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Abstract. We study the large-time asymptotics of the mean-square displacement for the time-

fractional Schrödinger equation in Rd. We define the time-fractional derivative by the Caputo de-

rivative. We consider the initial-value problem for the free evolution of wave packets in Rd governed
by the time-fractional Schrödinger equation iβ∂αt u = −∆u, u(t = 0) = u0, parameterized by two

indices α, β ∈ (0, 1]. We show distinctly different long-time evolution of the mean square displacement

according to the relation between α and β. In particular, asymptotically ballistic motion occurs only
for α = β.

1. Introduction and statement of the problem

The Schrödinger equation with fractional spatial derivatives has been the object of many studies. It
is proposed as a model for anomalous quantum transport. In this article, and companion articles [6],
we study the effect of replacing the time derivative in the Schrödinger equation by a fractional time
derivative. We study the behavior of the mean-square displacement (MSD) of a wave packet evolving
according to the time-fractional Schrödinger equation (TFSE):

iβ∂αt u = −∆u, u(t = 0) = u0, (1.1)

parameterized by two indices α, β ∈ (0, 1]. We show that the MSD D2(u0, t) (see (3.1)) exhibits differ-
ent asymptotic behavior depending on these parameters. These models generalize the time-fractional
Schrödinger equations (TFSE) introduced by Naber [16], with α = β ∈ (0, 1), and by Narahari Achar,
Yale, and Hanneken [1], with β = 1 and α ∈ (0, 1). For our two-parameter generalization of these
models, we compute the asymptotics in time of the MSD.

In particular, we find that the MSD exhibits distinctly different behavior in each of three parameter
regimes. Asymptotic ballistic evolution for which D2(u0, t) ∼ t2 occurs only when α = β. A summary
of the main results is as follows. We refer to Theorem 3.1 and section 3 for the details. Let us consider
0 < β ≤ 1 fixed, and take 0 < α ≤ 1. For the first two regimes, we have

0 < α < β ≤ 1 : D2(u0, t) = Cα(u0)t−2α +O(t−3α), (1.2)

0 < α = β ≤ 1 : D2(u0, t) = Cα(u0)t2 +O(t), (1.3)

where Cα(u0) > 0 is a finite, positive constant whose value may change line-to-line. In particular,
result (1.2) shows how the MSD varies for the TFSE with β = 1 as α varies in (0, 1). For this regime,
the MSD tends to zero as t→∞. On the other hand, (1.3) shows asymptotic ballistic behavior of the
MSD when the parameters are equal α = β. The third regime is characterized by a MSD satisfying
upper and lower bounds:

0 < β < α ≤ 1 : (1.4)

e2t cos(πβ2α )Λ
2
α
−
(
cα(u0) +O(t−1)

)
≤ D2(u0, t) ≤ e2t cos(πβ2α )Λ

2
α
+
(
Cα(u0) +O(t−1)

)
,

where the finite, positive, constants Λ± ≥ 0 are determined by the initial condition u0, see Theorem
3.1 and (3.17). In particular, u0 may be chosen so that Λ− > 0, so that the MSD exhibits exponential
growth. We remark that Naber [16] stated that he considered the model with α = β because the
solutions to the TFSE with these parameters behave similarly to the solutions of the Schrödinger
equation. Our result that the MSD is asymptotically ballistic for α = β supports this statement.

In our companion article, [6], we studied the effect of replacing i∂t by by iβ∂αt , in the Schrödinger
equation, on the time evolution of the edge current of a half-plane quantum Hall model. We proved the
existence of a similar transition in the long-time asymptotic behavior of the edge current depending on
the relation between α and β.
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We mention several works on the Schrödinger equation with a time fractional derivative, such as
[2, 3, 5, 4, 8, 9, 10, 11, 13, 14, 15, 18]. We refer to [6, section 1] for a description of their contributions
and the relation to our work. We have found the books by Kilbas, Srivastava, and Trujillo [12], and by
Podlubny [17], to be useful references.
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2. Existence and well-posedness for the TFSE

