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Abstract. We study the large-time asymptotics of the edge current for a
family of time-fractional Schrödinger equations with a constant, transverse
magnetic field on a half-plane (x, y) ∈ R+

x ×Ry. The TFSE is parameterized
by two constants (α, β) in (0, 1], where α is the fractional order of the time
derivative, and β is the power of i in the Schrödinger equation. We prove
that for fixed α, there is a transition in the transport properties as β varies
in (0, 1]: For 0 < β < α, the edge current grows exponentially in time, for
α = β, the edge current is asymptotically constant, and for β > α, the edge
current decays in time. We prove that the mean square displacement in
the y ∈ R-direction undergoes a similar transport transition. These results
provide quantitative support for the comments of Laskin [13] that the latter
two cases, α = β and α < β, are the physically relevant ones.
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1. Introduction and statement of the problem

There has been a lot of analysis of systems described by equations with
space or time fractional derivatives, especially associated with parabolic and
hyperbolic partial differential equations. In this article, we study the time-
fractional Schrödinger equation (TFSE) for a physically motivated model. The
TFSE studied in this paper has the form

iβ∂αt u(t, x) = Hu(x, t), (1.1)

on the Hilbert space L2(Ω), for certain self-adjoint Schrödinger operators H.
The fractional time derivative is the Caputo derivative defined in (2.5). The
parameters α, β ∈ (0, 1]. We show how the time-fractional derivative affects the
large time behavior of the transport of the system. In particular, the model is
described by a magnetic Schrödinger operator in a half-plane Ω := R+

x × Ry,
with a Dirichlet boundary condition at x = 0. Such operators and geometry
play a role in the integer quantum Hall effect.

These models allow us to examine the affect of a fractional time derivative on
the transport properties of the model. The dynamics of the Schrödinger equa-
tion (α = β = 1 in (1.1)) exhibits nontrivial edge currents, whose conductance
is quantized, and which flow along the impenetrable edge x = 0 in the sense that
they are localized in a small neighborhood of the edge. We now replace the dy-
namical Schrödinger equation by the time-fractional Schrödinger equation (1.1)
and examine the edge current associated with these half-space operators. Our
main results are that the edge current exhibits two types of extreme behavior
depending on the relation between the two parameters (α, β): either the current
decreases to zero as t→∞, or the edge current explodes as t→∞. These two
distinctly different behaviors depend on how the time-fractional Schrödinger
equation is defined. At the critical values, the edge current is asymptotically
constant, reminiscent of the Schrödinger case (α = β = 1) for which the edge
current is constant.

In this paper, we study a two-parameter family of TFSE and compute the
asymptotics of the edge current and the mean square displacement. We show,
for example, that the edge current of the Naber model (1.2) is asymptotically a
nonzero constant, whereas in the AYH model (1.3), it decays to zero. Further-
more, we study the mean-square displacement of the solutions in the y-direction
and prove that for the Naber model, this is asymptotically ballistic, whereas
for the AYH model, it decays to zero.
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1.1. Fractional quantum mechanics. Fractional quantum mechanics
(FQM) was introduced by Laskin in 1999, and developed by him in a series of
papers [13, 14, 15]. The crucial component of FQM is the fractional Schrödinger
equation (FSE). In the FSE, the normal Laplacian in the space variables, −∆,
is replaced with a fractional Laplacian, defined through the functional calculus,
(−∆)α, with α ∈ (0, 1]:

−i∂tu+ (−∆)αu+ qu = 0, α ∈ (0, 1].

The fractional Laplacian is a spatially non-local operator. However, due to
the presence of the first-order time derivative in the FSE, FQM preserves all
quantum mechanics fundamentals such as the probability conservation law and
the energy conservation law, as follows from the unitarity of the time-evolution
operator.

The regular Schrödinger equation has the mathematical appearance of a dif-
fusion equation and can be derived by considering probability distributions.
Feynman and Hibbs [4] used a Gaussian probability distribution in the space
of all possible paths for a quantum mechanical particle, in order to derive the
Schrödinger equation. Laskin derived the FSE by using Feynman’s path inte-
gral approach with Lévy distributions, instead of Gaussian distributions, for
the set of possible paths.

