -+ mBY?, ke W (An) U (w?) (A, (2.56)

J

provided B¢? > 0, and Vy > E,1(B).

2. Let p € C?*(R) be a bounded real-valued function and A denote the self-
adjoint operator p(z)p, +p.p(z) in L?*(R), with domain H'(R). Any function
¢ in the domain of hy(k) belonging to H'(R), ([A, ho(k)]e, ¢) can be defined
as (ho(k)p, Ap) — (Ap, ho(k)p), and we find that

([A ho(R), ) = Hp'¢, @) —4B(p(Bx — k)p, ) — (0", )
—=2V(p(¢/2)p(L/2)* = p(—=L/2)p(=£/2)?), (2.57)
through standard computations. In the particular case where ¢ is an eigen-

function ¢;(.; k) of ho(k), the scalar product (—i[A, ho(k)]p, @) vanishes ac-
cording to the Virial Theorem, so (2.57) yields

2V0(p(€/2)i(0/2; k)* — p(—L/2)pi(—L/2; k)?)
= 4 k), P (5 k) —4B(p(Bx — k)gil5 k), oi( 5 k)
=" o5 k), (5 K))- (2.58)
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Let p be such that p(z) = £1 for £2 > (£/2) and 0 < p¥(x) < (2/4) for
|z| < (¢/2) and i = 1,2,3, in such a way that (2.58) entails :

Volei(0/2; k)? + ou(—1/2; k)?)

< o /_ 11 o (e k)i + 2B ( /_ (B — o k)%) v

1

(4)6%) / il .

The result now follows from this, (2.50) and (2.54)—(2.56). =

The traces estimate (2.49) is a key ingredient in proving the local conver-
gence of the dispersion curves to those for the Dirichlet problem.

Lemma 2.5 The dispersion curves w;j(k), j € N, are monotonic increas-
ing functions of Vo. Further, for n € N fized and A, as in (2.9), for
Vo > E,.1(B) and for B* > 0, as in Lemma 2.4, there is a constant
sp(a,c, B?) > 0 independent of Vy, such that

B3/4

v

0 <wl(k) —w;j(k) < s kew (An), j=0,...,n. (2.59)

Proof.
The Hamiltonians ho(k) being analytic operators in the parameter V,, we
have 5
5 (k) = / w;(7;k)* dx >0, (2.60)
Mo |z|>£/2
by the Feynman-Hellmann Theorem, which shows that the dispersion curves
are monotone increasing with respect to V. Furthermore, the rate of increase
in (2.60) slows as Vy — oo. This follows from the pointwise upper bound
on @;(z, k) restricted to || < ¢/2. In particular, from (2.28) and the trace
estimate (2.49) of Lemma 2.4, we have

8wj . 1.)2 —£/2 2(Vo—w; (k))1/2 (z+£/2)
oga—%(k) < pi(—€/2;k) B "
+o0o
+ p(C/2;k)? / o 2Vo—w; () 2(a—£/2) ..
0/2
B 3/2
= iy 2.61
= (VO) (2.61)
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for B¢* > 0,, and V, > E,1(B), the constant s, > 0 depending only on n,
a, c and B¢?. To prove the rate of convergence (2.59), we use the eigenvalue
equation (1.5) and take the inner product in (—¢/2,¢/2) with the Dirich-
let eigenfunction ¢P. After integration by parts, and an application of the
eigenvalue equation for ¢, one obtains,

(w) (k) = wi (k)@ (1K), (1 k)
= (@) (/2 k)i (/2 k) — (@) (=02 k)ps(—t/2: k). (2.62)

The estimate (2.49) in Lemma 2.4 implies that the right side of (2.62) vanishes
as Vy — 00, that is

jwp (k) — w; (k)] [{of (-5 k), 055 )|
l+7,

< (1) (=42 k) + () (6/2; F)1) (4ml=*2) SR (2.63)

We next show that [(¢? (- k), ¢;(; k))| is uniformly bounded from below as
Vo — 00, proving the convergence of the eigenvalues. To show this, let y;
and x. denote the characteristic functions onto the interval lines (—¢/2,¢/2)
and (—oo, —¢/2] U [(/2,+00), respectively. We first note that

loi G RIZ = 1 = lixases G P + xess (5 B,

and the upper bound on the eigenfunction ¢; outside the strip (—¢/2,¢/2)
(2.28), together with (2.49), imply that

Ixeps(5 R < OOV,

so that
—-3/4
Ixsps (5 E)| > 1— 00V, (2.64)

as Vyp > oo and k € wj_l(An). Now, for [ # j, it follows from (2.48) and the
monotonicity of the dispersion curves in V), that

jwi’ (k) = wj (k)| > |wi’ (k) = w) (k)] = 67 (w; " (An)) > 0.
So it follows from this and from (2.63) that for [ # j
(@l (k) pi(5 k) = 0, as Vo — 0.

If, in addition, the matrix element (@ (-; k), ¢;(-; k)) also vanished as Vo —
o0, this would contradict (2.64) as the family {©P(:;k)} is an orthonormal
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basis. It follows that this matrix element must be bounded from below uni-
formly in V, as Vy — oo. Consequently, the dispersion curves must converge
as Vy — oo with the specified rate. m

In light of the estimates (2.49) and (2.59) we argue now as in the proof of
Lemma 3.3 in [10] and obtain the convergence of the projection P;(k), for the
eigenvalue w;(k) of ho(k), to the projector P’ (k), for the eigenvalue w? (k)
of h(k), when Vy tends to infinity, with B¢? fixed and sufficiently large.
Lemma 2.6 Let n € N and A, be given by (2.9). Let P;(k), respectively
PJ-D(k;), for j =0,...,n, be the projection onto the one-dimensional subspace
of ho(k), respectively h¥(k), corresponding to the eigenvalue w;(k), respec-
tively wP (k). Let Vo > Eni1(B) and B(* > 6, as in Lemmas 2.4 and 2.5.
Then, there exists a finite constant t, = t,(a,c, B*) > 0, such that for all
7=0,1,...,n we have

|Py(k) — PP (k)| < Vt—/ ke (@P) (A Uwr (A, (2.65)

With reference to Theorem 2.2 and the two estimates (2.48) and (2.65),
and recalling from the proof of Lemma 2.5 that (¢ (- k), ¢;(-;k)) > Do > 0,
as Vy — 0o, Theorem 2.3 is now obtained by just mimicking the proof of
Theorem 3.1 in [10].