Let H0 := −∆ be the Laplace operator in Rd, d ≥ 1, with domain D(H0) := H2(Rd), where Hj(Rd)
denotes the Sobolev space of order j ∈ N. The operator H0 is self-adjoint on this domain in L2(Rd).
We set R+ := (0,∞). Given α ∈ (0, 1], and β ∈ (0, 1], we consider the generalized time-fractional
Schrödinger equation (TFSE)

−iβ∂αt u(x, t) +H0u(x, t) = 0, (x, t) ∈ Rd × R+, (2.1)

with initial state u0, in an appropriate subspace of L2(Rd), see (2.5), so that

u(x, 0) = u0(x), x ∈ Rd. (2.2)

The fractional time derivative ∂αt , for α ∈ (0, 1), is the Caputo fractional derivative of order α defined
by

∂αt u(t) :=
1

Γ(1− α)

∫ t

0

u′(s)

(t− s)α
ds, u ∈W 1,1

loc (R+). (2.3)

We note that ∂αt u→ ∂tu, as α→ 1, if, for example, u ∈ C2(R). This follows from the formula (2.3) by
an integration by parts.

We define a solution to the system (2.1)-(2.2) as any function

u ∈ L1
loc(R+,D(H0)) ∩W 1,1

loc (R+, L
2(Rd)),

satisfying the two following conditions simultaneously:

(1) −iβ∂αt u(x, t) +H0u(x, t) = 0 for a.e. (x, t) ∈ Rd × R+,

(2) limt↓0 ‖u(·, t)− u0‖ = 0,

where ‖·‖ denotes the usual norm in L2(Rd).

2.1. Existence and uniqueness result. Prior to stating the existence and uniqueness result for the
solution to (2.1)-(2.2), we introduce some notation. First, we define the Mittag-Leffler function as

Eα,γ(z) :=

∞∑
n=0

zn

Γ(αn+ γ)
, α ∈ (0, 1), γ ∈ R, z ∈ C, (2.4)

where Γ is the usual Gamma function. We refer to [12] and [17] for comprehensive discussions of these
functions.

We write F for the Fourier transform in Rd, i.e.,

Fu(ξ) = û(ξ) := (2π)−d/2
∫
Rd
e−ix·ξu(x)dx, u ∈ L2(Rd), ξ ∈ Rd,

where x · ξ is the Euclidean scalar product of x, ξ ∈ Rd. We recall that the Fourier transform operator
F is a unitary operator on L2(Rd). Its inverse satisfies F−1 = F∗, where F∗ is the adjoint of F . We

recall that for any s ≥ 0, Hs
0 is the operator unitarily equivalent to Ĥs

0 := FHs
0F∗, where Ĥs

0 is the
operator of multiplication by |ξ|2s. We note that H0

0 is the identity operator. Consequently, the domain

D(Hs
0) = {f ∈ L2(Rd) | |ξ|2sf̂(ξ) ∈ L2(Rd)}.
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We denote by C0(Rd) the space of compactly supported continuous functions in Rd. Let us introduce
the set

Uα,β :=


D(H0) if β > α

D(H
1
α
0 ) if β = α

F∗C0(Rd) if β < α,

. (2.5)

Since F∗C0(Rd) ⊂ D(H
1
α
0 ), we notice that Uα,β ⊂ D(H

1
α
0 ) when β ≤ α. As above, we denote by ‖·‖

the usual norm in L2(Rd), and we set ‖v‖D(Hγ0 ) :=
(
‖v‖2 + ‖Hγ

0 v‖
2
)1/2

, for all v ∈ D(Hγ
0 ), γ ≥ 1. We

equip Uα,β with the norm:

‖u‖Uα,β :=

{
‖u‖D(H0) if β > α

‖u‖
D(H

1
α
0 )

if β ≤ α.

Then, the existence and uniqueness result for the system (2.1)-(2.2) can be stated as follows.