Naber [16] introduced the TFSE in 2004, by replacing the first-order time
derivative in the Schrödinger equation with a fractional power α ∈ (0, 1], and
raising i to the same power α:

−iα∂αt u−∆u+ qu = 0. (1.2)

We will refer to this TFSE as the Naber model. The fractional time derivative
is defined to be the Caputo derivative, see (2.5).

One of the main reasons invoked by Naber for raising i to the power of the
time derivative is the asymptotic stability of the time-evolution of the solutions
to the TFSE with respect to α. By asymptotic stability, we mean that the
infinite t behavior is independent of the order α of the derivative, see, for
example, (1.16).

The Naber model was not derived from the classical Schrödinger equation by
considering a non-Markovian evolution but the time-evolution of the solution
to Naber’s TFSE is reminiscent of the time-evolution of solutions to the regular
Schrödinger equation. Nevertheless, the time-evolution of solutions in the Naber
model for 0 < α < 1 is not unitary, so that it does not support the the basic
quantum mechanical laws of probability conservation and energy conservation.

In 2013, Narahari Achar, Yale, and Hanneken [17] provided another model
of a TFSE that differs from the Naber model. These authors presented a
derivation that relies on a suitable representation of the action in the Feynman
path integral motivated by the fractional dynamics of a free classical particle.
In what we will call the AYH model of the TFSE, the operator i∂t is replaced
by i∂αt , with α ∈ (0, 1):

−i∂αt u−∆u+ qu = 0. (1.3)
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Like the Naber model, the time-evolution is not unitary, and, consequently, the
AYH model has the same shortcomings in that it violates the basic quantum
mechanical laws.

However, Narahari Achar, Yale, and Hanneken [17] argued that this model
is more physically natural than the one proposed by Naber. For example, the
total probability associated with a solution ψ(x, t) of the Schrödinger equation
or TFSE is given by

∫
Rd |ψ(x, t)|2dx. The unitary time evolution of the solutions

to the usual Schrödinger equation guarantees that this quantity is equal to one
for all time (with a normalized initial condition). But, for the models of both
Naber and AYH, this quantity depends on time. As t→∞, the total probability
is greater than one in the Naber model, whereas for the AYH model, the total
probability vanishes.

There have been several other papers on the TFSE since Naber’s article
[16] and we briefly mention the following works related to our results. Dong
and Xu [3] (see also [19]) discussed a general space-time fractional Schrödinger
equation combining the Caputo fractional time derivative with β ∈ (0, 2), with
a fractional space derivative of order α ∈ (0, 2) (the notation of [3]). The
resulting fractional space-time Schrödinger equation has the form

iβ∂βt u(x, t) = ((−∆)
α
2 u)(x, t) + V (x)u(x, t) = (Hβu)(x, t),

on the Hilbert space L2(Rd) with an initial condition u(0) = u0. The fractional

Laplacian (−∆)
α
2 is defined through the Fourier transform as the multiplication

operator by |k|α.
Dong and Xu [3] studied the impact of the potential V on the time evolu-

tion of the solutions with initial conditions chosen to be eigenfunctions of the
Hamiltonian Hα := (−∆)

α
2 + V . With this choice, they find product solutions

for which the time dependence is expressed through a Mittag-Leffler function.
They determined that the long time behavior depends on the order β of frac-
tional time derivative and the sign of the eigenvalue of Hα corresponding the
the chosen eigenfunction for the initial condition. In particular, if the eigenvalue
is positive, and 0 < β 6 1, the total probability of the solution never tends to
zero, whereas if 1 < α < 2, the total probability of a solution tends to zero in
certain cases.