3 Two-Edge Geometries: Spectral Properties
and the Mourre Estimate

We now examine the spectral properties of the Hamiltonian H; = Hy + V4,
for suitable perturbations V;, for two-edge geometries, paralleling the study
in sections 4 and 5 of [10] for one-edge geometries. We use the commutator
method of Mourre [1, 15]. For two-edge geometries, an analysis of the disper-
sion curves for Hy showed that w’(k) does not have fixed sign. Consequently,
the local commutator used for the one-edge geometries in section 2.5, does
not immediately apply. We first construct an appropriate conjugate operator
Se for Hy with a general confining potential Vy(x). By standard arguments
[1], this proves the existence of absolutely continuous spectrum of Hy at en-
ergies away from the Landau levels for sufficiently large B. Of course, the
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spectral properties of Hy can be obtained directly from the direct integral
decomposition (2.1) and an analysis of the spectrum of ho(k) defined by
(2.2). This proves that the spectrum of Hj is everywhere purely absolutely
continuous. The advantage of the Mourre method, however, is that we can
obtain the stability of the absolutely continuous spectrum between Landau
levels under two classes of perturbations V;. We prove that the spectrum of
H; is purely absolutely continuous if 1) Vj(z,y) is periodic with respect to
y with sufficiently small period or 2) Vj(z,y) has some decay in y-direction.
These results are similar to those of Exner, Joye, and Kovarik [3]. We point
out that for the more general class of perturbations V) treated in sections 4
and 5 of [10], such as random potentials, we do not know the spectral type
of the operator H,. However, we still know that there are states carrying
nontrivial edge currents. As follows from the work of Ferrari and Macris
[5, 6], the existence of edge currents is not tied to the spectral properties of
H,. Indeed, the cylinder geometry model shows that the full Hamiltonian
may have only pure point spectrum, yet there are nontrivial edge currents.
Hence, the existence of edge currents is not directly tied to the existence of
continuous spectrum. We will discuss this in more detail in section 4.

3.1 The Mourre Inequality for H,

We construct a conjugate operator for Hy = Hy + Vj, where the confining

potential Vj depends only on z, as above. Let U, = e"“?v| for p, = —i0,, and
for any « € R, be the translation group in the y-direction defined by
(Uag)y) = 9(y + a). (3.1)

Since the representation is unitary, the operator S, defined by

i
Se = §(Uay —yU_,) (3.2)
is easily seen to be selfadjoint on the domain D, of the operator multiplication
by y, since U, preserves this domain.
We next compute the commutator i[Hy, S,], @ € R. The operator S,
commutes with p, and V. Since V}, = p, — Bz, it is easy to check that

VySu] = 5 (Ua — Ua) = isinap,). (3.3)
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so that
i[Hp, Sa) = —2sin(ap,)Vy, (3.4)

as a quadratic form on D(Hy) N D,, or as an operator identity on the core
C5°(R?). We also need to compute the double commutator [[Hy, Sa], Sa]. By
formula (3.4), we find that

[[Ho, Sal, Sa] = 2ifsin(apy), V] = 0. (3.5)

Consequently, a positive commutator will imply absolutely continuous spec-
trum (cf. [1]) in the range of the corresponding spectral projector.

Proposition 3.1 Let n be in N and A,, be defined by (2.9). Then there are
two constants 0, = on(a,c) > 0 and 1, = 1,(a,c) > 0 depending only on n,
a and ¢, such that for all B(* > o,, all Vo > E,1(B), any subinterval A of
A, such that |A| < 6, where 6, = 6,(B,(,Vy) is as in Lemma 2.1, and all
a > 0 satisfying

(@B € (0.1m] 1 (U {((2/3)+4m)7r ((4/3>+4m>w]>7 56

B1/2¢ ’ B¢

meN
we have
~iEo(A)[Ho, Sa] Eo(D) 2 (Cp/2)(a — 1)*(3 — )’ BY2Ey (D), (3.7)
where C,, > 0 is defined in Lemma 2.2 and depends only on n.

Proof.
1. We first derive a general expression for (1, [Hy, 1S,]), for ¢ € Eo(A)L*(R?*)N
D, and o € R. For any ¢ € D(Hy) N D,, it follows from (3.4) that

—(¥, [Ho, iSatp) = Z/RSm(ak)W(-;k%%ﬁ(-;k» dk, (3-8)

where, as above, u denotes the partial Fourier transform of u with respect to
y. Taking ¢ in Eg(A)L?(R?) and writing it as in (2.4), we find that

SQIEATED By I O CIETCTCT)
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according to the Feynman-Hellmann formula and the vanishing of the cross-
terms established in Lemma 2.1. The w;’s being even functions by Lemma
5.1, (3.9) can then be rewritten as

n

~.iisi o) = 3 [ o, SR WA + e
j:() OJJ _
(3.10)
In order to prove a Mourre estimate, it is necessary to bound the right side
of (3.10) from below by a positive constant times |22
2. Let Vy > E,41(B) and B¢* > 0, so Lemma 5.8 holds true: we have

BL BL

wj'_l(An)— C |:—T - HnBl/27 _7 + /’anl/2:| ) .7 = Oa 1a sy (311)

where both #,, > 0 and k,, > 0 depend only on n, a and c. Set

T
= —— 3.12
™= G (3.12)

21\ 2
B > = —_— . 1
¢ > 0, = max <9n, <3Tn) > (3.13)