Proposition 2.1. Pick u0 ∈ Uα,β. Then, for all T ∈ R+, the system (2.1)-(2.2) admits a unique

solution u ∈ C([0, T ],D(H0)) ∩W 1,1
loc (0, T ;L2(Rd)), which is expressed by

u(x, t) = F∗
(
Eα,1((−i)β |·|2tα)û0

)
(x), (x, t) ∈ Rd × R+.

There exists a unique positive constant C, depending only on α, β and d, such that for β ≥ α,

‖u‖C([0,T ],D(H0)) + ‖u‖W 1,1(0,T ;L2(Rd)) ≤ C(1 + T )‖u0‖Uα,β , (2.6)

whereas for β < α,

‖u‖C([0,T ],D(H0)) + ‖u‖W 1,1(0,T ;L2(Rd)) ≤ C(1 + T )ecos(πβ2α )Λ
2
α
+ T ‖u0‖Uα,β , (2.7)

where Λ+ := max{|ξ|, ξ ∈ supp(û0)}.

2.2. Proof of Proposition 2.1. We start by establishing the two following technical results.

Lemma 2.2. Let t ∈ R+, let ξ ∈ Rd \ {0} and put κ := (−i)β |ξ|2tα. Then, for all γ ∈ R, there exists
a constant C > 0, depending only on α and γ such that we have

|Eα,γ(κ)| ≤ C

1 + |κ|
, α < β, (2.8)

and

Eα,γ(κ) ≤ C
(

(1 + |κ|)
1−γ
α e

Re
(
κ

1
α

)
+

1

1 + |κ|

)
, α ≥ β. (2.9)

Proof. When α < β, we pick µ ∈ (πα/2,min(πα, πβ/2)) and apply [17, Theorem 1.6]. Since |arg(κ)| ∈
[µ, π], we get (2.8) directly from [17, Eq. (1.148)]. Similarly, for α ≥ β, we apply [17, Theorem 1.5]
with µ ∈ (πα/2, πα). As |arg(κ)| ≤ µ, we see that [17, Eq. (1.147)] yields (2.9). �

Lemma 2.3. We have D(H
1
α
0 ) ⊂ D(H0) and the embedding is continuous. More precisely, there exists

a constant, Cα > 0, depending only on α, such that

∀u ∈ D(H
1
α
0 ), ‖u‖D(H0) ≤ Cα‖u‖

D(H
1
α
0 )
.

Proof. Let v ∈ D(H
1
α
0 ). We have v̂ in L2(Rd) and ξ 7→ |ξ|

2
α v̂(ξ) ∈ L2(Rd). Thus, ξ 7→ |ξ|2|v̂(ξ)|α ∈

L
2
α (Rd) and |v̂|1−α ∈ L

2
1−α (Rd). Since

1
2
α

+
1
2

1−α
=
α

2
+

1− α
2

=
1

2

and

|ξ|2|v̂(ξ)| = |ξ|2|v̂(ξ)|α|v(ξ)|1−α, ξ ∈ Rd,
we have ξ 7→ |ξ|2v̂(ξ) ∈ L2(Rd) and∥∥∥|ξ|2v̂(ξ)

∥∥∥ ≤ ∥∥∥|ξ|2|v̂(ξ)|α
∥∥∥
L

2
α (Rd)

∥∥∥|v̂(ξ)|1−α
∥∥∥
L

2
1−α (Rd)

, (2.10)
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by Hölder’s inequality. Recalling that FH0F∗ = Ĥ0, the multiplication operator by |ξ|2, inequality
(2.10) can be equivalently rewritten as∥∥∥Ĥ0v̂

∥∥∥ ≤ ∥∥∥∥Ĥ0

1
α v̂

∥∥∥∥α‖v̂‖1−α.
Applying Young’s inequality, we obtain∥∥∥Ĥ0v̂

∥∥∥ ≤ α∥∥∥∥Ĥ0

1
α v̂

∥∥∥∥+ (1− α)‖v̂‖,

which proves the desired result. �

Armed with these two lemmas, we are now in position to prove Proposition 2.1.