Bayin [1] also explored the relation between the eigenvalues of Hα and the
large-time behavior of the solutions. He studies solutions of the form u(x, t) =
X(x)T (t). Assuming the spectrum of Hα is discrete, as in [3], the function X
is an eigenfunction of Hα. The temporal part T is given by a Mittag-Leffler
function determined by β. Bayin proved the nonconservation of probability.
He also gave the long-time behavior of product solutions to the TFSE following
from the asymptotics of the Mittag-Leffler functions. There are similarities
between these papers and our treatment in section 2.

P. Górka, H. Prado, and J. Trujillo [5] studied the abstract Naber model
iα∂αt u = Hu, α ∈ (0, 1) for a general nonnegative, self-adjoint operator H on
a Hilbert space H. They prove existence and uniqueness of strong solutions in
H when ∂αt is the Caputo derivative, and the initial condition u0 ∈ D(H) ⊂ H.
Among their results, they prove that the solution operator Uα(t) approaches the
unitary time evolution e−itH as α → 1−. Their approach, based properties of
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the Mittag-Leffler functions on the spectral theorem for H, has some similarities
with ours, see section 2.

P. Górka, H. Prado, and D. J. Pons [6] continued this study and examined
the time-asymtotic behavior of solutions to the abstract Naber model. They
also proved that the global probability is not preserved under the evolution
operator Uα(t): If u0 ∈ H, with ‖u0‖H = 1, then ‖Uα(t)u0‖H is O( 1

α). This
had already been noted by [3].

A. Iomin [9, 10] also studied the Naber model (1.2) in relation to the quantum
comb model. He used an eigenfunction expansion of the spatial Hamiltonian
and the Mittag-Leffler functions to express the Green’s function as

G(x, x′, t) =
∑
λ

φ∗λ(x′)φλ(x)Eα(λ(−it)α).

For α = 1
2 , Iomin discussed similarities between the Green’s function for the

TFSE and the quantum comb model. In [11], Iomin studied the AYH model
(??) and explored quantum mechanical properties of the model, such as the
Heisenberg equations of motion. A review of TFSE is given in [12].

1.2. The quantum Hall model. We study the magnetic Schrödinger operator
in a half-plane with a constant, transverse magnetic field of strength b > 0
and Dirichlet boundary conditions along the edge x = 0. The half-plane is
Ω := {(x, y) | x > 0, y ∈ R}. The constant magnetic field is orthogonal to the
half-plane and described by a vector potential a(x, y) := (a1(x, y), a2(x, y)) :=
b(0, x).

The magnetic Schrödinger operator is defined as follows. Let px := −i∂x and
py := −i∂y be the two momentum operators. The two-dimensional magnetic
Schrödinger operator H(a) is defined on the dense domain C∞0 (Ω) ⊂ L2(Ω) by

H = H(a) := (−i∇− a)2 = p2
x + (py + bx)2. (1.4)

The spectral properties of H(a) are well-known. These are derived from
the representation of H(a) as a direct integral. Because of the translational
invariance in the y-direction, the partial Fourier transform with respect to y
provides this decomposition. Let Fy be the partial Fourier transform with
respect to y, i.e.

ϕ̂(x, k) = (Fyϕ)(x, k) :=
1√
2π

∫
R
e−ikyϕ(x, y)dy, ϕ ∈ L2(Ω).

The direct integral decomposition of H(a) is given by

FyH(a)F∗y =

∫ ⊕
R
hb(k) dk, (1.5)

where the reduced Schrödinger operator hb(k) is given by

hb(k) := −∂2
x + (k + bx)2, x > 0, k ∈ R. (1.6)

These operators act on L2(R+) with Dirichlet boundary condition at x = 0.
For all k ∈ R fixed, the effective potential Vk(x) := (k+bx)2 is unbounded as

x goes to infinity, so hb(k) has a compact resolvent. Let {λn(k), n ∈ N} denote
the eigenvalues, arranged in non-decreasing order, of hb(k). Since all these
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eigenvalues λn(k) with n ∈ N are simple, each k 7→ λn(k) is a real analytic
function in R. The dispersion curves λn(k), n ∈ N, have been extensively
studied in several articles (see e.g. [2, 7]). They are monotone decreasing
functions of k ∈ R, obeying

lim
k→−∞

λn(k) = +∞ and lim
k→+∞

λn(k) = En, (1.7)

for all n ∈ N, where En := (2n−1)b is the n-th Landau level. As a consequence,

the spectrum of H(a) is σ(H(a)) = ∪n>1λn(R) = [b,+∞). The Landau levels
En, n ∈ N, are thresholds in the spectrum of H(a).

