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Abstract

Devices exhibiting the integer quantum Hall effect can be modeled by one-
electron Schrödinger operators describing the planar motion of an electron
in a perpendicular, constant magnetic field, and under the influence of an
electrostatic potential. The electron motion is confined to bounded or un-
bounded subsets of the plane by confining potential barriers. The edges of the
confining potential barriers create edge currents. This is the second of two
papers in which we review recent progress and prove explicit lower bounds
on the edge currents associated with one- and two-edge geometries. In this
paper, we study various unbounded and bounded, two-edge geometries with
soft and hard confining potentials. These two-edge geometries describe the
electron confined to unbounded regions in the plane, such as a strip, or to
bounded regions, such as a finite length cylinder. We prove that the edge
currents are stable under various perturbations, provided they are suitably
small relative to the magnetic field strength, including perturbations by ran-
dom potentials. The existence of, and the estimates on, the edge currents
are independent of the spectral type of the operator.
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1 Introduction

This is the second of two papers dealing with lower bound estimates on edge
currents associated with quantum Hall devices. The integer quantum Hall
effect (IQHE) refers to the quantization of the Hall conductivity in integer
multiples of 2πe2/h. The IQHE is observed in planar quantum devices at
zero temperature and can be described by a Fermi gas of noninteracting
electrons. This simplification reduces the study of the dynamics to the one-
electron approximation. Typically, experimental devices consist of finitely-
extended, planar samples subject to a constant perpendicular magnetic field
B. An applied electric field in the x-direction induces a current in the y-
direction, the Hall current, and the Hall conductivity σxy is observed to be
quantized. Furthermore, the Hall conductivity is a function of the electron
Fermi energy, or, equivalently, the electron filling factor, and plateaus of
the Hall conductivity are observed as the filling factor is increased. It is
now accepted that the occurrence of the plateaus is due to the existence
of localized states near the Landau levels that are created by the random
distribution of impurities in the sample. We refer to [10] and references
mentioned there for a more detailed discussion. Since the earliest theoretical
discussions, the existence of edge currents has played a major role in the
explanation of the quantum Hall effect.

To describe the two-edge geometries dealt with in the paper, we first
recall the theory for the plane. The Landau Hamiltonian HL describes a
particle constrained to R2, and moving in a constant, transverse magnetic
field with strength B ≥ 0. Let px = −i∂x and py = −i∂y be the two
momentum operators. The operator HL is defined on the dense domain
C∞0 (R2) ⊂ L2(R2) by

H = (−i∇− A)2 = p2
x + (py −Bx)2, (1.1)

in the Landau gauge for which the vector potential is A(x, y) = B(0, x). This
extends to a selfadjoint operator with point spectrum given by {En(B) =
(2n+ 1)B | n = 0, 1, 2, . . .}, and each eigenvalue is infinitely degenerate.

As in [10], we define the edge current as the expectation of the y-component
of the velocity operator Vy ≡ (py−Bx) in certain states that will be specified
below. These are states with energy concentration between two successive
Landau levels En(B) and En+1(B).
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1.1 Edge Currents in Two-Edge Geometries

Our main results in this paper can be grouped together as follows.

1. Two-Edge, Unbounded Geometries: We study the strip case for which
the electron is constrained to the region −`/2 < x < `/2, a strip of
width ` > 0, by the sharp confining potential

V0(x) = V0χ{|x|>`/2}(x), V0 > 0, (1.2)

where χJ denotes the characteristic function of the set J .

2. Two-Edge, Bounded Geometries: We study models for which the elec-
tron on a cylinder CD = R × [−D/2, D/2], for D > 0, is confined to
the bounded region [−`/2, `/2] × [−D/2, D/2] by the sharp confining
potential (1.2).

In all cases, the unperturbed Hamiltonian has the form

H0 = HL + V0, (1.3)

acting on the Hilbert space L2(R2). This is a nonnegative, self-adjoint op-
erator. Our strategy is to analyze the unperturbed operator via the partial
Fourier transform in the y-variable. We write f̂(x, k) for the partial Fourier
transform of the function f(x, y). For the case of unbounded geometry, we
have k ∈ R, whereas for the case of bounded geometry, the allowable k val-
ues are discrete. In either case, this decomposition reduces the problem to a
study of the fibered operators of the form

h0(k) = p2
x + (k −Bx)2 + V0(x), (1.4)

acting on L2(R). Since the effective, nonnegative, potential (k−Bx)2 +V0(x)
is unbounded as x→ ±∞, the resolvent of h0(k) is compact and the spectrum
is discrete. We denote the eigenvalues of h0(k) by ωj(k), with corresponding
normalized real eigenfunctions ϕj(x; k), so that

h0(k)ϕj(x; k) = ωj(k)ϕj(x; k), ‖ϕj(·; k)‖ = 1. (1.5)

As in [2] and [10], the properties of the curves k ∈ R → ωj(k) play an
important role in the proofs. These curves are called the dispersion curves
for the unperturbed Hamiltonian (1.3). The importance of the properties of
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the dispersion curves comes from an application of the Feynman-Hellmann
formula. To illustrate this, let us first consider the two-edge geometry of a
half-plane with the sharp confining potential. We note that unlike for the
case of one-edge geometries, the dispersion curves are no longer monotonic
in k.
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For simplicity, we consider in this introduction a closed interval ∆0 ⊂ (B, 3B)
and a normalized wave function ψ satisfying ψ = E0(∆0)ψ, where E0(∆0)
denotes the spectral projection of H0 associated with ∆0. Such a function
admits a decomposition of the form

ψ(x, y) =
1√
2π

∫
ω−1

0 (∆0)

eikyβ0(k)ϕ0(x; k) dk,

where the coefficient β0(k) is defined by

β0(k) ≡ 〈ψ̂(·; k), ϕ0(·; k)〉. (1.6)

The matrix element of the current operator Vy in such a state is

〈ψ, Vyψ〉 =

∫
R
dx

∫
ω−1

0 (∆0)

dk|β0(k)|2(k −Bx)ϕ0(x; k)2.
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From (1.5) and the Feynman-Hellmann Theorem, we find that

ω′0(k) = 2

∫
R
dx (k −Bx)ϕ0(x; k)2, (1.7)

so that we get

〈ψ, Vyψ〉 =
1

2

∫
R
|β0(k)|2 ω′0(k) dk. (1.8)

It follows from (1.8) that in order to obtain a lower bound on the expectation
of the current operator in the state ψ we need to bound the derivative ω′0(k)
from below for k ∈ ω−1

0 (∆0). The next step of the proof involves relating the
derivative ω′0(k) to the trace of the eigenfunction ϕ0(x; k) on the boundary

of the strip. Taking into account the eigenvalue equation that ∂(k−Bx)2

∂k
=

− 1
B
∂(k−Bx)2

∂x
and (k − Bx)2ϕ0(x; k) = ϕ′′0(x; k) + (ω0(k) − V0(x))ϕ0(x; k), we

integrate by parts in (1.7), and find that

ω′0(k) =
V0

B
(ϕ0(`/2; k)2 − ϕ0(−`/2, k)2). (1.9)

Consequently, we are left with the task of estimating the trace of the eigen-
function along the two boundary components at x = ±`/2.

The key point that allows us to distinguish these two traces is the follow-
ing. The dispersion curves are symmetric about k = 0 if V0(x) is an even
function. Consequently, if a wave function ψ satisfies ψ = E0(∆0)ψ, we have
to study the decomposition of ψ in k-space according to the decomposition
ω−1

0 (∆0) = ω−1
0 (∆0)− ∪ ω−1

0 (∆0)+, where ω−1
0 (∆0)± ≡ ω−1

0 (∆0) ∩ R±. These
two components correspond to currents propagating in opposite directions
along the left and right edges of the band, respectively. To construct a left-
edge current, we construct states ψ so that the coefficients β0(k) in (1.6)
satisfy supp β0(k) ⊂ ω−1

0 (∆0)−. Such a state is spatially concentrated near
the left edge x = −`/2. Hence, the contribution to the left-edge current
coming from ϕ0(`/2; k) will be exponentially small since the domain x ≈ `/2
is in the classically forbidden region for energies ω0(k), for k ∈ ω−1

0 (∆0)−.
Consequently, the contribution to the integral in (1.8) will be exponentially
small. Thus, we prove that if ψ = E0(∆0)ψ is spectrally concentrated in the
set ω−1

0 (∆0)−, then the matrix element 〈ψ, Vyψ〉 is bounded from below by a
constant times B1/2‖ψ‖2. Much of our technical work, therefore, is devoted
to obtaining lower bounds on quantities of the form V0ϕ0(±`/2; k)2 for such
left-edge current states. We also mention that similar results hold for the
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right-edge current. Of course, in the unperturbed case with a symmetric
confining potential, we expect that the net current across any line y = C
is zero for the unperturbed problem. We will prove this in Proposition 2.1
below.

1.2 Contents

This paper is organized as follows. Section 2 is devoted to the estimation
of edge currents. In section 3, the spectral properties of the model are in-
vestigated. Using the Mourre commutator method, we exhibit a class of
potentials V1 (periodic or decreasing in the y-direction) preserving nonempty
absolutely continuous spectrum in intervals lying between two consecutive
Landau levels for the perturbed Hamiltonian H0 + V1. In section 4, we ad-
dress cylinder geometries models and prove the existence of edge currents
for Hamiltonians with pure point spectrum in this framework. Appendix 1
in section 5 presents basic properties of the dispersion curves needed in the
proofs.

1.3 Acknowledgments

We thank J.-M. Combes for many discussions on edge currents and their
role in the IQHE. We thank E. Mourre for discussions on the commutator
method used in section 3. We also thank F. Germinet, G.-M. Graf, and H.
Schulz-Baldes for fruitful discussions. Some of this work was done when ES
was visiting the Mathematics Department at the University of Kentucky and
he thanks the Department for its support.

2 Edge Currents for Two-Edge Geometries

Many quantum devices can be modeled by a confining potential forcing the
electrons into a strip of infinite extent in one direction. The dynamics of
electrons in an infinite-strip are different from the half-plane cases treated in
[10]. We study an electron in a strip of width ` > 0 in the x-direction, and
unbounded in the y-direction. We consider confining potential V0(x) that
are step functions, or parabolic functions. After some basic analysis of these
models that is independent of the precise form of the confining potential,
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we study edge currents for parabolic confining potential and sharp confining
potential.

2.1 Basic Analysis of Two-Edge Geometries

As in [10], we study the existence of edge currents for a general confining
potential V0(x). We obtain lower bounds on the appropriately localized ve-
locity along the y-direction Vy. The strip geometry is a two-edge geometry.
Thus, we expect that there is a current associated with each edge. Classi-
cally, these currents propagate along the edges in opposite directions. For
the unperturbed system, one expects that the net current flow across the line
y = C, for any C ∈ R, to be zero, and we prove this in Proposition 2.2. Once
a perturbation V1 is added, this may no longer be true, and the persistence
of edge currents may depend upon a relationship between B and `.