It is clear from (3.12)-(3.13) that 7,05/ > > (27)/3 so there is o € (0,7, B~"/]
such that

aBl = (aB'?)(B)? € | Kg + 4m) , <§ + 4m> w] . (3.14)

meN

and assume that

Further, a being taken in (0,7, B7'/2], we have 0 < ax, B'/? < /6, whence

(—ak) € U {% +2m7r,5§+2m7r} , k€ wj_l(An)_, j=0,1,...,n,
meN

from (3.11) and (3.14). As a consequence we have sin(—ak) > 1/2 for all

k e wj_l(An)_, and thus for all k£ € wj_l(A)_, and the result follows from

this, (3.10) and Lemma 2.2. =
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3.2 Perturbation Theory and Spectral Stability

The benefit of a local positive commutator is its stability under perturbations.
We consider two types of perturbations of Hy: 1) Perturbations periodic
in the y-direction, and 2) Perturbations decaying in the y-direction. As
we mention below, these conditions on the perturbations are much weaker
than what is required using scattering theoretic methods. In light of the
positive commutator result (3.7) we will treat two classes of perturbations:
perturbations 1) periodic in the y-direction and 2) decaying in the y-direction.

Perturbations Periodic in the y-Direction

We first consider perturbations Vi (z,y) satisfying Vi (x,y+T) = Vi(z,y), for
certain T > 0. Due to the y-periodicity of Vi, the main property we will use
in this section is the basic identity

[Vi,Ur] = 0. (3.15)

Proposition 3.2 Letn € N and A, be as in (2.9). Let B(* > o,, where g,
is as in Proposition 3.1, and Vy > F,1(B). Let A and A be as in Theorem
2.2. Let Vi(x,y) be a periodic bounded potential with period T' satisfying (3.6)
and let E(A) be the spectral projection for H = Hy + Vi and the interval A.
Then we have

—iB(A)[H,iSt|E(A) > ((Co/2)(a — 1)*(3 — ¢)® — G,,) BV2E(A),
where
G, = Gu(B,|Vil,|Al Al
_ s oy (1AL 21l
- (/2= 1- o (EE D

VAN (1A + 2] ) 2
212 _— _— .
+ ( n+c+ B Al

Then upon taking |A| and |V1|| sufficiently small compared with |A| we obtain
—iE(A)[Hy + V1, S1E(A) 2 (Co/3) B2 B(A,),
where C,, > 0 is defined in Lemma 2.2.
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Proof.
We decompose ¢ € E(A)L*(R?) as in (2.40), use (3.15), and find that

<w’ [H’ ZST]¢> = <¢7 [HOa ZST]¢>

where the perturbation term G(¢,£) has the expression
G(6.6) = [ ST ). Ty (WEC )
+2Re ( / sin(Tk)(o(., k), V, (k)E(, k:)>dk:> :
R

¢ (., k) and (;AS(, k) denoting respectively the partial Fourier Transform in the
y direction of £(.,y) and ¢(.,y). It follows from (3.16) that

— (W, [H,iS7|) = —(¢, [Ho, i5T]9) — 2[[Vi&lll4]l, (3.17)

the main term (—(¢, [Ho,iS7|¢)) being treated by Proposition 3.1. Namely,
for T' satisfying (3.6) we have

—(¢, [Ho,iSr]¢) = (Cu/2)(a—1)*(3 — )’ B¢ (3.18)

Further ||| and ||V,£]|| being bounded as in (2.43)-(2.44) we deduce from
(3.17)-(3.18) that

— (¥, [H,iST]))

> [(Ch/2)(a—1)*(3—¢)? (1 — (%) ) (3.19)

1/2
2@n+ e+ (Vil/B)"2 (%) ] By

It is clear now that the pre-factor of B'/2||1[|? in the r.h.s. of (3.19) can

be made positive by taking |A| and [|V1]| sufficiently small relative to the
difference |A|. =

31



Perturbations Decaying in the y-Direction

We now consider an impurity potential V; = Vi (z,y) € L=(R?) decaying fast
enough in the y-direction in the sense that yV;(x,y) remains bounded in R?:

[y Villoo < oo (3.20)
The reason for this additional assumption is the identity,

2[V1,1S,]
= (%(l‘,y + O‘) - Vl(y))UOéy - (‘/1($,y - CY) - Vl(a:,y))yU,a,

obtained by a straightforward computation. This yields
(W, V1, 1Sa])] < CllyVilleo + lalVillc) 1%, & € D(Ho) N Dy, a €R,
thus, arguing as in the proof of Proposition 3.2, we obtain the following

Proposition 3.3 Let n, A,, B2, V,, A and A be as in Proposition 3.2.
Let Vi be a bounded potential satisfying (3.20). Let E(A) be the spectral
projection for H = Hy+V, and the interval A. Then there is a € (0,7, B~'/?,
where T, > s as in Proposition 3.1, such that we have

CiE(A)[Hy + Vi, S E(A) > (C,/3)BYV2E(A,),

provided |A|, |Vi|| and ||yVi| are sufficiently small compared with |A|.

Remark on the Stability of the Absolutely Continuous Spectrum
for Strips

Following the idea developed by Macris, Martin and Pulé in [14] for the
half-plane geometry, we can actually prove Hy + V; has purely absolutely
continuous spectrum for the two-edge geometry if the perturbation V; is
bounded and integrable in R?. This class of perturbations is weaker than
the classes considered above for which we proved the existence of absolutely
continuous spectrum away from the Landau levels since, roughly speaking,
the L'-condition requires decay in all directions. The proof of this result
relies on the diamagnetic inequality (see [1], [17]):

lem iy < eu|, u e L*(R)?, t € R,. (3.21)
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Here (—A) denotes the nonnegative Laplacian in R? and (3.21) holds true for
all B. As the confining potential 1} is nonnegative in R?, Kato’s inequality
(3.21) still holds by substituting Hy for Hy, giving

|e—tH0u’ < etA|u‘ and ‘eftHu‘ < etHVlHOoetA”u,‘, = L2(R)2, t e R+, (322)

since V; is bounded. It follows by explicit calculation that |V;|*/2e*® belongs
to the Schmidt class By(L?(IR?)) so that the same is true for |V;|*/2e~tHo and
V1|27t by (3.22), with the following estimates:

— il [Villx

~ Villh

V 1/26 tHy — || .