Proof. Let u be a solution to (2.1)-(2.2) in the sense of Section 2. We apply the Fourier transform F
to both sides of the equations (2.1) and (2.2). Since FH0F∗ = Ĥ0, the multiplication operator by |ξ|2
on L2(Rd), we obtain {

−iβ∂αt û(ξ, t) + |ξ|2û(ξ, t) = 0, (ξ, t) ∈ Rd × R+

û(ξ, 0) = û0, ξ ∈ Rd, (2.11)

where û(ξ, t) := (Fu(·, t)) (ξ).
For each ξ ∈ Rd, the system (2.11) admits a unique solution

û(ξ, t) = Eα,1((−i)β |ξ|2tα)û0(ξ), (ξ, t) ∈ Rd × R+, (2.12)

according to [12, Theorem 4.3]. We now analyze the three cases in the proposition.
First case: α < β. We have∣∣∣Ĥ0

j
û(ξ, t)

∣∣∣ ≤ C∣∣∣(Ĥ0
j
û0)(ξ)

∣∣∣, j = 0, 1, (ξ, t) ∈ Rd × R+,

from (2.8) and (2.12), whence

‖û(·, t)‖D(Ĥ0) ≤ C‖û0‖D(Ĥ0), t ∈ R+, (2.13)

and

‖û‖L1(0,T ;L2(Rd)) ≤ CT‖û0‖. (2.14)

Further, since d
dzEα,1(z) = α−1Eα,α(z) for all z ∈ C, which follows from (2.4) by direct computation,

we deduce from (2.12) that

∂tû(ξ, t) = (−i)β |ξ|2tα−1Eα,α((−i)β |ξ|2tα)û0(ξ), (ξ, t) ∈ Rd × R+. (2.15)

It follows from this and (2.8) that

|∂tû(ξ, t)| ≤ C |ξ|
2
tα−1

1 + |ξ|2tα
|û0(ξ)|, (ξ, t) ∈ Rd × R+.

Thus, integrating with respect to t over (0, T ), we get that

‖∂tû(ξ)‖L1(0,T ) ≤ C ln
(

1 + |ξ|2Tα
)
|û0(ξ)|

≤ CTα
∣∣∣(Ĥ0û0)(ξ)

∣∣∣, ξ ∈ Rd,

where we used that ln(1 + s) ≤ s for all s ≥ 0, and we substituted C for α−1C. Therefore, we have

‖∂tû‖L1(0,T ;L2(Rd)) ≤ CT
α
∥∥∥Ĥ0û0

∥∥∥,
and (2.6) follows readily from this and (2.13)-(2.14).

Second case: α = β. This time, it follows from (2.9) and (2.12) that∣∣∣Ĥ0
j
û(ξ, t)

∣∣∣ ≤ C

(
1 +

1

1 + |ξ|2tα

)∣∣∣(Ĥ0
j
û0)(ξ)

∣∣∣
≤ C

∣∣∣(Ĥ0
j
û0)(ξ)

∣∣∣, j = 0, 1, (ξ, t) ∈ Rd × R+,
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where we replaced 2C by C in the last line. Hence the estimates (2.13) and (2.14) are still valid.
Next, with reference to (2.15), we infer from (2.9) that

|∂tû(ξ, t)| ≤ C|ξ|2tα−1

(
(1 + |ξ|2tα)

1−α
α +

1

1 + |ξ|2tα

)
|û0(ξ)|

≤ C|ξ|2tα−1(1 + |ξ|2tα)
1−α
α |û0(ξ)|, (ξ, t) ∈ Rd × R+,

where we substituted C for 2C in the last line. Thus, by integrating with respect to t over (0, T ), and

then using that (1 + s)
1
α ≤ 2

1
α (s

1
α + 1) for all s ≥ 0, we obtain that

‖∂tû(ξ, ·)‖L1(0,T ) ≤ C
(

(1 + |ξ|2Tα)
1
α − 1

)
|û0(ξ)|

≤ C
(

1 + |ξ|
2
αT
)
|û0(ξ)|, ξ ∈ Rd,

where C was substituted for 2
1
αC in the last line. Therefore, integrating with respect to ξ over Rd, we

find that

‖∂tû‖L1(0,T ;L2(Rd)) ≤ C(1 + T )‖û0‖
D(Ĥ0

1
α )
.