We continue to use the same notation as in [10]. That is, we write H0 =
HL+V0 for the unperturbed operator. Since we have translational invariance
in the y-direction, this operator admits a direct sum decomposition

H0 =

∫ ⊕
R

dkh0(k). (2.1)

We write h0(k) for the fibered operator acting on L2(R), where

h0(k) = p2
x + (k −Bx)2 + V0(x), (2.2)

with an even, two-edge confining potential V0. Although some of our argu-
ments hold for a general confining potential that is monotone on the left and
the right, we will explicitly treat the case of the sharp confining potential
given in (1.2). We first prove that the total edge current carried by certain
symmetric states of finite energy vanishes. For this, it is essential that the
confining potential be an even function. We consider states of finite energy
ψ, with ψ ∈ E0(∆n)L2(R2), for an interval ∆n ⊂ (En(B), En+1(B)), for
any n ≥ 0. The partial Fourier transform ψ̂ of ψ in the y-variable can be
expressed in terms of the eigenfunctions ϕj(x; k) as

ψ̂(x, k) =
n∑
j=0

χω−1
j (∆n)(k)βj(k)ϕj(x; k), (2.3)

7



or equivalently as

ψ(x, y) =
1√
2π

n∑
j=0

∫
R
eiky χω−1

j (∆n)(k)βj(k)ϕj(x; k) dk, (2.4)

where the coefficients βj(k) are defined by

βj(k) ≡ 〈ψ̂(·; k), ϕj(·; k)〉. (2.5)

and the normalization condition

‖ψ‖2
L2(R2) =

n∑
j=0

∫
ω−1
j (∆n)

|βj(k)|2 dk. (2.6)

We recall that the properties of the dispersion curves ωj(k) result in the
disjoint decomposition ω−1

j (∆n) = ω−1
j (∆n)− ∪ ω−1

j (∆n)+ with ω−1
j (∆n)± ≡

ω−1
j (∆n) ∩ R±.
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Lemma 2.1 Let n ∈ N and ∆n ⊂ (En(B), En+1(B)). Then there is δn =
δn(B, `,V0) > 0 such that if |∆n| < δn we have

ω−1
j (∆n) = ∅, j ≥ n+ 1, (2.7)

and, if n ≥ 1,

ω−1
j (∆n) ∩ ω−1

l (∆n) = ∅, j 6= l, j, l = 0, 1, . . . , n. (2.8)

Proof.
First (2.7) is evident since ωn+1(k) ≥ En+1(B) for all k ∈ R. Next set
δn = δn(B, `,V0) = min0≤j≤n−1 infk∈R (ωj+1(k)− ωj(k)). Due to Lemma
5.2(ii), we have δn > 0. For all l, j = 0, 1, . . . , n and k ∈ ω−1

j (∆n)∩ω−1
l (∆n),

we have |ωl(k) − ωj(k)| ≤ |∆n|, which leads to a contradiction if |∆n| < δn
and j 6= l. Henceforth ω−1

j (∆n) ∩ ω−1
l (∆n) = ∅ if j 6= l.

It is clear from the fact the potential in h0(k) is centered at x0 = k/B
that the wave function ψ may be more localized near one edge or another
depending upon the properties of the weights βj(k). For example, if the βj(k)
are supported only by negative wave numbers k, then the wave function will
be localized near the left edge.

Proposition 2.1 Let n ∈ N and ∆n be given by

∆n ≡ [(2n+ a)B, (2n+ c)B], for 1 < a < c < 3. (2.9)

Let ψ ∈ E0(∆n)L2(R2), as in (2.4), be a finite energy state, such that

βj(k) = 0, k ∈ ω−1
j (∆n)+, j = 0, 1, . . . , n.

Then there are two constants αn = αn(a) > 0, depending only on n and
a, and θn = θn(a, c) > 0, depending only on n, a and c, such that for all
V0 ≥ En+1(B), all B`2 ≥ θn and all ∆x± ≥ 0, we have∫

I(∆x±)×R
|ψ(x, y)|2dxdy ≥ (1− 8e−(αn/4)B1/2∆x+ − e−(3−c)1/2B1/2∆x−)‖ψ‖2,

where
I(∆x±) = [−`/2−∆x−,−`/2 + αnB

−1/2 + ∆x+].
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Proof.
In light of (2.3) and the Parseval’s Theorem we have∫

I(∆x±)×R
ψ2(x, y)dxdy =

1

2π

n∑
j=0

∫
ω−1
j (∆n)

βj(k)2

(∫
I(∆x±)

ϕj(x; k)2dx

)
dk;

Hence the result follows from this, (2.6) and Lemma 5.7.
Such a wave function should carry a net left-edge current. We will prove this
below. We will first prove that if the Fourier Transform of a wave function
symmetrically localized with respect to the Fourier variable k, then it carries
no net edge current: The left-edge current cancels the right-edge current.

Proposition 2.2 Let n ∈ N and ∆n ⊂ (En(B), En+1(B)) be small enough
so Lemma 2.1 holds true. Let ψ ∈ E0(∆n)L2(R2), as in (2.3), be a finite
energy state. Then, the current carried by such a state has the following
expression:

〈ψ, Vyψ〉 =
1

2

n∑
j=0

∫
ω−1
j (∆n)−

(|βj(k)|2 − |βj(−k)|2)ω′j(k)dk. (2.10)

Henceforth, if ψ is such that

|βj(k)| = |βj(−k)|, j = 0, 1, · · · , n, (2.11)

then the current carried by ψ vanishes:

〈ψ, Vyψ〉 = 0. (2.12)

Proof.
The velocity Vy = py − Bx has a Fourier transform that we write as V̂y =

V̂y(k) = k − Bx. Using the Fourier decomposition (2.3), the matrix element
of the velocity operator Vy is

〈ψ, Vyψ〉 (2.13)

=
n∑

j,l=0

∫
R
χω−1

j (∆n)(k)χω−1
l (∆n)(k)βj(k)βl(k)〈ϕj(·; k), V̂y(k)ϕl(·; k)〉 dk.
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As a consequence of the result of Lemma 2.1 below, the cross-terms in (2.13)
vanish, at least for |∆n| sufficiently small, giving

〈ψ, Vyψ〉 =
n∑
j=0

∫
R
χω−1

j (∆n)(k)|βj(k)|2〈ϕj(·; k), V̂y(k)ϕj(·; k)〉 dk

=
n∑
j=0

∫ 0

−∞
χω−1

j (∆n)(k)
{
|βj(k)|2〈ϕj(·; k), V̂y(k)ϕj(·; k)〉

+ |βj(−k)|2〈ϕj(·;−k), V̂y(−k)ϕj(·;−k)〉
}
dk, (2.14)

where we used the fact, proved in Lemma 5.1 in Appendix, that the dispersion
curves are even functions of k, that is, ωj(k) = ωj(−k). We also note that the
Hamiltonian h0(k) commutes with the operation P that implements (x, k)→
(−x,−k). The simplicity of the eigenfunctions then implies (this is shown in
Lemma 5.1) that Pϕj = θjϕj with θj = ±1. Hence the last term in the r.h.s.

of (2.14), 〈ϕj(·;−k), V̂y(−k)ϕj(·;−k)〉 becomes∫
R
ϕj(x;−k)2(−k −Bx)dx =

∫
R
ϕj(−x;−k)2(−k +Bx)dx

= −
∫
R
ϕj(x; k)2(k −Bx)dx

= −〈ϕj(·; k), V̂y(k)ϕj(·; k)〉,
and the result follows from this, (2.14) and the Feynman-Hellmann formula

ω′j(k) = 2〈ϕj(·; k), (k −Bx)ϕj(·; k)〉 (2.15)

It can be seen from Lemma 5.1 that a state ψ defined by (2.4)-(2.5) and
symmetric about O (i.e. ψ(−x,−y) = ψ(x, y) for (x, y) ∈ R2) is characterized
by Fourier coefficients βj, j = 0, 1, . . . , n, satisfying the condition

βj(−k) = θjβj(k), k ∈ ω−1
j (∆n)−, j = 0, 1, . . . , n.

Consequently symmetric states about O are among states satisfying (2.11),
though a state satisfying (2.11) is not necessarily symmetric about O. More-
over it should be noticed that states satisfying the condition (2.11) are not
necessarily symmetric about the y-axis either, since the condition ψ(−x, y) =
ψ(x, y) for (x, y) ∈ R2 is equivalent to

βj(k) = 0 if θj = −1, k ∈ ω−1
j (∆n)−, j = 0, 1, . . . , n.
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2.2 Estimation of the Edge Current for a Strip

We turn now to the estimation of the left-edge current for a strip of width
` > 0. We want to estimate the total current along both edges, carried by
appropriately chosen states ψ. That is, for all n ∈ N we want to obtain a
lower bound on the matrix element of the localized velocity operator (2.10),
carried by a state ψ ∈ E0(∆n)L2(R2) associated to the energy interval ∆n ⊂
(En(B), En+1(B)) . Much of the technical work in this paper is devoted to
bounding (−ω′j(k)), j = 0, 1, . . . , n, from below, uniformly for k in ω−1

j (∆n)−.

Lemma 2.2 Let n ∈ N and ∆n be given by (2.9). Then, there are two
constants βn = βn(a) > 0, depending only on n and a, and Cn > 0, depending
only on n, such that we have

−ω′j(k) ≥ Cn(a− 1)2(3− c)3B1/2, k ∈ ω−1
j (∆n)−, j = 0, 1, . . . , n, (2.16)

provided B`2 ≥ βn and V0 ≥ En+1(B).

The proof of Lemma 2.2 being rather technical, it is postponed to section
2.3.

In light of (2.10) and Lemma 2.2, let us see now the current carried by
a state ψ, whose coefficients βj(k), j = 0, 1, · · · , n, are mostly supported on
the set of negative wave numbers k, is of size B1/2.

More precisely, ∆ being a subinterval of (En(B), En+1(B)) we consider
states of finite energy ψ ∈ E0(∆), whose Fourier coefficients βj(k), defined
by (2.5), satisfy the condition

|βj(k)|2 ≥ (1 + γ2)|βj(−k)|2, k ∈ ω−1
j (∆)−, j = 0, 1, · · · , n, (2.17)

for some γ > 0.
If γ goes to infinity we find that βj(−k) = 0, for k ∈ ω−1

j (∆)− and

j = 0, 1, · · · , n, whence ψ is localized in a strip of width O(B−1/2) along
the left edge x = −(`/2) according to Proposition 2.1. Analogously we may
expect that all states satisfying (2.17) for some γ > 0 are mostly supported
in the left side of the strip [−`/2, `/2]× R.

Theorem 2.1 Let n ∈ N and ∆n be given by (2.9). Let βn = βn(a) and Cn
be defined as in Lemma 2.2. Then for all B`2 ≥ βn and V0 ≥ En+1(B), there
is a constant δn = δn(B, `,V0) > 0 such that for all interval ∆ ⊂ ∆n with
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size |∆| < δn and all states ψ ∈ E0(∆)L2(R2) satisfying the condition (2.17)
for the interval ∆, we have

−〈ψ, Vyψ〉 ≥
γ2

2 + γ2
Cn(a− 1)2(3− c)3B1/2‖ψ‖2. (2.18)

Proof.
Due to (2.17) we have |βj(k)|2 − |βj(−k)|2 ≥ γ2/(1 + γ2)|βj(k)|2 for all
j = 0, 1, . . . , n and k ∈ ω−1

j (∆)−, whence

n∑
j=0

∫
ω−1
j (∆)−

|βj(k)|2dk ≥ 1 + γ2

2 + γ2
‖ψ‖2, (2.19)

from the normalization condition (2.6). Further, the size of ∆ being suffi-
ciently small so Lemma 2.1 holds true, the total current carried by the state
ψ is

〈ψ, Vyψ〉 =
1

2

n∑
j=0

∫
ω−1
j (∆)−

(|βj(k)|2 − |βj(−k)|2)ω′j(k)dk,

so the result follows from this, (2.19) and Lemma 2.2 since ω−1
j (∆)− ⊂

ω−1
j (∆n)− for j = 0, 1, . . . , n.

2.3 Proof of Lemma 2.2 : Estimation of the Speed of
the Dispersion Relations

For all n ∈ N, ∆n defined by (2.9) and j = 0, 1, . . . , n, it is clear from the
definition of ω−1

j (∆n)− that supω−1
j (∆n)− ≤ 0. Actually, Lemma 5.4 tells

us this supremum can be bounded by any number greater than (−B`)/2
upon taking B`2 sufficiently large. Consequently, the region x ≥ 0 is in
the classically forbidden zone for energies ωj(k), k ∈ ω−1

j (∆n)−, at least in
the intense magnetic field regime. This is because the parabolic part of the
effective potential

Wj(x; k) ≡ (k −Bx)2 + V0(x)− ωj(k), (2.20)

is centered at the coordinate k/B.

13



Henceforth the eigenfunctions ϕj(.; k) of h0(k) are exponentially decaying
in the region x ≥ 0 for all k ∈ ω−1

j (∆n)−. This is not true in the region x ≤ 0,
and ϕj(`/2; k)2 is also expected to be small relative to ϕj(−`/2; k)2. Since

ω′j(k) =
V0

B

(
ϕj(`/2; k)2 − ϕj(−`/2; k)2

)
, (2.21)

by arguing as in the derivation of (1.9), we then get that

ω′j(k) ≈ −V0

B
ϕj(−`/2; k)2.