H| 1| ||82(L2(R2)) \/2_7rt Vot
(3.23)

Let By (L?(R?)) denote the trace class. To estimate the trace norm of e 7 —
e tHo we use Duhamel’s formula

and ||[VA]"%e™ || 5, (12(me))

t
o tH — o~tHo —/ ey esto s, (3.24)
0

Due to the estimates (3.23), the Holder inequality for the trace norm, and
(3.24), we obtain

—tH _

IN

e e 0I5, (12m2))

t
/ ||e(s_t)H‘/16_SHO ||81(L2(R2))d3
0

3.25)

e b
- 2m 0 /s(t—s) .

Whence et — ¢7tH0 i5 a trace class operator for all ¢ > 0 so H; has an
absolutely continuous spectrum by the Kato-Rosenblum Theorem and the
fact that Hy has purely absolutely continuous spectrum.

4 Bounded, Two-Edge, Cylindrical Geome-
try

We address now the case of a quantum device with bounded cylindrical ge-
ometry. More precisely, the charged particle is assumed to be moving on the
cylinder C'p of circumference D > 0 and confined along the cylinder axis
by two boundaries separated by the distance ¢ > 0. We define the infinite
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cylinder as Cp = R x J = {(z,y) | * € R,y € J}, where J = [-D/2,D/2]
is an interval with length D, and identify y = —D/2 with y = D/2. The
trajectories of the particle will be bounded in the x-direction by confining
potentials.

Let us give now a precise statement of the model. The Landau Hamilto-
nian H;, = p2 + (p, — Bx)? is endowed with y-periodic boundary conditions

o(x,—D/2) = p(x,D/2) and Oyp(z, —D/2) = 0,p(x, D/2), (4.1)

making it self-adjoint in L*(Cp). As in the preceding sections, the quantum
particle is confined in the z-direction to the strip [—¢/2,¢/2] by adding to
Hj, the sharp confining potential V4 (1.2). The spectrum of Hy = Hp + Vj
consists of eigenvalues for energies below V. We shall prove that suitable
states p = Eo(An)p, A, C (Ey(B), E,1(B)), carry a current of size B2,
and that this current survives in presence of a sufficiently small perturbation.
Thus, the existence of the edge current is independent of the spectral type
of the operator.

This result is in accordance with (and complements) the one obtained by
Ferrari and Macris, who have extensively investigated this model ([5], [6],
(7], [8]) in the particular case where D = L. They consider an Anderson-
type random potential V, and prove with large probability (under a rather
technical assumption on the spectra of the Hamiltonians Hél) and Hér) ob-
tained respectively by removing the left or the right wall from H,) that the
spectrum of the random Hamiltonian H, = Hy + V,, in an energy interval
(B + ||Volloos 3B — ||Viu]loo) consists in the union of two sets o; and o,. The
eigenvalues in o,, a = [,r, are actually small perturbations of eigenvalues

Ejl) of the half-plane Hamiltonian Héa) + V., and they show the edge current

carried by an associated eigenstate g0§-a) is of size D (with opposite signs de-

pending on whether av = [ or r). Their analysis extends to the case where ¢
is at least of size log D.

The remaining of this section is organized as follows. After arguing o(H)
is pure point, we estimate the current carried by an eigenstate of Hy, then we
extend this estimate to the case of a convenient wave packet p = Eq(A,)p
for A,, C (E,(B), E,+1(B)) and in presence of a perturbation V; sufficiently
small relative to B. We point out that the estimates on the edge currents
given in the remaining of this section are obtained unconditionally on the size
of £ and B and they hold for general wave packets with energy in between
two consecutive Landau levels.
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4.1 The Spectra of H; and H,

Let us define the Fourier transform F as Fo(z) = (p(2)) oz, Where

efzkpy T

&) = [ el Sty and b, = T, (42)

for any p € Z and a.e. z € R. Tt is unitary from L*(Cp) endowed with
the usual scalar product onto 1?(Z; L?(R)). Due to the periodic boundary
conditions (4.1) and the fact Vj it is well known that FHF* = Z;?ez hi(k,),
where hz (k) still denotes the operator p? + (k — Bx)? in L*(R), and hence
that the spectrum of Hj, is thus pure point with o(H) = (2N + 1) B, each
eigenvalue having infinite multiplicity.

We turn now to describing the spectrum of Hy = Hy + V. The confining
potential Vj being a function of x alone we have

FHyF* = f: ho(ky), (4.3)

PEZL

where hg(k) is defined by (1.4) and has a compact resolvent. We recall the

eigenvalues of hy(k) are denoted wy, (k), m € N, the corresponding normalized

eigenfunction being called ¢, (z; k). Evidently {@gﬁ), m €N, p € Z}, where
eikpy

ik

is an orthonormal basis of L?(Cp), and it follows from (4.3) that

Hy= 375 wn(k,)[00) (2]

m>0 pe’Z

As a consequence H, has pure point spectrum: o(Hy) = {wn(k,), m >
0, p € Z}. Nevertheless and despite of the fact each eigenvalue wy,(k,),
(m,p) € NxZ, has finite multiplicity, it is not guaranteed that the spectrum
of Hy is discrete. Indeed as |p| goes to infinity, each wy,(k,) goes to E,,(B)+Vy
by Lemma 5.2(i), so the eigenvalues lying in a neighborhood of E,,(B) + Vy
may not be isolated.
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4.2 Edge Currents: the Unperturbed Case

Let A, for n > 0, be defined by (2.9) and ¢ = Ey(A,)e.