Now, putting this together with (2.13)-(2.14) and Lemma 2.3, we get (2.6).

Third case: α > β. It follows readily from (2.9) and (2.12) that,∣∣∣Ĥ0
j
û(ξ, t)

∣∣∣ ≤ Cecos(πβ2α )|ξ|
2
α t
∣∣∣(Ĥ0

j
û0)(ξ)

∣∣∣
≤ Cecos(πβ2α )Λ

2
α
+ t
∣∣∣(Ĥ0

j
û0)(ξ)

∣∣∣, j = 0, 1, (ξ, t) ∈ supp(û0)× R+,

where we replaced the constant 2C by C in the last line. As a consequence we have

‖û(·, t)‖D(Ĥ0) ≤ Cecos(πβ2α )Λ
2
α
+ t‖û0‖D(Ĥ0), t ∈ R+. (2.16)

Next, with reference to (2.15), we infer from (2.9) that

|∂tû(ξ, t)| ≤ C|ξ|2tα−1

(
(1 + |ξ|2tα)

1−α
α ecos(πβ2α )|ξ|

2
α t +

1

1 + |ξ|2tα

)
|û0(ξ)|

≤ C|ξ|2tα−1(1 + |ξ|2tα)
1−α
α ecos(πβ2α )Λ

2
α
+ t|û0(ξ)|, (ξ, t) ∈ supp(û0)× R+,

where C was substituted for 2C in the penultimate line. Thus, by integrating with respect to t over
(0, T ), and then using that (1 + s)

1
α ≤ 2

1
α (s

1
α + 1) for all s ≥ 0, we obtain that

‖∂tû(ξ, ·)‖L1(0,T ) ≤ C
(

(1 + |ξ|2Tα)
1
α − 1

)
ecos(πβ2α )Λ

2
α
+ T |û0(ξ)|

≤ C
(

1 + |ξ|
2
αT
)

ecos(πβ2α )Λ
2
α
+ T |û0(ξ)|, ξ ∈ supp(û0),

where 2
1
αC was replaced by C. It follows from this, that

‖∂tû‖L1(0,T ;L2(Rd)) ≤ C(1 + T )ecos(πβ2α )Λ
2
α
+ T ‖û0‖

D(Ĥ0

1
α )
,

which, together with (2.16) and Lemma 2.3, yields (2.7) with β < α. �

3. Diffusion properties of the TFSE

We compute the time-asymptotic behavior of the MSD for solutions of the TFSE with initial condi-
tions in an appropriate subspace of L2(Rd). These asymptotics depend on the parameters α, β ∈ (0, 1).
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3.1. Mean square displacement. For s ∈ R+, we define weighted L2-spaces

L2,s(Rd) = L2(Rd, (1 + |x|2)
s
2 dx) := {v ∈ L2(Rd), (1 + |x|2)

s
2 v ∈ L2(Rd)}, s > 0.

The mean square displacement (MSD) of ϕ ∈ C(R+, L
2,2(Rd)) at time t ∈ R+, is defined by

D2(ϕ, t) :=

∫
Rd
|x|2|ϕ(x, t)|2dx

= 〈|·|2ϕ(·, t), ϕ(·, t)〉, (3.1)

where the notation 〈·, ·〉, and ‖ · ‖, stands for the usual scalar product, respectively, norm, in L2(Rd) or

L2(Rd)d. The scalar product is linear in the first entry. As F is unitary in L2(Rd) and F(|·|2ϕ)(ξ, t) =
−∆ϕ̂(ξ, t), for a.e. ξ ∈ Rd and all t ∈ R+, integration by parts in (3.1) yields