This remark is made precise below. Namely we know from Lemma 5.6 in
Appendix that upon choosing B`2 ≥ ζn we have

V0ϕj(`/2; k)2 ≤ (νn(B`2)−1/2)B3/2, k ∈ ω−1
j (∆n)−, j = 0, 1, . . . , n, (2.22)

both constant ζn > 0 and νn > 0 depending only on n and a. Hence the re-
maining term V0ϕj(`/2; k)2 is uniformly bounded by a constant times B`−1.
We turn now to computing a lower bound on the main term V0ϕj(−`/2; k)2.
We shall show that it is of size B3/2. This will require several steps.

Step 1 : Harmonic Oscillator Eigenfunction Comparison Revisited
The proof of Lemma 2.2 in [10] (based on the properties of the eigenfunctions
ψm(.; k) of the harmonic oscillator hL(k) = p2

x + (Bx − k)2) applying with-
out change to the case of the strip geometry examined here, the following
estimate,

|〈ϕj(.; k), V0Pnϕj(.; k)〉| ≥ 1

2(n+ 1)B
(ωj(k)− En(B))(En+1(B)− ωj(k)),

(2.23)
holds for all k ∈ ω−1

j (∆n)−. We recall that Pn denotes the projection on the
eigenspace spanned by the first n eigenfunctions ψm(.; k) of hL(k),

Pnϕj(x; k) ≡
n∑

m=0

α(j)
m (k)ψm(x; k), (2.24)

with
α(j)
m (k) ≡ 〈ϕj(.; k), ψm(.; k)〉, (2.25)
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and that the explicit expression of ψm(x; k) is

ψm(x; k) =
1√

2mm!

(
B

π

)1/4

Hm(B1/2(x− k/B))e−B/2(x−k/B)2

, (2.26)

where Hm denotes the mth Hermite polynomial function as in [10].
The strategy consists in computing an upper bound on |〈ϕj(.; k), V0Pnϕj(.; k)〉|,

involving the trace V2
0ϕj(−`/2; k)2. To do that, we expand Pnϕj(.; k) as in

(2.24), in 〈ϕj(.; k), V0Pnϕj(.; k)〉, getting:

|〈ϕj(.; k), V0Pnϕj(.; k)〉| ≤ V0

n∑
m=0

|α(j)
m (k)|

∫
|x|≥`/2

|ϕj(x; k)||ψm(x; k)|dx.

(2.27)
The set |x| > `/2 is the classically forbidden region for electrons with energy
less than V0, so

0 ≤ ϕj(x; k) ≤ ϕj(±`/2; k)e∓(V0−ωj(k))1/2(x∓`/2), ±x ≥ `/2, (2.28)

according to Proposition 8.3 in [10]. Henceforth by substituting the corre-
sponding exponentially decreasing term for ϕj(.; k) in (2.27), we have

|〈ϕj(.; k), V0Pnϕj(.; k)〉|

≤ V0

n∑
m=0

|α(j)
m (k)|

(
(I

(j)
m,−)ϕj(−`/2; k) + (I

(j)
m,+)ϕj(L/2; k)

)
, (2.29)

where

I
(j)
m,± ≡

∫
±x≥`/2

|ψm(x; k)|e∓(V0−ωj(k))1/2(x∓`/2)dx. (2.30)

Step 2 : Trace Function Estimate
In view of bounding the integrals I

(j)
m,± we first define the constant

Hm ≡ sup
u∈R

Hm(u)e−u
2/2. (2.31)

Then we substitute the following obvious consequence of (2.26) and (2.31)

|ψm(x; k)| ≤
(
B

π

)1/4 Hm√
2mm!

, (2.32)
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for |ψm(x; k)| in (2.30), and get:

I
(j)
m,± ≤

(
B

π

)1/4 Hm√
2mm!

1

(V0 − ωj(k))1/2
. (2.33)

Now combining (2.29) with (2.33), provides

|〈ϕj(., k), V0Pnϕj(., k)〉L2(R2)| (2.34)

≤ V0

(V0 − ωj(k))1/2

(
B

π

)1/4
(

n∑
m=0

Hm√
2mm!

|α(j)
m (k)|

)
(ϕj(−`/2; k) + ϕj(`/2; k)) .

Let us define the constant H(n) by

H(n) ≡

(∑
m≤n

H2
m

2mm!

)1/2

. (2.35)

By applying the Cauchy-Schwarz inequality to the sum in (2.34), and using
the normalization condition

n∑
m=0

|α(j)
m (k)|2 = ‖Pnϕj(·; k)‖2 ≤ 1,

we end up getting:

|〈ϕj(., k), V0Pnϕj(., k)〉L2(R2)|

≤ V0

(V0 − ωj(k))1/2

(
B

π

)1/4

H(n) (ϕj(−`/2; k) + ϕj(`/2; k)) .

This together with (2.22) and (2.23) yield

V1/2
0 ϕj(−`/2; k) ≥ fn(B`2)B3/4, (2.36)

where

fn(B`2) =
π1/4

2(n+ 1)H(n)

(
1− ωj(k)

V0

)1/2

(a− 1)(3− c)− ν1/2
n (B`2)−1/4,

provided B`2 ≥ ζn. Further for all V0 ≥ En+1(B) we have

1− ωj(k)

V0

≥ 3− c
2n+ 3

,

uniformly in k ∈ ω−1
j (∆n)−, so fn(B`2) can be made greater than (a−1)(3−

c)3/2/(2(n + 1)(2n + 3)1/2H(n)) by taking B`2 sufficiently large, and (2.16)
then follows from (2.36), (2.21) and (2.22).
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2.4 Perturbation of Edge Currents

We now consider the perturbation of the edge currents by adding a bounded
impurity Potential V1(x, y) to H0. As in section 2.3 of [10] for unbounded
geometries, we prove that the lower bound on the edge currents is stable with
respect to these perturbations provided ‖V1‖ = ‖V1‖∞ is sufficiently small.

Theorem 2.2 Let n ∈ N and ∆n be as in (2.9). Let βn be defined as in
Lemma 2.2, B`2 ≥ βn and V0 ≥ En+1(B). Let ∆ be a subinterval of ∆n with
|∆| < δn, where δn = δn(B, `,V0) > 0 is as in Lemma 2.1. We consider a
larger interval ∆̃ containing ∆, with same midpoint Em and size |∆̃| < δn.
Let V1(x, y) be a bounded potential and let E(∆) be the spectral projection
for H1 = H0 + V1 and the interval ∆. Let ψ ∈ L2(R2) be a state satisfying
ψ = E(∆)ψ. Let φ ≡ E0(∆̃)ψ and ξ ≡ E0(∆̃c)ψ, so that ψ = φ + ξ. Let φ
have an expansion as in (2.4) with coefficients βj(k) satisfying the condition
(2.17) for the interval ∆̃. Then we have

−〈ψ, Vyψ〉 ≥
(

γ2

2 + γ2
Cn(a− 1)2(3− c)3 − Fn

)
B1/2 ‖ψ‖2, (2.37)

where Cn > 0 is the constant defined in Lemma 2.2, and

Fn ≡ Fn(B, ‖V1‖, |∆|, |∆̃|)

=

(
|∆|+ 2‖V1‖
|∆̃|

)1/2

×

[
2

(
2n+ c+

‖V1‖
B

)1/2

+
γ2

2 + γ2
Cn(a− 1)2(3− c)3

(
2

|∆̃|

)3/2( |∆|+ 2‖V1‖
|∆̃|

)3/2
]
.(2.38)

Further for a fixed level n, if |∆| and ‖V1‖ are sufficiently small compared
with |∆̃|, there is a constant C̃n > 0 independent of B such that

−〈ψ, Vyψ〉 ≥ C̃nB
1/2‖ψ‖2. (2.39)

Proof.
We write the function ψ as

ψ = E0(∆̃)ψ + E0(∆̃c)ψ ≡ φ+ ξ, (2.40)
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use the self-adjointness of Vy in L2(R2),

〈ψ, Vyψ〉 = 〈φ, Vyφ〉 (2.41)

+ 〈ψ, Vyξ〉 + 〈Vyξ, φ〉,

and find out that

−〈ψ, Vyψ〉 ≥ −〈φ, Vyφ〉 − 2‖Vyξ‖L2(R2)‖ψ‖, (2.42)

by the Cauchy-Schwarz inequality. The result then follows from Theorem 2.1
provided we have a good bound on ‖ξ‖ and on ‖Vyξ‖. To this end we argue
as in section 2.3 in [10], write

‖ξ‖2 = 〈ψ, ξ〉
= 〈(H0 − Em)ψ, (H0 − Em)−1ξ〉
≤ ‖(H − Em − V1)ψ‖‖(H0 − Em)−1ξ‖,

then we combine

‖(H − Em − V1)ψ‖ ≤
(
|∆|
2

+ ‖V1‖
)
‖ψ‖,

with

‖(H0 − Em)−1ξ‖ ≤ dist−1(Em, ∆̃
c)‖ξ‖ =

(
2

|∆̃|

)
‖ξ‖,

and find that

‖ξ‖ ≤
(
|∆|+ 2‖V1‖
|∆̃|

)
‖ψ‖. (2.43)

Further we notice that

〈ξ,H0ξ〉 = 〈ξ,Hξ〉 − 〈ξ, V1ξ〉 = 〈ψ,Hξ〉 − 〈ξ, V1ξ〉

so we end up getting

‖Vyξ‖2 ≤ 〈ξ,H0ξ〉 ≤ ((2n+ c)B + ‖V1‖) ‖ξ‖ ‖ψ‖. (2.44)

The lower bound on the main term in (2.42) follows from the estimate (2.18):

−〈φ, Vyφ〉 ≥
γ2

2 + γ2
Cn(a− 1)2(3− c)3 B1/2

(
n∑
j=0

∫
ω−1
j (∆̃n)

|βj(k)|2 dk

)

≥ γ2

2 + γ2
Cn(a− 1)2(3− c)3 B1/2(‖ψ‖2 − ‖ξ‖2), (2.45)
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since
n∑
j=0

∫
ω−1
j (∆̃)

|βj(k)|2 dk = ‖φ‖2 = ‖ψ‖2 − ‖ξ‖2.

Combining this lower bound (2.45), with the estimate on ‖ξ‖ in (2.43), and
‖Vyξ‖ in (2.44), we find (2.37) with the constant (2.38). This completes the
proof.

If the distance from the midpoint Em of ∆ to ∆c
n is not smaller than δn

we may choose an interval ∆̃ with size of the order of δn. In this case any
state ψ = E(∆)ψ satisfying the assumptions of Theorem 2.2 carries a current
of size B1/2 provided (‖V1‖+ |∆|)/δn is small enough. If δn is of size O(B),
this indicates that the edge current survives in presence of perturbations V1

sufficiently small compared with B.

2.5 Soft Confining Potentials

The estimation of edge currents can be generalized to the case of various
confining potentials like polynomial confining potentials

V0(x) = B1+(p/2)(|x| − (`/2))pχ{|x|>`/2}(x), p > 1. (2.46)

As a preamble to the investigation of these models, we shall examine the
straight parabolic channel model studied by Exner, Joye and Kovarik in [3].
In this case the confining potential is defined by

V0(x) = V2
0x

2, V0 > 0,

and it turns out this model is completely solvable, making the estimation of
the edge currents rather straightforward in this particular case.

In both cases V0 is a function of x alone so the direct sum decomposition
(2.1)-(2.2) remains valid, the fibered operators h0(k), k ∈ R, having compact
resolvent since limx→+∞(V̂k(x) + V0(x)) = +∞. We use the same notations
as in the previous sections and note ωj(k), j ∈ N the eigenvalues of h0(k).
In light of the proof of Theorem 2.1 we remark that it is enough to give
an estimation of ω′j(k) for k ∈ ω−1

j (∆n) where ∆n is as in (2.9). In order
to avoid the inadequate increase of the size of the article we shall state the
corresponding results without proof. For more details we refer to the archived
version [11].
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As an introducing remark we first address the model studied by Exner,
Joye and Kovarik. For this model, the electron is confined to a parabolic
channel of infinite extent in the y-direction. For any E > 0, the plane
R2 is divided into a classically allowed region given by |x| <

√
E/V0, and

the complementary classically forbidden region. The reduced, unperturbed
Hamiltonian is given by

h0(k) = p2
x + (k −Bx)2 + V2

0x
2

= p2
x +

(
B0x−

B

B0

k

)2

+

(
V0

B0

)2

k2,

for the modified field strength B0 = (B2+V2
0 )1/2. Since this is simply a shifted

harmonic oscillator Hamiltonian, it is completely solvable. The dispersion
curves are parabolas with equation ωj(k) = (2j + 1)B0 + (V0/B0)2k2 so the
set ω−1

j (∆n) for the interval ∆n = [(2n+ a)B0, (2n+ c)B0], 1 < a < c < 3, is
explicitly known:

ω−1
j (∆n)− = [−k(n)

j (c),−k(n)
j (a)], k

(n)
j (x) ≡ B

3/2
0

V0

(2(n−j)+x−1)1/2, x = a, c.