We want to estimate the current carried by ¢ along the edges of the free
sample Cp. It turns out (see below the estimate (4.11) of the current carried
by a wave packet) this current is the weighted sum of the currents carried by

all the eigenstates Cbgﬁ), (m,p) € N x Z, such that
win(kp) € Ay (4.4)

We therefore start by estimating the current carried by such an eigenstate
<I>7(£), for appropriate indices m € N and p € Z_. In a second step we extend
this estimate to the case of the wave packet .

Current Carried by an Eigenstate

We consider an eigenfunction P of H, for some (m,p) in N x Z_ satisfying
(4.4). The current carried by oW along the left edge of the cylinder Cp is

defined as the expectation (CI>7(£), Vy<I>§£)> of the velocity operator V,, = p, —Bx
in the y-direction. By arguing as in section 2.1 we find that

(@), V, @) = o, (ky),
so we may deduce from Lemma 2.2 the

Proposition 4.1 Let A, be defined by (2.9). Then, for any (m,p) € NxZ_
satisfying (4.4), we have

—(®P), V,®%)) > Co(a —1)*(3 - ¢)*B"?,
provided B¢*> > 3, and Vo > E,1(B) where 3, > 0 and C,, > 0 are as in
Lemma 2.2.
Current Carried by a Wave Packet

We turn now to estimating the current carried along Cp by a the state
@ = Ey(A)y, where A is a subinterval of A,,. We assume as in Proposition
4.1 that B> > B3, and Vy > E,1(B), and suppose that |A| < §,(B, ¥, V)
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SO Lemma 2.1 holds true. The state ¢ decomposes in the orthonormal basis
{<I> , meN, peZ} as

=YY BPe(ay), (4.5)

pEZ 0<m<n
wm (kp) € Ap

where
BE) = (o, dP)). (4.6)

since Vy > E,11(B) there are only a finite number of indices p involved in
the sum (4.5). Indeed, we know from Lemma 5.2(i) that lim,_, o wo(k) =
Ey(B)+V, with Ey(B)+V, > (2n+-c) B, thus there is p}, = pi (B, (,Vy,A) € N
such that

wo(kp:) € A and wy(ky,) ¢ A for all [p| > py,. (4.7)

Since wy, (k) > wo(k) for alln > 1 and k € R, we have w,(k,) ¢ A for |p| > pZ,
so (4.5) finally reduces to

ry)= Y Y BRI (xy). (4.8)

lp|<pj, O0sm<n
" wm(kp) € A

Therefore the current carried by ¢ along the left edge of the cylinder has the
following expression:

- > X 808 (@), 0, 0)). (4.9)

<p* 0<m
[pl,lp'1<p}, meep) A

W, (kp/) €A

Actually the crossed terms <<I>(mp), Vycbis:)) in (4.9) vanish for p # p’. This can
be seen from the two following basic identities

FOR(x) = (6(s = P)om (3 k) ez
F (V@) (@) = (6(s = 1)y — Ba)ow (i k) ez

and from the unitarity of F:

(@D, V,00)) = 60" = p)(@m(-i kp), (ky = B)pm (5 k)
= 6~ p)(@®,V,0%).
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As a consequence, (4.9) can be rewritten as

(W)= 3 3 aRAR@R Ve, @)
|P\SPZ 0<m,m' <n
wm (kp) € A
wm/(kp) €A

with w,'(A) Nw 1 (A) = 0 for all m # m' by Lemma 2.1 since |A| < §,.
Hence we end up getting

Vi)=Y Y 1BRH@R, V00, (4.11)
lpl<p; 0<m<n
Wm<kp) €A

which shows that the current carried by ¢ is the |ﬂr(,f) |>-weighted sum of the
current carried by the eigenstates %) with energy wy,(k,) in A. Now by
combining (4.11) with Proposition 4.1 and mimicking the proof of Theorem

2.1 we obtain the

Theorem 4.1 Letn € N, A,,, B(?, V,, and A be as in Theorem 2.1. Let p =
Eo(A)p and p! be the smallest integer satisfying (4.7), so ¢ has expansion
as in (4.8). Assume there is a constant v > 0 such that the coefficients 57(5)

defined by (4.6) satisfy
BLPP > (1 + )8R P, (4.12)

for allm=0,1,....n andp=0,1,...,p%, such that wy,(k,) € A. Then we

have
2

Cula—1)" (3¢’ BY2|l¢]?,

/}/
—{p, Vyp) >

the constant C,, > 0 being as in Lemma 2.2.

4.3 Perturbation Theory

As in section 2.4 for the strip geometries we now consider the perturbation
of the edge currents by adding a bounded impurity potential Vi (z,y) to Ho,
and show (using Theorem 4.1 and arguing in the same way as in the proof
of Theorem 2.2) that the lower bound on the edge currents is stable with
respect to these perturbations provided ||V;|| is not too large compared with
the constant ¢,, defined in Lemma 2.1.
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Theorem 4.2 Let n, A, B2, V,, A, A be as in Theorem 2.2. Let Vi(z,y)
be a bounded potential and let E(A) denote the spectral projection for Hy =
Hy 4+ Vi and the interval A. Let v = E(A,)Y. Let ¢ = Ey(A)p and
£ = Eo(A)Y, so that = ¢ + €. Let ¢ have an expansion as in (4.8)
with coefficients B satisfying (4.12). Then if |A] and ||Vi|| are sufficiently
small compared with |A| the conclusion of Theorem 2.2 holds true: there is
a constant C,, > 0 independent of B such that

— (1, Vip) > Co B2 |||

5 Appendix : Basic Properties of the Eigen-
values and Eigenfunctions

The resolvent of the operator ho(k) = h(k) + Vo, k € R, being compact
since the effective potential (Bx — k)? + Vp(x) is unbounded as |x| — oo,
the spectrum of ho(k) is discrete with only oo as an accumulation point.
We write the eigenvalues of hg(k) in increasing order and denote them by
w;(k), 7 > 0. The normalized eigenfunction associated to w;(k) is ¢;(z; k).
We recall from Proposition 7.2 in [10] that the eigenvalues w;(k), j > 0, are
simple for all k£ € R.