D2(ϕ, t) = 〈−∆ϕ̂(·, t), ϕ̂(·, t)〉
= ‖∇ϕ̂(·, t)‖2. (3.2)

Since the right hand side of (3.2) is well defined whenever ϕ̂ ∈ C(R+, H
1(Rd)), we can use formula (3.2)

to extend the MSD to functions ϕ ∈ C(R+, L
2,1(Rd)) as

D2(ϕ, t) := ‖∇ϕ̂(·, t)‖2. (3.3)

3.2. Time-fractional quantum diffusion. We obtain the final form of the MSD (3.3) in terms of
Mittag-Leffler functions (3.4)-(3.5), and derive the large time asymptotics.

3.2.1. Settings. We choose the initial condition u0 ∈ Hα,β , where we have set

Hα,β :=

{
S(Rd) if β ≥ α
F∗C1

0(Rd) if β < α,

where S(Rd) is the Schwartz space on Rd, and C1
0(Rd) is the space of continuously differentiable,

compactly supported functions in Rd. Since it is clear that Hα,β ⊂ Uα,β , the system (2.1)-(2.2) admits
a unique solution u according to Proposition 2.1, whose Fourier transform is expressed by

û(ξ, t) = Eα,1(κ)û0(ξ), (ξ, t) ∈ Rd × R+,

where we recall that κ = (−i)β |ξ|2tα. Next, using that d
dzEα,1(z) = α−1Eα,α(z), z ∈ C, we deduce

from (2.12) that

∇û(ξ, t) = 2α−1(−i)βtαEα,α(κ)ξû0(ξ) + Eα,1(κ)∇û0(ξ), (ξ, t) ∈ Rd × R+. (3.4)

Thus, in light of Lemma 2.2, we see that û(·, t) ∈ H1(Rd) for all t ∈ R+, and hence that the MSD of u,
denoted by D2(u0, t) in the sequel, is well defined by (3.3) when ϕ is replaced by uso that

D2(u0, t) = ‖∇û‖2, t ∈ R+. (3.5)

We will compute the asymptotics of D2(u0, t) using the form of û in (3.4).

3.2.2. Asymptotics. We shall examine the three cases α < β, α = β, and α > β separately.
We first state the main theorem that was summarized in section 1.

Theorem 3.1. We choose the initial condition u0 ∈ Hα,β as in (2.5) according to (α, β). Then, the
MSD D2(u0, t), defined in (3.4) and (3.5), has the following asymptotic behavior:

(1) First case: 0 < α < β ≤ 1. The MSD is asymptotically vanishing as t→∞ and satisfies:

D2(u0, t) = Cα(u0)t−2α +O(t−3α), (3.6)

where the constant Cα(u0) is given by

Cα(u0) :=

∥∥∥∥∥|ξ|−2

(
∇û0

Γ(1− α)
+

2|ξ|−2
ξû0

αΓ(−α)

)∥∥∥∥∥
2

. (3.7)

(2) Second case: 0 < α = β ≤ 1. The MSD is asymptotically ballistic as t→∞ and satisfies:

D2(u0, t) =

(
4

α4

∥∥∥|ξ| 2−αα û0

∥∥∥2
)
t2 +O(t). (3.8)
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(3) Third case: 0 < β < α ≤ 1. The MSD is asymptotically bounded by exponential factors
depending on the support of û0. There are finite constants Λ± ≥ 0, defined in (3.17), so that:

4

α2
e2 cos(πβ2α )Λ

2
α
− tt

(∥∥∥|ξ| 2−αα û0

∥∥∥2

+O(t−1)

)
≤ D2(u0, t) ≤

4

α2
e2 cos(πβ2α )Λ

2
α
+ tt

(∥∥∥|ξ| 2−αα û0

∥∥∥2

+O(t−1)

)
,

We note that for initial conditions û0 with Λ− > 0, the upper and lower bounds on the MSD
in case 3 grow exponentially in time.