From this and (−ω′j(k)) = −2(V0/B0)2k ≥ 2(V0/B0)2k
(n)
j (a) then follows

that

−ω′j(k) ≥ 2(2(n− j) + a− 1)1/2

(
V0

B
1/2
0

)
, k ∈ ω−1

j (∆n)−.

For the polynomial model (2.46) the confining potential V0 is an even
function so this is the case for the dispersion curves too, by repeating the
arguments of Lemma 5.1. The corresponding fibered operators h0(k) still
depending analytically on k, these functions are differentiable (see [12] or
[16]). Their derivative can be estimated with the following

Lemma 2.3 Let n ∈ N, ∆n be the same as in (2.9), and (for the sake of
simplicity) V0 = (2n + c)B. Then, there are two constants ζn = ζ̃n(a) ≥ 0,
depending only on n and a, and Cn,p = Cn,p(a, c) > 0, depending on n, a, c
and p, such that we have

(−ω′j(k)) ≥ Cn,p(a− 1)2(3− c)2B1/2, k ∈ ω−1
j (∆n)−, j = 0, 1, . . . , n,

provided B`2 ≥ ζn.
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2.6 Dirichlet Boundary Conditions

We denote the Landau Hamiltonian HL(B) on the space L2((−`/2, `/2)×R)
with Dirichlet boundary conditions along x = (±`/2) by HD

0 . This unper-
turbed operator admits a direct integral decomposition with respect to the
y-variable. We denote by hD0 (k) the corresponding fibered operator with
eigenvalues ωDj (k) and eigenfunctions ϕDj (x; k).

2

B

3B

5B

k

0

ω0

D

ω1

ωD( k)

DFigure 3: Dispersion Curves of H0

)kD(

)k(

These eigenfunctions provide an eigenfunction expansion of any state, as
in (2.4), and we denote the coefficients of this expansion by βDj (k). Many
properties of the dispersion curves ωDj (k) can be derived from [9] and [13],
such as

(ωDj+1(k)− ωDj (k)) > 0, k ∈ R. (2.47)

Since ωDj is a continuous function in R, (2.47) entails

δDj,l(K) ≡ inf
k∈K
|ωDl (k)− ωDj (k)| > 0, j 6= l, (2.48)

for all compact subset K of R.
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The perturbed operator is denoted by HD ≡ HD
0 +V1, on the same Hilbert

space. We let ED
0 (·) and ED(·) denote the corresponding spectral families.

Theorem 2.3 Consider the operators HD
0 and HD = HD

0 + V1, on H ≡
L2((−`/2, `/2) × R), with Dirichlet boundary conditions along x = ±`/2,
where V1(x, y) is bounded. Let n ∈ N and ∆n, defined by (2.9), be sufficiently
small so that there is a larger interval ∆̃ containing ∆n, with same midpoint,
such that

(ωDj )−1(∆̃) ∩ (ωDl )−1(∆̃) = ∅, 0 ≤ j 6= l ≤ n.

Then for B`2 sufficiently large (depending on a, c and n), any state ψ ∈
ED(∆n)H with coefficients satisfying the condition (2.17) carries an edge
current satisfying the lower bound (2.39) provided |∆n| and ‖V1‖ are suffi-
ciently small compared with |∆̃|.

We prove this theorem through a perturbation argument comparing HD
0

with H0 = HL(B) + V0 in the large V0 regime. We begin with an estimate of
the traces of the eigenfunctions ϕj(x; k) of h0(k) on the lines x = (±`/2).

Lemma 2.4 Let n ∈ N, ∆n be given by (2.9). Let V0 ≥ En+1(B) and
B`2 ≥ θn where θn = θn(a, c) is as in Lemma 5.8 (and depends only on n, a
and c). Then there is a constant rn = rn(a, c, B`2) > 0 depending only on n,
a, c and B`2 such that for all j = 0, 1, . . . , n and all l ∈ N, we have

0 ≤ ϕl(±`/2; k) ≤ (4π`−3/2)
l + rn

V1/2
0

, k ∈ ω−1
j (∆n) ∪ (ωDj )−1(∆n). (2.49)

Proof.
1. For all l ∈ N we get that∫

R
ϕ′l(x; k)2 +

∫
R
((Bx− k)2 + V0(x))ϕl(x; k)2dx = ωl(k), k ∈ R, (2.50)

by multiplying the eigenvalue equation (1.5) by ϕl(.; k) and integrating over
R. From this and the Feynmann-Hellmann formula then follows that

ω′l(k) = 2

∫
R
(k −Bx)ϕl(x; k)2dx ≤ 2(ωl(k))1/2, (2.51)
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and consequently

ωl(k)1/2 ≤ ωl(0)1/2 + |k|, k ∈ R, l ∈ N, (2.52)

by integrating (2.51) over [0, |k|]. Since

ωl(k) ≤ ωDl (k), k ∈ R, l ∈ N, (2.53)

from the Max-Min principle, (2.52) then yields

ωl(k)1/2 ≤ (ωDl (0))1/2 + |k|, k ∈ R, l ∈ N. (2.54)

Further, the quadratic part B2x2 in hD0 (0) being bounded by (B`/2)2, ωDl (0)
is easily seen (see [16]) to be bounded as

ωDl (0) ≤
(

2πl

`

)2

+

(
B`

2

)2

, l ∈ N. (2.55)

Moreover taking into account (2.53) we deduce from Lemma 5.8 there are
two constants τn and θn, depending only on n, a and c, such that

|k| ≤ BL

2
+ τnB

1/2, k ∈ ω−1
j (∆n) ∪ (ωDj )−1(∆n), (2.56)

provided B`2 ≥ θn and V0 ≥ En+1(B).
2. Let ρ ∈ C3(R) be a bounded real-valued function and A denote the self-
adjoint operator ρ(x)px+pxρ(x) in L2(R), with domain H1(R). Any function
ϕ in the domain of h0(k) belonging to H1(R), 〈[A, h0(k)]ϕ, ϕ〉 can be defined
as 〈h0(k)ϕ,Aϕ〉 − 〈Aϕ, h0(k)ϕ〉, and we find that

〈[A, h0(k)]ϕ, ϕ〉 = 4〈ρ′ϕ′, ϕ′〉 − 4B〈ρ(Bx− k)ϕ, ϕ〉 − 〈ρ′′′ϕ, ϕ〉
−2V0(ρ(`/2)ϕ(`/2)2 − ρ(−`/2)ϕ(−`/2)2), (2.57)

through standard computations. In the particular case where ϕ is an eigen-
function ϕl(.; k) of h0(k), the scalar product 〈−i[A, h0(k)]ϕ, ϕ〉 vanishes ac-
cording to the Virial Theorem, so (2.57) yields

2V0(ρ(`/2)ϕl(`/2; k)2 − ρ(−`/2)ϕl(−`/2; k)2)

= 4〈ρ′ϕ′l(.; k), ϕ′l(.; k)〉 − 4B〈ρ(Bx− k)ϕl(.; k), ϕl(.; k)〉
−〈ρ′′′ϕl(.; k), ϕl(.; k)〉. (2.58)
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Let ρ be such that ρ(x) = ±1 for ±x ≥ (`/2) and 0 ≤ ρ(i)(x) ≤ (2/`)i for
|x| ≤ (`/2) and i = 1, 2, 3, in such a way that (2.58) entails :

V0(ϕl(`/2; k)2 + ϕl(−`/2; k)2)

≤ (4/`)

∫ 1

−1

ϕ′j(x; k)2dx+ 2B

(∫ 1

−1

(Bx− k)2ϕl(x; k)2dx

)1/2

+(4/`3)

∫ 1

−1

ϕl(x; k)2dx.

The result now follows from this, (2.50) and (2.54)–(2.56).

The traces estimate (2.49) is a key ingredient in proving the local conver-
gence of the dispersion curves to those for the Dirichlet problem.

Lemma 2.5 The dispersion curves ωj(k), j ∈ N, are monotonic increas-
ing functions of V0. Further, for n ∈ N fixed and ∆n as in (2.9), for
V0 ≥ En+1(B) and for B`2 ≥ θn as in Lemma 2.4, there is a constant
sn(a, c, B`2) > 0 independent of V0, such that

0 ≤ ωDj (k)− ωj(k) ≤ sn
B3/4

V1/2
0

, k ∈ ω−1
j (∆n), j = 0, . . . , n. (2.59)

Proof.
The Hamiltonians h0(k) being analytic operators in the parameter V0, we
have

∂ωj
∂V0

(k) =

∫
|x|≥`/2

ϕj(x; k)2 dx ≥ 0, (2.60)

by the Feynman-Hellmann Theorem, which shows that the dispersion curves
are monotone increasing with respect to V0. Furthermore, the rate of increase
in (2.60) slows as V0 → ∞. This follows from the pointwise upper bound
on ϕj(x, k) restricted to |x| ≤ `/2. In particular, from (2.28) and the trace
estimate (2.49) of Lemma 2.4, we have

0 ≤ ∂ωj
∂V0

(k) ≤ ϕj(−`/2; k)2

∫ −`/2
−∞

e2(V0−ωj(k))1/2(x+`/2) dx

+ ϕj(`/2; k)2

∫ +∞

`/2

e−2(V0−ωj(k))1/2(x−`/2) dx

≤ sn

(
B

V0

)3/2

, (2.61)
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for B`2 ≥ θn and V0 ≥ En+1(B), the constant sn > 0 depending only on n,
a, c and B`2. To prove the rate of convergence (2.59), we use the eigenvalue
equation (1.5) and take the inner product in (−`/2, `/2) with the Dirich-
let eigenfunction ϕDl . After integration by parts, and an application of the
eigenvalue equation for ϕDl , one obtains,

(ωDl (k)− ωj(k))〈ϕDl (·; k), ϕj(·; k)〉
= (ϕDl )′(`/2; k)ϕj(`/2; k)− (ϕDl )′(−`/2; k)ϕj(−`/2; k). (2.62)

The estimate (2.49) in Lemma 2.4 implies that the right side of (2.62) vanishes
as V0 →∞, that is

|ωDl (k)− ωj(k)| |〈ϕDl (·; k), ϕj(·; k)〉|

≤
(
|(ϕDl )′(−`/2; k)|+ |(ϕDl )′(`/2; k)|

)
(4π`−3/2)

l + rn

V1/2
0

. (2.63)

We next show that |〈ϕDj (·; k), ϕj(·; k)〉| is uniformly bounded from below as
V0 → ∞, proving the convergence of the eigenvalues. To show this, let χi
and χe denote the characteristic functions onto the interval lines (−`/2, `/2)
and (−∞,−`/2] ∪ [`/2,+∞), respectively. We first note that

‖ϕj(·; k)‖2 = 1 = ‖χiϕj(·; k)‖2 + ‖χeϕj(·; k)‖2,

and the upper bound on the eigenfunction ϕj outside the strip (−`/2, `/2)
(2.28), together with (2.49), imply that

‖χeϕj(·; k)‖ ≤ O(V−1
0 ),

so that
‖χiϕj(·; k)‖ ≥ 1−O(V−3/4

0 ), (2.64)

as V0 →∞ and k ∈ ω−1
j (∆n). Now, for l 6= j, it follows from (2.48) and the

monotonicity of the dispersion curves in V0 that

|ωDl (k)− ωj(k)| ≥ |ωDl (k)− ωDj (k)| ≥ δDl,j(ω
−1
j (∆n)) > 0.

So it follows from this and from (2.63) that for l 6= j

〈ϕDl (·; k), ϕj(·; k)〉 → 0, as V0 →∞.

If, in addition, the matrix element 〈ϕDj (·; k), ϕj(·; k)〉 also vanished as V0 →
∞, this would contradict (2.64) as the family {ϕDl (·; k)} is an orthonormal
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basis. It follows that this matrix element must be bounded from below uni-
formly in V0 as V0 →∞. Consequently, the dispersion curves must converge
as V0 →∞ with the specified rate.