In this Appendix we collect the main properties of the eigenvalues and
eigenfunctions of the operator ho(k) for an even confining potential Vj.

5.1 Symmetry Properties

Lemma 5.1 For all j € N, w; is an even function and there is ; € {—1,1}
such that
0i(—z;—k) =0;0;(z; k), x € R, ke R.

Proof.
Let j € N. The operation P that implements x — (—x) satisfies Pdom hy(k) =
dom ho(—k) and Pho(k) = ho(—k)P. This entails

ho(=k)Pyj(z; k) = w;(k) Pp;(x; k). (5.1)
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Whence w;(k) is an eigenvalue of ho(—k) so there is necessarily some my, > 0
such that w;(k) = wy,, (—k). Since this is true for any ¢ # k, we can find
mgq > 0 such that w;(q) = wp, (—¢q). Moreover w; being a continuous function,
W, (—q) goes to wp,, (—k) as g goes to k, so my = my, by the simplicity of the
eigenvalues. Therefore my does not depend on k. By writing now m instead
of m;, we have shown that

w;(k) = wm(—k), k € R.

It follows in particular from this that w,(0) = w,(0) so we get m = n from
the simplicity of the eigenvalues once more.

To prove the second part of this Lemma we substitute (—k) for k in (5.1)
and use the evenness of w;, getting

ho(R)p;(=x; k) = w;(k) Poj(—w; —k).

Due to the simplicity of the real valued eigenfunction ¢;(.; k) together with
the normalization condition ||¢;(.;£k)|| = 1, there is 6;(k) € {—1,1} such
that

wi(—z;—k) = 0;(k)pj(z; k), x € R, ke R. (5.2)

For all ky € R, there is zp € R such that ¢;(z¢; k) # 0. Furthermore,
k — @;(xo; k) being continuous about kg, there is 6 > 0 such that

pj(xor k) # 0, k € (ko — 0,ko + 0).

This combined with (5.2) shows that 6; is continuous (and even analytic)
about ky. As a consequence 6, is continuous in R whence it is constant. =

5.2 Asymptotic Behavior and Separation of the Dis-
persion Curves

We now describe the asymptotic behavior of the dispersion curves and show
that the dispersion curves remain separated.

Lemma 5.2 For any j € N, we have :
(1) limig| 00 wj (k) = Ej(B) + Vo
(11) infrer (w1 (k) —w;(k)) > 0.
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Proof.
(i) In light of Lemma 5.1 it is enough to show the result for k£ > 0. First we

deduce from the obvious operator inequality ho(k) < hp(k) 4+ V, following
from the definition ho(k) = hr(k) + Vo(x), that

w;(k) < E;(B) + Vo (5.3)

Let € € (0,1) and ¢ be a normalized function in the domain of hg(k). We
have

(ha(k)e,0) > (1— &) (ho(k)p. o) + / (Bir — k|p(a)Pdz,

lx<e/2
whence
(ho(k)p, ) = (1 =) (hr(k), ) + Vo — & + R, (5.4)
where R. = [\, (e(Bx — k)* = Vo) |p(x)*dz. Since e(Bx —k)* = Vo > 0

on [—£/2,0/2] for all k > k. = (Bf)/2 4+ (Vo/2)/?, (5.4) entails
(ho(k)p,0) = (1 —e)(h(k)e, ) + Vo —&, k = k..

Let M; denote a j-dimensional submanifold of dom ho(k), j =0,1,2,--- ,n.
It follows from the above inequality and the Max-Min Principle that

wi(k) = min  (ho(k)p, )
peEM7, lell=1
> min (1 —¢e)(h(k)p,p) + Vo — ¢,

peEM5, lpll=1

so we obtain

wi(k) > (1—¢e)E;(B)+Vy —¢, Vk > k.,

by taking the max over the M,’s. Now the result follows from this and (5.3).
(11) Let us suppose that infyer (w;jt1(k) —w;(k)) = 0 for some j € N. There
would also be a sequence (k,)m>1 of real numbers, such that

1
0 S Wj+1(km) - wj(km) < E, m Z 1. (55)

Due to the evenness of w; and w1, the k,, could actually be chosen non-
negative, and we know from Lemma 5.2(i) the sequence (k,)m>1 would be
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necessarily bounded. Therefore we could build a subsequence (k). of
(km)m that converges to k* € R,. Hence, by substituting m’ for m in (5.5)
and taking the limit as m’ goes to infinity, we would have

w;(k*) = wi (K7),

since w; and wjqq are continuous functions. This would mean w;(k*) is a
doubly-degenerated eigenvalue of hy(k*), a contradiction to the simplicity of
the eigenvalues of ho(k), kK € R. m

5.3 Estimation of w;(k) — E;(B) for |k| < B(/2

Let ko € (0,£/2) and j € N be fixed. We show that upon choosing Bf?
sufficiently large, w;(k) can be made arbitrarily close to £;(B), uniformly in
k € [—ko, ko).

Lemma 5.3 Let € € (0,1). Then for all j € N there is a constant n; > 0
independent of k, B, Vy and € such that we have

0< Cd](k) _BE](B) < n; ((B€2€2)73/4 + 2(36262)71/4) 67(38262)/64, (56)
for all k € [-B(/2(1 —¢€), BL/2(1 — €)] provided we have Bl*¢* > 1.

Proof.
The left inequality being obvious it is enough to prove the right one. Let 6,
be a real valued, even and twice continuously differentiable function in R,

such that b [ 1 ifre [—0/2(1 — €/2),0]
(2) = { 0 if v € (—o0,—£/2].