Proof. First case: α < β. Taking µ ∈ (πα/2,min(πα, πβ/2)) in [17, Theorem 1.4], we have µ ≤
|arg κ| ≤ π, whence

Eα,1(κ) = − 1

Γ(1− α)
κ−1 +O(|κ|−2

), |κ| → ∞, (3.9)

and

Eα,α(κ) = − 1

Γ(−α)
κ−2 +O(|κ|−3

), |κ| → ∞, (3.10)

according to [17, Eq. (1.143)]. Thus, substituting κ = (−i)β |ξ|2tα into (3.9)-(3.10) and recalling (3.4),
we infer from (3.5) that

D2(u0, t) = Cα(u0)t−2α +O(t−3α), t→∞, (3.11)

where

Cα(u0) :=

∥∥∥∥∥|ξ|−2

(
∇û0

Γ(1− α)
+

2|ξ|−2
ξû0

αΓ(−α)

)∥∥∥∥∥
2

. (3.12)

Second case: α = β. Taking µ ∈ (πα/2,min(π, πα)) in [17, Theorems 1.3], we have |arg κ| ≤ µ, whence

Eα,1(κ) =
1

α
eκ

1
α − 1

Γ(1− α)
κ−1 +O(|κ|−2

), |κ| → ∞, (3.13)

Eα,α(κ) =
1

α
κ

1−α
α eκ

1
α − 1

Γ(−α)
κ−2 +O(|κ|−3

), |κ| → ∞, (3.14)

by [17, Eq. (1.135)]. Substituting (3.13)-(3.14) into (3.4), and using that κ = (−i)α|ξ|2tα, we infer
from (3.5) that

D2(u0, t) =
4
∥∥∥|ξ| 2−αα û0

∥∥∥2

α4
t2 +O(t), t→∞. (3.15)

Third case: α > β. Taking µ as in the Second case, we still have |arg(κ)| ≤ µ, whence (3.13)-(3.14)
remain valid. In light of this, and (3.4), this implies the large t-asymptotic expansion

∇û(ξ, t) = e(cos(πβ2α )−i sin(πβ2α ))|ξ|
2
α t

(
2

α2
(−i)

β
α |ξ|

2(1−α)
α tξû0(ξ) +

1

α
∇û0(ξ)

)
−iβ |ξ|−2

(
2

αΓ(−α)
|ξ|−2

ξû0(ξ) +
1

Γ(1− α)
∇û0(ξ)

)
t−α +O(t−2α).

(3.16)

For any u0 ∈ F∗C1
0 (Rd), that is, û0 ∈ C1

0 (Rd), there exist finite constants Λ± ≥ 0, so that

supp(û0) ⊂ {ξ ∈ Rd, Λ− ≤ |ξ| ≤ Λ+}. (3.17)

Substituting (3.16) into (3.5), and using Λ± defined in (3.17), we get the follow bounds as t→∞:

4

α2
e2 cos(πβ2α )Λ

2
α
− tt

(∥∥∥|ξ| 2−αα û0

∥∥∥2

+O(t−1)

)
≤ D2(u0, t) ≤

4

α2
e2 cos(πβ2α )Λ

2
α
+ tt

(∥∥∥|ξ| 2−αα û0

∥∥∥2

+O(t−1)

)
, t→∞.

�
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Remark 3.2. In recent work [7], the authors prove that the three different asymptotic behaviors exhibited
by the MDS D2(u0, t) in Theorem 3.1 are stable with respect to a large family of potential perturbations.
That is, if the TFSE in (1.1) is replaced by

iβ∂αt u = (−∆ + V )u, u(t = 0) = u0, (3.18)

for real-valued potentials V ∈ C1(Rd) that are relatively H0-bounded (with relative bound less than one),
then the MSD exhibits the same asymptotic behaviors as in Theorem 3.1 for the same ranges of the
parameters (α, β).
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