In light of the estimates (2.49) and (2.59) we argue now as in the proof of
Lemma 3.3 in [10] and obtain the convergence of the projection Pj(k), for the
eigenvalue ωj(k) of h0(k), to the projector PD

0 (k), for the eigenvalue ωDj (k)
of hD0 (k), when V0 tends to infinity, with B`2 fixed and sufficiently large.

Lemma 2.6 Let n ∈ N and ∆n be given by (2.9). Let Pj(k), respectively
PD
j (k), for j = 0, . . . , n, be the projection onto the one-dimensional subspace

of h0(k), respectively hD0 (k), corresponding to the eigenvalue ωj(k), respec-
tively ωDj (k). Let V0 ≥ En+1(B) and B`2 ≥ θn as in Lemmas 2.4 and 2.5.
Then, there exists a finite constant tn = tn(a, c, B`2) > 0, such that for all
j = 0, 1, . . . , n we have

‖Pj(k)− PD
j (k)‖ ≤ tn

V1/2
0

, k ∈ (ωDj )−1(∆n) ∪ ω−1
j (∆n). (2.65)

With reference to Theorem 2.2 and the two estimates (2.48) and (2.65),
and recalling from the proof of Lemma 2.5 that 〈ϕDj (·; k), ϕj(·; k)〉 ≥ D0 > 0,
as V0 → ∞, Theorem 2.3 is now obtained by just mimicking the proof of
Theorem 3.1 in [10].

3 Two-Edge Geometries: Spectral Properties

and the Mourre Estimate

We now examine the spectral properties of the Hamiltonian H1 = H0 + V1,
for suitable perturbations V1, for two-edge geometries, paralleling the study
in sections 4 and 5 of [10] for one-edge geometries. We use the commutator
method of Mourre [1, 15]. For two-edge geometries, an analysis of the disper-
sion curves for H0 showed that ω′j(k) does not have fixed sign. Consequently,
the local commutator used for the one-edge geometries in section 2.5, does
not immediately apply. We first construct an appropriate conjugate operator
Sα for H0 with a general confining potential V0(x). By standard arguments
[1], this proves the existence of absolutely continuous spectrum of H0 at en-
ergies away from the Landau levels for sufficiently large B. Of course, the
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spectral properties of H0 can be obtained directly from the direct integral
decomposition (2.1) and an analysis of the spectrum of h0(k) defined by
(2.2). This proves that the spectrum of H0 is everywhere purely absolutely
continuous. The advantage of the Mourre method, however, is that we can
obtain the stability of the absolutely continuous spectrum between Landau
levels under two classes of perturbations V1. We prove that the spectrum of
H1 is purely absolutely continuous if 1) V1(x, y) is periodic with respect to
y with sufficiently small period or 2) V1(x, y) has some decay in y-direction.
These results are similar to those of Exner, Joye, and Kovarik [3]. We point
out that for the more general class of perturbations V1 treated in sections 4
and 5 of [10], such as random potentials, we do not know the spectral type
of the operator H1. However, we still know that there are states carrying
nontrivial edge currents. As follows from the work of Ferrari and Macris
[5, 6], the existence of edge currents is not tied to the spectral properties of
H1. Indeed, the cylinder geometry model shows that the full Hamiltonian
may have only pure point spectrum, yet there are nontrivial edge currents.
Hence, the existence of edge currents is not directly tied to the existence of
continuous spectrum. We will discuss this in more detail in section 4.

3.1 The Mourre Inequality for H0

We construct a conjugate operator for H0 = HL + V0, where the confining
potential V0 depends only on x, as above. Let Uα = eiαpy , for py = −i∂y, and
for any α ∈ R, be the translation group in the y-direction defined by

(Uαg)(y) = g(y + α). (3.1)

Since the representation is unitary, the operator Sα defined by

Sα =
i

2
(Uαy − yU−α) (3.2)

is easily seen to be selfadjoint on the domainDy of the operator multiplication
by y, since Uα preserves this domain.

We next compute the commutator i[H0, Sα], α ∈ R. The operator Sα
commutes with px and V0. Since Vy = py −Bx, it is easy to check that

[Vy, Sα] =
1

2
(Uα − U−α) = i sin(αpy), (3.3)
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so that
i[H0, Sα] = −2 sin(αpy)Vy, (3.4)

as a quadratic form on D(H0) ∩ Dy, or as an operator identity on the core
C∞0 (R2). We also need to compute the double commutator [[H0, Sα], Sα]. By
formula (3.4), we find that

[[H0, Sα], Sα] = 2i[sin(αpy), Vy] = 0. (3.5)

Consequently, a positive commutator will imply absolutely continuous spec-
trum (cf. [1]) in the range of the corresponding spectral projector.

Proposition 3.1 Let n be in N and ∆n be defined by (2.9). Then there are
two constants %n = %n(a, c) > 0 and τn = τn(a, c) > 0 depending only on n,
a and c, such that for all B`2 ≥ %n, all V0 ≥ En+1(B), any subinterval ∆ of
∆n such that |∆| < δn, where δn = δn(B, `,V0) is as in Lemma 2.1, and all
α > 0 satisfying

(αB1/2) ∈ (0, τn] ∩

(⋃
m∈N

[
((2/3) + 4m) π

B1/2`
,
((4/3) + 4m)π

B1/2`

])
, (3.6)

we have

−iE0(∆)[H0, Sα]E0(∆) ≥ (Cn/2)(a− 1)2(3− c)3B1/2E0(∆), (3.7)

where Cn > 0 is defined in Lemma 2.2 and depends only on n.

Proof.
1. We first derive a general expression for 〈ψ, [H0, iSα]ψ〉, for ψ ∈ E0(∆)L2(R2)∩
Dy and α ∈ R. For any ψ ∈ D(H0) ∩Dy, it follows from (3.4) that

−〈ψ, [H0, iSα]ψ〉 = 2

∫
R

sin(αk)〈ψ̂(·; k), V̂yψ̂(·; k)〉 dk, (3.8)

where, as above, û denotes the partial Fourier transform of u with respect to
y. Taking ψ in E0(∆)L2(R2) and writing it as in (2.4), we find that

−〈ψ, [H0, iSα]ψ〉 =
n∑
j=0

∫
ω−1
j (∆)

sin(αk)ω′j(k)|βj(k)|2dk, (3.9)
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according to the Feynman-Hellmann formula and the vanishing of the cross-
terms established in Lemma 2.1. The ωj’s being even functions by Lemma
5.1, (3.9) can then be rewritten as

−〈ψ, [H0, iSα]ψ〉 =
n∑
j=0

∫
ω−1
j (∆)−

sin(αk)ω′j(k)(|βj(k)|2 + |βj(−k)|2)dk.

(3.10)
In order to prove a Mourre estimate, it is necessary to bound the right side
of (3.10) from below by a positive constant times ‖ψ‖2.
2. Let V0 ≥ En+1(B) and B`2 ≥ θn so Lemma 5.8 holds true: we have

ω−1
j (∆n)− ⊂

[
−BL

2
− κnB1/2,−BL

2
+ κnB

1/2

]
, j = 0, 1, . . . , n, (3.11)

where both θn > 0 and κn > 0 depend only on n, a and c. Set

τn =
π

6κn
(3.12)

and assume that

B`2 ≥ %n ≡ max

(
θn,

(
2π

3τn

)2
)
. (3.13)

It is clear from (3.12)-(3.13) that τn%
1/2
n ≥ (2π)/3 so there is α ∈ (0, τnB

−1/2]
such that

αB` = (αB1/2)(B`2)1/2 ∈
⋃
m∈N

[(
2

3
+ 4m

)
π,

(
4

3
+ 4m

)
π

]
. (3.14)

Further, α being taken in (0, τnB
−1/2], we have 0 < ακnB

1/2 ≤ π/6, whence

(−αk) ∈
⋃
m∈N

[
π

6
+ 2mπ,

5π

6
+ 2mπ

]
, k ∈ ω−1

j (∆n)−, j = 0, 1, . . . , n,

from (3.11) and (3.14). As a consequence we have sin(−αk) ≥ 1/2 for all
k ∈ ω−1

j (∆n)−, and thus for all k ∈ ω−1
j (∆)−, and the result follows from

this, (3.10) and Lemma 2.2.
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3.2 Perturbation Theory and Spectral Stability

The benefit of a local positive commutator is its stability under perturbations.
We consider two types of perturbations of H0: 1) Perturbations periodic
in the y-direction, and 2) Perturbations decaying in the y-direction. As
we mention below, these conditions on the perturbations are much weaker
than what is required using scattering theoretic methods. In light of the
positive commutator result (3.7) we will treat two classes of perturbations:
perturbations 1) periodic in the y-direction and 2) decaying in the y-direction.

Perturbations Periodic in the y-Direction

We first consider perturbations V1(x, y) satisfying V1(x, y+T ) = V1(x, y), for
certain T > 0. Due to the y-periodicity of V1, the main property we will use
in this section is the basic identity

[V1, UT ] = 0. (3.15)

Proposition 3.2 Let n ∈ N and ∆n be as in (2.9). Let B`2 ≥ %n, where %n
is as in Proposition 3.1, and V0 ≥ En+1(B). Let ∆ and ∆̃ be as in Theorem
2.2. Let V1(x, y) be a periodic bounded potential with period T satisfying (3.6)
and let E(∆) be the spectral projection for H = H0 + V1 and the interval ∆.
Then we have

−iE(∆)[H, iST ]E(∆) ≥
(
(Cn/2)(a− 1)2(3− c)3 −Gn

)
B1/2E(∆),

where

Gn ≡ Gn(B, ‖V1‖, |∆|, |∆̃|)

= (Cn/2)(a− 1)2(3− c)3

(
|∆|+ 2‖V1‖
|∆̃|

)2

+2

(
2n+ c+

‖V1‖
B

)1/2( |∆|+ 2‖V1‖
|∆̃|

)1/2

.

Then upon taking |∆| and ‖V1‖ sufficiently small compared with |∆̃| we obtain

−iE(∆)[H0 + V1, ST ]E(∆) ≥ (Cn/3)B1/2E(∆n),

where Cn > 0 is defined in Lemma 2.2.

30



Proof.
We decompose ψ ∈ E(∆)L2(R2) as in (2.40), use (3.15), and find that

〈ψ, [H, iST ]ψ〉 = 〈ψ, [H0, iST ]ψ〉
= 〈φ, [H0, iST ]φ〉 +G(φ, ξ), (3.16)

where the perturbation term G(φ, ξ) has the expression

G(φ, ξ) =

∫
R

sin(Tk)〈ξ̂(., k), V̂y(k)ξ̂(., k)〉dk

+2Re

(∫
R

sin(Tk)〈φ̂(., k), V̂y(k)ξ̂(., k)〉dk
)
,

ξ̂(., k) and φ̂(., k) denoting respectively the partial Fourier Transform in the
y direction of ξ(., y) and φ(., y). It follows from (3.16) that

−〈ψ, [H, iST ]ψ〉 ≥ −〈φ, [H0, iST ]φ〉 − 2‖Vyξ‖‖ψ‖, (3.17)

the main term (−〈φ, [H0, iST ]φ〉) being treated by Proposition 3.1. Namely,
for T satisfying (3.6) we have

−〈φ, [H0, iST ]φ〉 ≥ (Cn/2)(a− 1)2(3− c)3B1/2‖φ‖2. (3.18)

Further ‖ξ‖ and ‖Vyξ‖ being bounded as in (2.43)-(2.44) we deduce from
(3.17)-(3.18) that

−〈ψ, [H, iST ]ψ〉

≥

[
(Cn/2)(a− 1)2(3− c)3

(
1−

(
|∆|+ 2‖V1‖
|∆̃|

)2
)

(3.19)

−2(2n+ c+ (‖V1‖/B))1/2

(
|∆|+ 2‖V1‖
|∆̃|

)1/2
]
B1/2‖ψ‖2.