It is evident that 6.1);(.; k) (where v;(x; k) still denotes the j* normalized
eigenfunction of hz(k)) obviously belongs to the domain of hy(k). Moreover,
the supports of V; and 6. being disjoint, we have

(ho(k) = Ej(B))bc(x)i;(w: k) = [ho(k), O], (w; k)
= =00z k) + 26:05(; k),

which leads to
[(ho(k) — E;(B))0c; (- B)|| < 110705(; k)| + 21|00 (3 k) || (5.7)
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Using that k/B € [—¢/2(1 —¢), 0] together with the explicit expression (2.26)
of ¢;(.; k) and the vanishing of ¢ outside [—¢/2, —(/2(1 —€/2)]U[¢/2(1 — €/
2),0/2], we see there are two constants «; and (; independent of k, B, V,
and e, such that

102 (; k)| < o;B(B 5262)*3/%*(35262)/64
16/ pp; (25 k) || < B; B(B2e?)~/4e= (BES)/64,

This, combined with (5.7), entails

[(ho(k) = E;(B))0cts; (5 k)| < 7B (BEE) ™" 4 2(BEe) /1) o (PED/,

(5.8)
where 7; = max(a;, §;). Moreover bearing in mind that |[¢;(.; k)| = 1 it
follows from (2.26) that

| ( )H2 1 BY/2(¢/2(1—€/2)—k/B) ()2 )
0B > —— Hi(y)2e ¥ dy
’ 27]'\/_ BY2(—t/9(1—c/2)—k/B)

(BY/2¢e) /4

>

e Vdy=¢ >0,
2]]'\/_ —(B1/2¢¢) /4 ( ) v= C]

by taking, say, B¢*¢*> > 1. This combined with (5.8) proves the result. m
The main consequence of Lemma 5.3 is the following

Lemma 5.4 Let n € N, A, be given by (2.9), and € € (0,1). Then there is
a constant vy, = v,(a) > 0 depending only on n and a such that

supw; (Ay)- < ——(1—¢), j=0,1,...,n, (5.9)
uniformly in Vy > 0, provided we have B*¢* > ~,.
Proof.
It suffices to apply Lemma 5.3 and take B¢?¢? sufficiently large so the r.h.s. of

(5.6) is smaller than B~!(inf A,,— FE,,(B)) = a—1. This entails w;(k) < inf A,
for all k € [—(B(/2)(1 —¢€),(B¢/2)(1 — €)] and the result follows. m
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5.4 Estimation of the Eigenfunctions in the Classically
Forbidden Zone

We prove in Lemma 5.5 for j = 0,1,...,n, and k € wj_l(An)_, where A,
is as in Lemma 5.4, that the p;(z; k), are exponentially decreasing functions
in the domain z > —(¢/2) provided B¢?* is taken sufficiently large. This is
the main tool for the proof of 1) Lemma 5.6, a technical result used in the
estimation of wj(k) given in Lemma 2.2, and 2) Lemma 5.7, which states
the localization properties of the eigenfunctions in view of Proposition 2.1.
Finally Lemma 5.8, who is particularly useful in Section 3, can be derived
from Lemmas 5.4 and 5.7.

Lemma 5.5 Let n € N, A, be given by (2.9), ¢ € (0,1) and xz. = —(¢/
2)(1 —¢€). Then there is a constant i, = pp(a) > 0 depending only on n and
a such that

oK) < (Bfe)e_%(‘”—mf), x>w, k€ w;l(An)_, j=0,1,...,n,
uniformly in Vy > 0, provided Bf*¢* > pu,.

Proof.

Set 7. = —(¢/2)(1 — &/2). We notice that it suffices to take Bf? large
enough so the effective potential W;(z; k) defined by (2.20) is positive for
k € wj_l(An)_ in the region x > Z.. This follows from Lemma 5.4 with
¢ = ¢/4. Indeed in this case (5.9) involves

BY
Br — k> ?6, x>, ke wj_l(An)_,

so by using the fact that Wj(z; k) > (Bx — k)? — E,41(B) we get that
Bl=\?

Wi(z; k) > (1_65) , T >, k€ wj_l(An)_, (5.10)
provided Bf?¢? > max(7,(a), 16*(2n + 3)), where 7, (a) is defined in Lemma
5.4. As a consequence, the H'(R)-solution ¢;(.; k) to the differential equation
©"(x) = Wj(x; k)p(x) is exponentially decaying in the region = > #.. Namely
for all k € w;'(Ay)_, we have

0 < @t k) < ps(sihk)e” 0, 3. <s <t, (5.11)
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from Proposition 8.3 in [10]. By combining (5.11) for ¢t = z. with (5.10), we
find that

Ble BLe

pi(reik)?e 5 ° < gi(sik)’e” s %, T <s <., kew (A, (5.12)

whence (Bte)/8
15
90]'(:65; k)2 S Ble

e s (xﬁfiﬁ) —

. kew (A, (5.13)

J

by integrating (5.12) w.r.t. s over (Z.,z.) and using the normalization con-
dition ||¢,(.;k)|| = 1. Bearing in mind that z. — . = (f¢)/4, we may take
B(?¢? sufficiently large so (5.13) involves

Ble

pj(we; k) < (Ble)e™ 7)€ wil(A)-.
Now the result follows from this, (5.10) and (5.11). =
We give now two corollaries of Lemma 5.5.
Lemma 5.6 Letn € N and A,, be given by (2.9). Fors € {+,—} andt > 0,

set 12
|t if s =+
gs(t)_{ 1 ifs=-—.

Then there are two constants ¢, = (,(a) > 0 and v, = v,(a) > 0, depending
on n and a, such that for all B(?> > (, we have

Vo (£0/2:k)? < 1,9+ (BC)B*?, k € wi'(A,)-, j=0,1,...,n, (5.14)
uniformly in Vy > 0.