It is clear now that the pre-factor of B1/2‖ψ‖2 in the r.h.s. of (3.19) can
be made positive by taking |∆| and ‖V1‖ sufficiently small relative to the
difference |∆̃|.
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Perturbations Decaying in the y-Direction

We now consider an impurity potential V1 = V1(x, y) ∈ L∞(R2) decaying fast
enough in the y-direction in the sense that yV1(x, y) remains bounded in R2:

‖yV1‖∞ <∞. (3.20)

The reason for this additional assumption is the identity,

2[V1, iSα]

= (V1(x, y + α)− V1(y))Uαy − (V1(x, y − α)− V1(x, y))yU−α,

obtained by a straightforward computation. This yields

|〈ψ, [V1, iSα]ψ〉| ≤ (2‖yV1‖∞ + |α|‖V1‖∞)‖ψ‖2, ψ ∈ D(H0) ∩Dy, α ∈ R,

thus, arguing as in the proof of Proposition 3.2, we obtain the following

Proposition 3.3 Let n, ∆n, B`2, V0, ∆ and ∆̃ be as in Proposition 3.2.
Let V1 be a bounded potential satisfying (3.20). Let E(∆) be the spectral
projection for H = H0+V1 and the interval ∆. Then there is α ∈ (0, τnB

−1/2],
where τn > is as in Proposition 3.1, such that we have

−iE(∆)[H0 + V1, Sα]E(∆) ≥ (Cn/3)B1/2E(∆n),

provided |∆|, ‖V1‖ and ‖yV1‖ are sufficiently small compared with |∆̃|.

Remark on the Stability of the Absolutely Continuous Spectrum
for Strips

Following the idea developed by Macris, Martin and Pulé in [14] for the
half-plane geometry, we can actually prove H0 + V1 has purely absolutely
continuous spectrum for the two-edge geometry if the perturbation V1 is
bounded and integrable in R2. This class of perturbations is weaker than
the classes considered above for which we proved the existence of absolutely
continuous spectrum away from the Landau levels since, roughly speaking,
the L1-condition requires decay in all directions. The proof of this result
relies on the diamagnetic inequality (see [1], [17]):

|e−tHLu| ≤ et∆|u|, u ∈ L2(R)2, t ∈ R+. (3.21)
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Here (−∆) denotes the nonnegative Laplacian in R2 and (3.21) holds true for
all B. As the confining potential V0 is nonnegative in R2, Kato’s inequality
(3.21) still holds by substituting H0 for HL, giving

|e−tH0u| ≤ et∆|u| and |e−tHu| ≤ et‖V1‖∞et∆|u|, u ∈ L2(R)2, t ∈ R+, (3.22)

since V1 is bounded. It follows by explicit calculation that |V1|1/2et∆ belongs
to the Schmidt class B2(L2(R2)) so that the same is true for |V1|1/2e−tH0 and
|V1|1/2e−tH by (3.22), with the following estimates:

‖|V1|1/2e−tH0‖B2(L2(R2)) =
‖V1‖1√

2πt
and ‖|V1|1/2e−tH‖B2(L2(R2)) = et‖V1‖∞ ‖V1‖1√

2πt
.

(3.23)
Let B1(L2(R2)) denote the trace class. To estimate the trace norm of e−tH −
e−tH0 , we use Duhamel’s formula

e−tH = e−tH0 −
∫ t

0

esHV1e−sH0ds. (3.24)

Due to the estimates (3.23), the Hölder inequality for the trace norm, and
(3.24), we obtain

‖e−tH − e−tH0‖B1(L2(R2)) ≤
∫ t

0

‖e(s−t)HV1e−sH0‖B1(L2(R2))ds

≤ ‖V1‖2
1et‖V1‖∞

2π

∫ t

0

ds√
s(t− s)

<∞. (3.25)

Whence e−tH − e−tH0 is a trace class operator for all t > 0 so H1 has an
absolutely continuous spectrum by the Kato-Rosenblum Theorem and the
fact that H0 has purely absolutely continuous spectrum.

4 Bounded, Two-Edge, Cylindrical Geome-

try

We address now the case of a quantum device with bounded cylindrical ge-
ometry. More precisely, the charged particle is assumed to be moving on the
cylinder CD of circumference D > 0 and confined along the cylinder axis
by two boundaries separated by the distance ` > 0. We define the infinite
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cylinder as CD = R × J = {(x, y) | x ∈ R, y ∈ J}, where J = [−D/2, D/2]
is an interval with length D, and identify y = −D/2 with y = D/2. The
trajectories of the particle will be bounded in the x-direction by confining
potentials.

Let us give now a precise statement of the model. The Landau Hamilto-
nian HL = p2

x + (py −Bx)2 is endowed with y-periodic boundary conditions

ϕ(x,−D/2) = ϕ(x,D/2) and ∂yϕ(x,−D/2) = ∂yϕ(x,D/2), (4.1)

making it self-adjoint in L2(CD). As in the preceding sections, the quantum
particle is confined in the x-direction to the strip [−`/2, `/2] by adding to
HL the sharp confining potential V0 (1.2). The spectrum of H0 = HL + V0

consists of eigenvalues for energies below V0. We shall prove that suitable
states ϕ = E0(∆n)ϕ, ∆n ⊂ (En(B), En+1(B)), carry a current of size B1/2,
and that this current survives in presence of a sufficiently small perturbation.
Thus, the existence of the edge current is independent of the spectral type
of the operator.

This result is in accordance with (and complements) the one obtained by
Ferrari and Macris, who have extensively investigated this model ([5], [6],
[7], [8]) in the particular case where D = L. They consider an Anderson-
type random potential Vω and prove with large probability (under a rather

technical assumption on the spectra of the Hamiltonians H
(l)
0 and H

(r)
0 ob-

tained respectively by removing the left or the right wall from H0) that the
spectrum of the random Hamiltonian Hω = H0 + Vω in an energy interval
(B + ‖Vω‖∞, 3B − ‖Vω‖∞) consists in the union of two sets σl and σr. The
eigenvalues in σα, α = l, r, are actually small perturbations of eigenvalues
E

(l)
j of the half-plane Hamiltonian H

(α)
0 +Vω and they show the edge current

carried by an associated eigenstate ϕ
(α)
j is of size D (with opposite signs de-

pending on whether α = l or r). Their analysis extends to the case where `
is at least of size logD.

The remaining of this section is organized as follows. After arguing σ(H0)
is pure point, we estimate the current carried by an eigenstate of H0, then we
extend this estimate to the case of a convenient wave packet ϕ = E0(∆n)ϕ
for ∆n ⊂ (En(B), En+1(B)) and in presence of a perturbation V1 sufficiently
small relative to B. We point out that the estimates on the edge currents
given in the remaining of this section are obtained unconditionally on the size
of ` and B and they hold for general wave packets with energy in between
two consecutive Landau levels.
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4.1 The Spectra of HL and H0

Let us define the Fourier transform F as Fϕ(x) = (ϕ̂p(x))p∈Z, where

ϕ̂p(x) =

∫
J

ϕ(x, y)
e−ikpy√
D

dy and kp =
2π

D
p, (4.2)

for any p ∈ Z and a.e. x ∈ R. It is unitary from L2(CD) endowed with
the usual scalar product onto l2(Z;L2(R)). Due to the periodic boundary
conditions (4.1) and the fact V0 it is well known that FHLF∗ =

∑⊕
p∈Z hL(kp),

where hL(k) still denotes the operator p2
x + (k − Bx)2 in L2(R), and hence

that the spectrum of HL is thus pure point with σ(HL) = (2N + 1)B, each
eigenvalue having infinite multiplicity.

We turn now to describing the spectrum of H0 = HL +V0. The confining
potential V0 being a function of x alone we have

FH0F∗ =
⊕∑
p∈Z

h0(kp), (4.3)

where h0(k) is defined by (1.4) and has a compact resolvent. We recall the
eigenvalues of h0(k) are denoted ωm(k), m ∈ N, the corresponding normalized

eigenfunction being called ϕm(x; k). Evidently {Φ(p)
m , m ∈ N, p ∈ Z}, where

Φ(p)
m (x, y) ≡ ϕm(x; kp)

eikpy√
D
, m ∈ N, p ∈ Z,

is an orthonormal basis of L2(CD), and it follows from (4.3) that

H0 =
∑
m≥0

∑
p∈Z

ωm(kp)|Φ(p)
m 〉〈Φ(p)

m |.

As a consequence H0 has pure point spectrum: σ(H0) = {ωm(kp), m ≥
0, p ∈ Z}. Nevertheless and despite of the fact each eigenvalue ωm(kp),
(m, p) ∈ N×Z, has finite multiplicity, it is not guaranteed that the spectrum
ofH0 is discrete. Indeed as |p| goes to infinity, each ωm(kp) goes to Em(B)+V0

by Lemma 5.2(i), so the eigenvalues lying in a neighborhood of Em(B) + V0

may not be isolated.
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4.2 Edge Currents: the Unperturbed Case

Let ∆n for n ≥ 0, be defined by (2.9) and ϕ = E0(∆n)ϕ.
We want to estimate the current carried by ϕ along the edges of the free

sample CD. It turns out (see below the estimate (4.11) of the current carried
by a wave packet) this current is the weighted sum of the currents carried by

all the eigenstates Φ
(p)
m , (m, p) ∈ N× Z, such that

ωm(kp) ∈ ∆n. (4.4)

We therefore start by estimating the current carried by such an eigenstate
Φ

(p)
m , for appropriate indices m ∈ N and p ∈ Z−. In a second step we extend

this estimate to the case of the wave packet ϕ.

Current Carried by an Eigenstate

We consider an eigenfunction Φ
(p)
m of H0 for some (m, p) in N×Z− satisfying

(4.4). The current carried by Φ
(p)
m along the left edge of the cylinder CD is

defined as the expectation 〈Φ(p)
m , VyΦ

(p)
m 〉 of the velocity operator Vy = px−Bx

in the y-direction. By arguing as in section 2.1 we find that

〈Φ(p)
m , VyΦ

(p)
m 〉 = ω′m(kp),

so we may deduce from Lemma 2.2 the

Proposition 4.1 Let ∆n be defined by (2.9). Then, for any (m, p) ∈ N×Z−
satisfying (4.4), we have

−〈Φ(p)
m , VyΦ

(p)
m 〉 ≥ Cn(a− 1)2(3− c)3B1/2,

provided B`2 ≥ βn and V0 ≥ En+1(B) where βn > 0 and Cn > 0 are as in
Lemma 2.2.

Current Carried by a Wave Packet

We turn now to estimating the current carried along CD by a the state
ϕ = E0(∆)ϕ, where ∆ is a subinterval of ∆n. We assume as in Proposition
4.1 that B`2 ≥ βn and V0 ≥ En+1(B), and suppose that |∆| < δn(B, `,V0)
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so Lemma 2.1 holds true. The state ϕ decomposes in the orthonormal basis
{Φ(p)

m , m ∈ N, p ∈ Z} as

ϕ(x, y) =
∑
p∈Z

∑
0 ≤ m ≤ n

ωm(kp) ∈ ∆n

β(p)
m Φ(p)

m (x, y), (4.5)

where
β(p)
m = 〈ϕ,Φ(p)

m 〉. (4.6)

since V0 ≥ En+1(B) there are only a finite number of indices p involved in
the sum (4.5). Indeed, we know from Lemma 5.2(i) that lim|k|→+∞ ω0(k) =
E0(B)+V0 with E0(B)+V0 > (2n+c)B, thus there is p∗n = p∗n(B, `,V0,∆) ∈ N
such that

ω0(kp∗n) ∈ ∆ and ω0(kp) /∈ ∆ for all |p| > p∗n. (4.7)

Since ωn(k) > ω0(k) for all n ≥ 1 and k ∈ R, we have ωn(kp) /∈ ∆ for |p| > p∗n,
so (4.5) finally reduces to

ϕ(x, y) =
∑
|p|≤p∗n

∑
0 ≤ m ≤ n
ωm(kp) ∈ ∆

β(p)
m Φ(p)

m (x, y). (4.8)

Therefore the current carried by ϕ along the left edge of the cylinder has the
following expression:

〈ϕ, Vyϕ〉 =
∑

|p|,|p′|≤p∗n

∑
0 ≤ m,m′ ≤ n
ωm(kp) ∈ ∆
ωm′ (kp′ ) ∈ ∆

β(p)
m β

(p′)
m′ 〈Φ

(p)
m , vyΦ

(p′)
m′ 〉. (4.9)

Actually the crossed terms 〈Φ(p)
m , VyΦ

(p′)
m′ 〉 in (4.9) vanish for p 6= p′. This can

be seen from the two following basic identities

FΦ
(p)
m (x) = (δ(s− p)ϕm(x; kp))s∈Z ,

F
(
VyΦ

(p′)
m′

)
(x) = (δ(s− p′)(kp′ −Bx)ϕm′(x; kp′))s∈Z ,

and from the unitarity of F :

〈Φ(p)
m , VyΦ

(p′)
m′ 〉 = δ(p′ − p)〈ϕm(.; kp), (kp −Bx)ϕm′(.; kp)〉

= δ(p′ − p)〈Φ(p)
m , VyΦ

(p)
m′ 〉.
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As a consequence, (4.9) can be rewritten as

〈ϕ, Vyϕ〉 =
∑
|p|≤p∗n

∑
0 ≤ m,m′ ≤ n
ωm(kp) ∈ ∆
ωm′ (kp) ∈ ∆

β(p)
m β

(p)
m′ 〈Φ

(p)
m , VyΦ

(p)
m′ 〉, (4.10)

with ω−1
m (∆) ∩ ω−1

m′ (∆) = ∅ for all m 6= m′ by Lemma 2.1 since |∆| < δn.
Hence we end up getting

〈ϕ, Vyϕ〉 =
∑
|p|≤p∗n

∑
0 ≤ m ≤ n
ωm(kp) ∈ ∆

|β(p)
m |2〈Φ(p)

m , VyΦ
(p)
m 〉, (4.11)

which shows that the current carried by ϕ is the |β(p)
m |2-weighted sum of the

current carried by the eigenstates Φ
(p)
m with energy ωm(kp) in ∆. Now by

combining (4.11) with Proposition 4.1 and mimicking the proof of Theorem
2.1 we obtain the

Theorem 4.1 Let n ∈ N, ∆n, B`2, V0, and ∆ be as in Theorem 2.1. Let ϕ =
E0(∆)ϕ and p∗n be the smallest integer satisfying (4.7), so ϕ has expansion

as in (4.8). Assume there is a constant γ > 0 such that the coefficients β
(p)
m

defined by (4.6) satisfy

|β(−p)
m |2 ≥ (1 + γ2)|β(p)

m |2, (4.12)

for all m = 0, 1, . . . , n and p = 0, 1, . . . , p∗n, such that ωm(kp) ∈ ∆. Then we
have

−〈ϕ, Vyϕ〉 ≥
γ2

2 + γ2
Cn (a− 1)2 (3− c)3B1/2‖ϕ‖2,

the constant Cn > 0 being as in Lemma 2.2.

4.3 Perturbation Theory

As in section 2.4 for the strip geometries we now consider the perturbation
of the edge currents by adding a bounded impurity potential V1(x, y) to H0,
and show (using Theorem 4.1 and arguing in the same way as in the proof
of Theorem 2.2) that the lower bound on the edge currents is stable with
respect to these perturbations provided ‖V1‖ is not too large compared with
the constant δn defined in Lemma 2.1.
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Theorem 4.2 Let n, ∆n, B`2, V0, ∆, ∆̃ be as in Theorem 2.2. Let V1(x, y)
be a bounded potential and let E(∆) denote the spectral projection for H1 =
H0 + V1 and the interval ∆. Let ψ = E(∆n)ψ. Let φ ≡ E0(∆̃)ψ and
ξ ≡ E0(∆̃c)ψ, so that ψ = φ + ξ. Let φ have an expansion as in (4.8)

with coefficients β
(p)
m satisfying (4.12). Then if |∆| and ‖V1‖ are sufficiently

small compared with |∆̃| the conclusion of Theorem 2.2 holds true: there is
a constant C̃n > 0 independent of B such that

−〈ψ, Vyψ〉 ≥ C̃nB
1/2‖ψ‖2.

5 Appendix : Basic Properties of the Eigen-

values and Eigenfunctions

The resolvent of the operator h0(k) = h(k) + V0, k ∈ R, being compact
since the effective potential (Bx − k)2 + V0(x) is unbounded as |x| → ∞,
the spectrum of h0(k) is discrete with only ∞ as an accumulation point.
We write the eigenvalues of h0(k) in increasing order and denote them by
ωj(k), j ≥ 0. The normalized eigenfunction associated to ωj(k) is ϕj(x; k).
We recall from Proposition 7.2 in [10] that the eigenvalues ωj(k), j ≥ 0, are
simple for all k ∈ R.

In this Appendix we collect the main properties of the eigenvalues and
eigenfunctions of the operator h0(k) for an even confining potential V0.

5.1 Symmetry Properties

Lemma 5.1 For all j ∈ N, ωj is an even function and there is θj ∈ {−1, 1}
such that

ϕj(−x;−k) = θjϕj(x; k), x ∈ R, k ∈ R.

Proof.
Let j ∈ N. The operation P that implements x→ (−x) satisfies Pdom h0(k) =
dom h0(−k) and Ph0(k) = h0(−k)P . This entails

h0(−k)Pϕj(x; k) = ωj(k)Pϕj(x; k). (5.1)
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Whence ωj(k) is an eigenvalue of h0(−k) so there is necessarily some mk ≥ 0
such that ωj(k) = ωmk

(−k). Since this is true for any q 6= k, we can find
mq ≥ 0 such that ωj(q) = ωmq(−q). Moreover ωj being a continuous function,
ωmq(−q) goes to ωmk

(−k) as q goes to k, so mq = mk by the simplicity of the
eigenvalues. Therefore mk does not depend on k. By writing now m instead
of mk we have shown that

ωj(k) = ωm(−k), k ∈ R.

It follows in particular from this that ωn(0) = ωm(0) so we get m = n from
the simplicity of the eigenvalues once more.
To prove the second part of this Lemma we substitute (−k) for k in (5.1)
and use the evenness of ωj, getting

h0(k)ϕj(−x;−k) = ωj(k)Pϕj(−x;−k).

Due to the simplicity of the real valued eigenfunction ϕj(.; k) together with
the normalization condition ‖ϕj(.;±k)‖ = 1, there is θj(k) ∈ {−1, 1} such
that

ϕj(−x;−k) = θj(k)ϕj(x; k), x ∈ R, k ∈ R. (5.2)

For all k0 ∈ R, there is x0 ∈ R such that ϕj(x0; k0) 6= 0. Furthermore,
k 7→ ϕj(x0; k) being continuous about k0, there is δ > 0 such that

ϕj(x0; k) 6= 0, k ∈ (k0 − δ, k0 + δ).

This combined with (5.2) shows that θj is continuous (and even analytic)
about k0. As a consequence θj is continuous in R whence it is constant.

5.2 Asymptotic Behavior and Separation of the Dis-
persion Curves

We now describe the asymptotic behavior of the dispersion curves and show
that the dispersion curves remain separated.

Lemma 5.2 For any j ∈ N, we have :

(i) lim|k|→+∞ ωj(k) = Ej(B) + V0

(ii) infk∈R (ωj+1(k)− ωj(k)) > 0.
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Proof.
(i) In light of Lemma 5.1 it is enough to show the result for k > 0. First we
deduce from the obvious operator inequality h0(k) ≤ hL(k) + V0, following
from the definition h0(k) = hL(k) + V0(x), that

ωj(k) ≤ Ej(B) + V0. (5.3)

Let ε ∈ (0, 1) and ϕ be a normalized function in the domain of h0(k). We
have

〈hL(k)ϕ, ϕ〉 ≥ (1− ε)〈hL(k)ϕ, ϕ〉 + ε

∫
|x|≤`/2

(Bx− k)2|ϕ(x)|2dx,

whence
〈h0(k)ϕ, ϕ〉 ≥ (1− ε)〈hL(k)ϕ, ϕ〉 + V0 − ε+Rε, (5.4)

where Rε ≡
∫
|x|≤`/2 (ε(Bx− k)2 − V0) |ϕ(x)|2dx. Since ε(Bx − k)2 − V0 ≥ 0

on [−`/2, `/2] for all k ≥ kε ≡ (B`)/2 + (V0/ε)
1/2, (5.4) entails

〈h0(k)ϕ, ϕ〉 ≥ (1− ε)〈hL(k)ϕ, ϕ〉 + V0 − ε, k ≥ kε.

LetMj denote a j-dimensional submanifold of dom h0(k), j = 0, 1, 2, · · · , n.
It follows from the above inequality and the Max-Min Principle that

ωj(k) ≥ min
ϕ∈M⊥j , ‖ϕ‖=1

〈h0(k)ϕ, ϕ〉

≥ min
ϕ∈M⊥j , ‖ϕ‖=1

(1− ε)〈h(k)ϕ, ϕ〉 + V0 − ε,

so we obtain
ωj(k) ≥ (1− ε)Ej(B) + V0 − ε, ∀k ≥ kε,

by taking the max over theMj’s. Now the result follows from this and (5.3).
(ii) Let us suppose that infk∈R (ωj+1(k)− ωj(k)) = 0 for some j ∈ N. There
would also be a sequence (km)m≥1 of real numbers, such that

0 ≤ ωj+1(km)− ωj(km) <
1

m
, m ≥ 1. (5.5)

Due to the evenness of ωj and ωj+1, the km could actually be chosen non-
negative, and we know from Lemma 5.2(i) the sequence (km)m≥1 would be
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necessarily bounded. Therefore we could build a subsequence (km′)m′ of
(km)m that converges to k∗ ∈ R+. Hence, by substituting m′ for m in (5.5)
and taking the limit as m′ goes to infinity, we would have

ωj(k
∗) = ωj+1(k∗),

since ωj and ωj+1 are continuous functions. This would mean ωj(k
∗) is a

doubly-degenerated eigenvalue of h0(k∗), a contradiction to the simplicity of
the eigenvalues of h0(k), k ∈ R.

5.3 Estimation of ωj(k)− Ej(B) for |k| < B`/2

Let k0 ∈ (0, `/2) and j ∈ N be fixed. We show that upon choosing B`2

sufficiently large, ωj(k) can be made arbitrarily close to Ej(B), uniformly in
k ∈ [−k0, k0].

Lemma 5.3 Let ε ∈ (0, 1). Then for all j ∈ N there is a constant ηj > 0
independent of k, B, V0 and ε such that we have

0 ≤ ωj(k)− Ej(B)

B
≤ ηj

(
(B`2ε2)−3/4 + 2(B`2ε2)−1/4

)
e−(B`2ε2)/64, (5.6)

for all k ∈ [−B`/2(1− ε), B`/2(1− ε)] provided we have B`2ε2 ≥ 1.

Proof.
The left inequality being obvious it is enough to prove the right one. Let θε
be a real valued, even and twice continuously differentiable function in R,
such that

θε(x) =

{
1 if x ∈ [−`/2(1− ε/2), 0]
0 if x ∈ (−∞,−`/2].

It is evident that θεψj(.; k) (where ψj(x; k) still denotes the jth normalized
eigenfunction of hL(k)) obviously belongs to the domain of h0(k). Moreover,
the supports of V0 and θε being disjoint, we have

(h0(k)− Ej(B))θε(x)ψj(x; k) = [h0(k), θε]ψj(x; k)

= −θ′′εψj(x; k) + 2iθ′εψ
′
j(x; k),

which leads to

‖(h0(k)− Ej(B))θεψj(.; k)‖ ≤ ‖θ′′εψj(.; k)‖+ 2‖θ′εψ′j(x; k)‖. (5.7)
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Using that k/B ∈ [−`/2(1−ε), 0] together with the explicit expression (2.26)
of ψj(.; k) and the vanishing of θ′ε outside [−`/2,−`/2(1− ε/2)]∪ [`/2(1− ε/
2), `/2], we see there are two constants αj and βj independent of k, B, V0

and ε, such that{
‖θ′′εψj(.; k)‖ ≤ αjB(B`2ε2)−3/4e−(B`2ε2)/64

‖θ′εpxψj(x; k)‖ ≤ βjB(B`2ε2)−1/4e−(B`2ε2)/64.