Proof.
1. Let j be 0,1,...,n. We start by proving there are two constants a;; > 0
and 3; > 0 independent of B, ¢, V, and k such that we have

+oo
0< / (Bx — k)p,(z; k)*dx < oszﬁe_ﬁjBeg, ke wj_l(An)_, (5.15)
0

provided B¢? is sufficiently large. The left inequality in (5.15) being evident,
it is enough to show the right one. By using the fact that w;(k) < E,,+1(B)
and arguing as in the proof of Lemma 5.5, we deduce from Lemma 5.4 there
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is a constant v,(a) > 0 depending only on n and a such that the potential
W;(t; k) defined by (2.20) satisfies

W;(t;k) > 0and 0 < Bt — k < 2W,(t; k)2, t >0, k € wi (),

upon taking Bf? > wv,(a). Now (5.15) follows immediately from this, the
exponentially decaying behavior of ¢;(.; k) in Ry,

0 < ;(z;k) < p;(0;k)e” Jo Wj(t;k)mdt, x>0, ke wj_l(An)_,

as stated in Proposition 8.2 in [10], and Lemma 5.5.
2. We write (2.58) for a bounded real-valued function p € C3(R) such that
p(x)=0if x <0, and p(z) =1 if 2 > ¢/2, and find

2Vop;(£/2; k)?
£/2 €)2
<l [ sl [ G bR
0 0
+o0
4B pl|o / (B — k)p; (a: k)d. (5.16)
0

The first term in the r.h.s. of (5.16) is bounded by a constant times ¢73.
Due to the energy equation (2.50), the second one is bounded by a constant
times B¢~!. Summing up (5.15) and (5.16) we then get that

Vo (0/2;k)* < eBOH 1+ 4(2n + 3) + ajBEQe_BjBez),
for some ¢ > 0 independent of B, ¢, V, and j, whence
Vo;(0/2;k)* < v (BE?) ™2 B2, (5.17)

upon taking B¢? sufficiently large.
3. The end of the proof now follows from (2.21), (2.51) and (5.17). =

Lemma 5.7 Let a,, = (p, +1)"? and x,, = —/2 + a, B2, where p,, is
defined in Lemma 5.5. Then for all B > 0, { > 0, Vy > 0 and Az > 0, we

have

+oo
/ . ©;(z; k)de < 8e_(°"”b/4)Bl/2AI7 ke w;l(An)_7 J=0,1,....,n.
Tn+AT
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Furthermore there are two constants 0,, = 0,(a,c) > 0 and 9,, = V,(a,c) >0
depending only on n, a, and ¢ such that for all Ax > 0 we have

A 2 2(3—¢)1/2B'/2A 1
/ iz k) de < J,e” (3=c) kew (Ao, j=0,1,...,n,

o0

provided Bl?> > 0,, and Vo > E,1(B).

Proof.
Set & = 2a,,/(BY?() so B?c? > pu, and

w;(:k)? < 2anBl/Qe_(°‘"/4)Bl/2”, T >x,, kE wj_l(An)_, j=0,1,...,n,
(5.18)
according to Lemma 5.5. The first part of the result obviously follows by
integrating (5.18) over [z, + Az, +00).

To prove the second part we make Vy > E,1(B) in such a way that
the effective potential (2.20) is lower bounded as W;(z; k) > (3 — ¢)B for all
x < —{/2, and subsequently

0 (k) < 0j(—L/2; k)262(3_c)1/231/2(m+£/2), r< —l/2, k€ wj_l(An)_,

by Proposition 8.3 in [10]. Now the result immediately follows from this and
from Lemma 5.6. =

An immediate consequence of Lemmas 5.4 and 5.7 is the following

Lemma 5.8 Letn € N and A, be defined by (2.9). Then there is a constant
Kn = Kn(a,c) > 0 depending only on n, a and ¢ such that

BL _ .
‘IHT‘ <k, B2 kew  (An)-, j=0,1,....n, (5.19)

provided Vo > E,.1(B) and Bl*> > 0,,, where 0, is as in Lemma 5.7.

Proof.

1. Let k € w;l(An),, j =0,1,...,n, be of the form k = —(B(/2)(1 + ¢)
for some € > 0. Next taking Az = (fe)/4 in Lemma 5.7 and assuming that
B(? >0, and Vy > E,.1(B), we get that

/(5/2)(1+(6/2)) o ((8—c)t/2/2) B/ 2¢e

;i (z; k)2de < G (5.20)

o0
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Further, the normalization condition ||p;(.;k)|| = 1 entails

+o00
/ (Ba — K)p;(as k)2da
—(€/2)(1+(e/2))

Ble\ 2 —(E/2)(1+(¢/2))
> (TE) (1—/ i k)*da |, (5.21)

since z — k/B > (le)/4 for all x > —(¢/2)(1 + (¢/2)). As a consequence we

© 1/2 1/2
B2¢2¢2 e—((3 c)t/2/2)Bt 4Le
w;(k) > 1-— 5.22
J( ) 16 ( (3— 0)1/2 ’ ( )

by combining (5.20)-(5.21) with the basic estimate

(k) > [ (B = bk

Moreover k being in w; ' (A,)_ we have w;(k) < (2n 4 ¢)B, whence

Bl2e2 e,((3,c)1/2/2)31/2&
2n+c > 16 (1— (3—0)1/2 , (5.23)

according to (5.22). The r.h.s. of (5.23) being an unbounded increasing
function of Bf?¢? depending only on ¢, while the Lh.s. depends only on n
and ¢, we thus have

B¢ < &,(c),

for some constant &,(c) > 0 depending only on n and c. Therefore

BL
infwj_l(An)_ > ——5 = n(c)V/2BY2, (5.24)

since k = —((B()/2)(1+¢) € wj_l(An)_.
2. For the rest of the proof we recall from Lemma 5.4 that

BL
supw; (A,)- < -t Yola) 2 BY?, (5.25)

where 7,(a) > 0 depends only on n and a. The result then follows from
(5.24)-(5.25) by setting n(a, c) = max(&,(c)2, yn(a)/?). =
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