This, combined with (5.7), entails

‖(h0(k)− Ej(B))θεψj(.; k)‖ ≤ γjB
(
(B`2ε2)−3/4 + 2(B`2ε2)−1/4

)
e−(B`2ε2)/64,

(5.8)
where γj = max(αj, βj). Moreover bearing in mind that ‖ψj(.; k)‖ = 1 it
follows from (2.26) that

‖θεψj(.; k)‖2 ≥ 1

2jj!
√
π

∫ B1/2(`/2(1−ε/2)−k/B)

B1/2(−`/2(1−ε/2)−k/B)

Hj(y)2e−y
2

dy

≥ 1

2jj!
√
π

∫ (B1/2`ε)/4

−(B1/2`ε)/4

Hj(y)2e−y
2

dy = ζj > 0,

by taking, say, B`2ε2 ≥ 1. This combined with (5.8) proves the result.

The main consequence of Lemma 5.3 is the following

Lemma 5.4 Let n ∈ N, ∆n be given by (2.9), and ε ∈ (0, 1). Then there is
a constant γn = γn(a) > 0 depending only on n and a such that

supω−1
j (∆n)− < −

BL

2
(1− ε), j = 0, 1, . . . , n, (5.9)

uniformly in V0 ≥ 0, provided we have B`2ε2 ≥ γn.

Proof.
It suffices to apply Lemma 5.3 and take B`2ε2 sufficiently large so the r.h.s. of
(5.6) is smaller than B−1(inf ∆n−En(B)) = a−1. This entails ωj(k) < inf ∆n

for all k ∈ [−(B`/2)(1− ε), (B`/2)(1− ε)] and the result follows.
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5.4 Estimation of the Eigenfunctions in the Classically
Forbidden Zone

We prove in Lemma 5.5 for j = 0, 1, . . . , n, and k ∈ ω−1
j (∆n)−, where ∆n

is as in Lemma 5.4, that the ϕj(x; k), are exponentially decreasing functions
in the domain x > −(`/2) provided B`2 is taken sufficiently large. This is
the main tool for the proof of 1) Lemma 5.6, a technical result used in the
estimation of ω′j(k) given in Lemma 2.2, and 2) Lemma 5.7, which states
the localization properties of the eigenfunctions in view of Proposition 2.1.
Finally Lemma 5.8, who is particularly useful in Section 3, can be derived
from Lemmas 5.4 and 5.7.

Lemma 5.5 Let n ∈ N, ∆n be given by (2.9), ε ∈ (0, 1) and xε = −(`/
2)(1− ε). Then there is a constant µn = µn(a) > 0 depending only on n and
a such that

ϕj(x; k)2 ≤ (B`ε)e−
B`ε

8
(x−xε), x ≥ xε, k ∈ ω−1

j (∆n)−, j = 0, 1, . . . , n,

uniformly in V0 ≥ 0, provided B`2ε2 ≥ µn.

Proof.
Set x̃ε = −(`/2)(1 − ε/2). We notice that it suffices to take B`2 large
enough so the effective potential Wj(x; k) defined by (2.20) is positive for
k ∈ ω−1

j (∆n)− in the region x ≥ x̃ε. This follows from Lemma 5.4 with
ε = ε/4. Indeed in this case (5.9) involves

Bx− k ≥ B`ε

8
, x ≥ x̃ε, k ∈ ω−1

j (∆n)−,

so by using the fact that Wj(x; k) ≥ (Bx− k)2 − En+1(B) we get that

Wj(x; k) ≥
(
B`ε

16

)2

, x ≥ x̃ε, k ∈ ω−1
j (∆n)−, (5.10)

provided B`2ε2 ≥ max(γn(a), 162(2n+ 3)), where γn(a) is defined in Lemma
5.4. As a consequence, the H1(R)-solution ϕj(.; k) to the differential equation
ϕ′′(x) = Wj(x; k)ϕ(x) is exponentially decaying in the region x ≥ x̃ε. Namely
for all k ∈ ω−1

j (∆n)−, we have

0 ≤ ϕj(t; k) ≤ ϕj(s; k)e−
B`ε

8
(t−s), x̃ε ≤ s ≤ t, (5.11)
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from Proposition 8.3 in [10]. By combining (5.11) for t = xε with (5.10), we
find that

ϕj(xε; k)2e−
B`ε

8
s ≤ ϕj(s; k)2e−

BLε
8
xε , x̃ε ≤ s ≤ xε, k ∈ ω−1

j (∆n)−, (5.12)

whence

ϕj(xε; k)2 ≤ (B`ε)/8

e
B`ε

8
(xε−x̃ε) − 1

, k ∈ ω−1
j (∆n)−, (5.13)

by integrating (5.12) w.r.t. s over (x̃ε, xε) and using the normalization con-
dition ‖ϕj(.; k)‖ = 1. Bearing in mind that xε − x̃ε = (`ε)/4, we may take
B`2ε2 sufficiently large so (5.13) involves

ϕj(xε; k)2 ≤ (B`ε)e−
B`ε

8
(xε−x̃ε), k ∈ ω−1

j (∆n)−.

Now the result follows from this, (5.10) and (5.11).

We give now two corollaries of Lemma 5.5.

Lemma 5.6 Let n ∈ N and ∆n be given by (2.9). For s ∈ {+,−} and t > 0,
set

gs(t) =

{
t−1/2 if s = +

1 if s = −.

Then there are two constants ζn = ζn(a) > 0 and νn = νn(a) > 0, depending
on n and a, such that for all B`2 ≥ ζn we have

V0ϕj(±`/2; k)2 ≤ νng±(B`2)B3/2, k ∈ ω−1
j (∆n)−, j = 0, 1, . . . , n, (5.14)

uniformly in V0 ≥ 0.

Proof.
1. Let j be 0, 1, . . . , n. We start by proving there are two constants αj > 0
and βj > 0 independent of B, `, V0 and k such that we have

0 ≤
∫ +∞

0

(Bx− k)ϕj(x; k)2dx ≤ αjB`e
−βjB`2 , k ∈ ω−1

j (∆n)−, (5.15)

provided B`2 is sufficiently large. The left inequality in (5.15) being evident,
it is enough to show the right one. By using the fact that ωj(k) ≤ En+1(B)
and arguing as in the proof of Lemma 5.5, we deduce from Lemma 5.4 there

45



is a constant υn(a) > 0 depending only on n and a such that the potential
Wj(t; k) defined by (2.20) satisfies

Wj(t; k) ≥ 0 and 0 ≤ Bt− k ≤ 2Wj(t; k)1/2, t ≥ 0, k ∈ ω−1
j (∆n)−,

upon taking B`2 ≥ υn(a). Now (5.15) follows immediately from this, the
exponentially decaying behavior of ϕj(.; k) in R+,

0 ≤ ϕj(x; k) ≤ ϕj(0; k)e−
∫ x
0 Wj(t;k)1/2dt, x ≥ 0, k ∈ ω−1

j (∆n)−,

as stated in Proposition 8.2 in [10], and Lemma 5.5.
2. We write (2.58) for a bounded real-valued function ρ ∈ C3(R) such that
ρ(x) = 0 if x ≤ 0, and ρ(x) = 1 if x ≥ `/2, and find

2V0ϕj(`/2; k)2

≤ ‖ρ′′′‖∞
∫ `/2

0

ϕj(x; k)2dx+ 4‖ρ′‖∞
∫ `/2

0

ϕ′j(x; k)2dx

+4B‖ρ‖∞
∫ +∞

0

(Bx− k)ϕj(x; k)2dx. (5.16)

The first term in the r.h.s. of (5.16) is bounded by a constant times `−3.
Due to the energy equation (2.50), the second one is bounded by a constant
times B`−1. Summing up (5.15) and (5.16) we then get that

V0ϕj(`/2; k)2 ≤ cB`−1(1 + 4(2n+ 3) + αjB`
2e−βjB`

2

),

for some c > 0 independent of B, `, V0 and j, whence

V0ϕj(`/2; k)2 ≤ νn(B`2)−1/2B3/2, (5.17)

upon taking B`2 sufficiently large.
3. The end of the proof now follows from (2.21), (2.51) and (5.17).

Lemma 5.7 Let αn = (µn + 1)1/2 and xn = −`/2 + αnB
−1/2, where µn is

defined in Lemma 5.5. Then for all B > 0, ` > 0, V0 > 0 and ∆x ≥ 0, we
have∫ +∞

xn+∆x

ϕj(x; k)2dx ≤ 8e−(αn/4)B1/2∆x, k ∈ ω−1
j (∆n)−, j = 0, 1, . . . , n.
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Furthermore there are two constants θn = θn(a, c) > 0 and ϑn = ϑn(a, c) > 0
depending only on n, a, and c such that for all ∆x ≥ 0 we have∫ −`/2−∆x

−∞
ϕj(x; k)2dx ≤ ϑne−2(3−c)1/2B1/2∆x, k ∈ ω−1

j (∆n)−, j = 0, 1, . . . , n,

provided B`2 ≥ θn and V0 ≥ En+1(B).

Proof.
Set ε = 2αn/(B

1/2`) so B`2ε2 > µn and

ϕj(x; k)2 ≤ 2αnB
1/2e−(αn/4)B1/2x, x ≥ xn, k ∈ ω−1

j (∆n)−, j = 0, 1, . . . , n,
(5.18)

according to Lemma 5.5. The first part of the result obviously follows by
integrating (5.18) over [xn + ∆x,+∞).

To prove the second part we make V0 ≥ En+1(B) in such a way that
the effective potential (2.20) is lower bounded as Wj(x; k) ≥ (3− c)B for all
x ≤ −`/2, and subsequently

ϕj(x; k)2 ≤ ϕj(−`/2; k)2e2(3−c)1/2B1/2(x+`/2), x ≤ −`/2, k ∈ ω−1
j (∆n)−,

by Proposition 8.3 in [10]. Now the result immediately follows from this and
from Lemma 5.6.

An immediate consequence of Lemmas 5.4 and 5.7 is the following

Lemma 5.8 Let n ∈ N and ∆n be defined by (2.9). Then there is a constant
κn = κn(a, c) > 0 depending only on n, a and c such that∣∣∣∣k +

BL

2

∣∣∣∣ ≤ κnB
1/2, k ∈ ω−1

j (∆n)−, j = 0, 1, . . . , n, (5.19)

provided V0 ≥ En+1(B) and B`2 ≥ θn, where θn is as in Lemma 5.7.

Proof.
1. Let k ∈ ω−1

j (∆n)−, j = 0, 1, . . . , n, be of the form k = −(B`/2)(1 + ε)
for some ε > 0. Next taking ∆x = (`ε)/4 in Lemma 5.7 and assuming that
B`2 ≥ θn and V0 ≥ En+1(B), we get that∫ −(`/2)(1+(ε/2))

−∞
ϕj(x; k)2dx ≤ e−((3−c)1/2/2)B1/2`ε

(3− c)1/2
. (5.20)
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Further, the normalization condition ‖ϕj(.; k)‖ = 1 entails∫ +∞

−(`/2)(1+(ε/2))

(Bx− k)2ϕj(x; k)2dx

≥
(
B`ε

4

)2
(

1−
∫ −(`/2)(1+(ε/2))

−∞
ϕj(x; k)2dx

)
, (5.21)

since x − k/B ≥ (`ε)/4 for all x ≥ −(`/2)(1 + (ε/2)). As a consequence we
have

ωj(k) ≥ B2`2ε2

16

(
1− e−((3−c)1/2/2)B1/2`ε

(3− c)1/2

)
, (5.22)

by combining (5.20)-(5.21) with the basic estimate

ωj(k) ≥
∫
R
(Bx− k)2ϕj(x; k)2dx.

Moreover k being in ω−1
j (∆n)− we have ωj(k) ≤ (2n+ c)B, whence

2n+ c ≥ B`2ε2

16

(
1− e−((3−c)1/2/2)B1/2`ε

(3− c)1/2

)
, (5.23)

according to (5.22). The r.h.s. of (5.23) being an unbounded increasing
function of B`2ε2 depending only on c, while the l.h.s. depends only on n
and c, we thus have

B`2ε2 ≤ ξn(c),

for some constant ξn(c) > 0 depending only on n and c. Therefore

inf ω−1
j (∆n)− ≥ −

BL

2
− ξn(c)1/2B1/2, (5.24)

since k = −((B`)/2)(1 + ε) ∈ ω−1
j (∆n)−.

2. For the rest of the proof we recall from Lemma 5.4 that

supω−1
j (∆n)− ≤ −

BL

2
+ γn(a)1/2B1/2, (5.25)

where γn(a) > 0 depends only on n and a. The result then follows from
(5.24)-(5.25) by setting κn(a, c) = max(ξn(c)1/2, γn(a)1/2).
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