For n ∈ N and k ∈ R, we consider a normalized eigenfunction φn(·, k) of
hb(k) associated with λn(k). It is well known that φn(·, k) depends analytically
on k. We define the n-th generalized Fourier coefficient of u ∈ L2(Ω), by

un(k) := 〈Fyu(·, k), φn(·, k)〉L2(R+) =
1√
2π

∫
R+

û(x, k)φn(x, k) dx. (1.8)

Note that the inner product in (1.8) is linear in the first entry. In this setting,
Parseval’s Theorem yields

‖u‖2L2(Ω) = ‖û‖2L2(Ω) =
∑
n>1

‖un‖2L2(R). (1.9)

1.3. The edge current. We define the edge current carried by a state as the
time derivative of the expectation of the observable y in the time-evolved state.
Here, the observable y denotes the multiplier by the coordinate y in L2(Ω), with
Ω = R+

x × Ry. Given an evolution equation, we denote by u(t) the dynamical
solution to the initial value problem with u(t = 0) = u0. The edge current
Jy[u0](t) is given by

Jy[u0](t) :=
d

dt
〈u(t), yu(t)〉L2(Ω). (1.10)

For the ordinary Schrödinger equation, we have u(t) = e−itHu0. In this
case, the time evolution can be represented by the Heisenberg variable y(t) :=
e−itHyeitH , all t ∈ R. A current operator may be expressed in terms of the
time derivative of y(t). This is the velocity in the y-direction. As is well known,

this operator is given by dy(t)
dt = −i[H, y(t)] = −ie−itH [H, y]eitH . In this case,

the current operator has the form of the self-adjoint operator Jy := −i[H, y] =
−2(py + bx). The current carried by a time-evolved state u(t), with initial
condition u0, can the be written in terms of the current operator:

Jy[u0](t) :=
d

dt
〈u(t), yu(t)〉L2(Ω) = −i〈u(t), [H, y]u(t)〉L2(Ω)

= 〈u(t), Jyu(t)〉L2(Ω) = 〈u0, Jy(t)u0〉L2(Ω), (1.11)

where the Heisenberg current observable is defined by Jy(t) := e−itHJye
itH .

For the TFSE (1.1), the time evolution is not given by a unitary group. As
discussed below, the time evolution is expressed, via the functional calculus,
in terms of a Mittag-Leffler function. These functions, whose properties are
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summarized in Appendix A, are defined by

Eα,σ(z) :=
∞∑
k=0

zk

Γ(σ + αk)
, (1.12)

where Γ(z) denotes the gamma function. It follows from (1.12) that E1,1(z) =
ez. In terms of these functions, the solution to the TFSE may be written as

u(t) = Eα,1((−i)βtαH)u0. (1.13)

The current then has the form

Jy[u0](t) :=
d

dt
〈u(t), yu(t)〉L2(Ω) =

d

dt

∫
Ω
y|(Eα,1((−i)βtαH)u0)(x, y)|2 dx dy.

(1.14)

1.4. Summary of results on the edge current. The dynamics of the TFSE
is governed by the initial-value problem:

iβ∂αt u(x, y; t) = H(a)u(x, y; t) = (p2
x + (py + bx)2)u(x, y, t), (1.15)

with the initial condition u(t = 0) = u0(x, y). The solution to the initial-value
problem is

u(t) = Eα,1((−i)βtαH(a))u0,

see (1.13) and (1.12). The exponents (α, β) ∈ (0, 1]× [0, 1]. There are different
dynamical asymptotic regimes depending on the relationship between these two
exponents. Our general results are:

(1) Case 1: 0 < β 6 α < 1. For β < α, the edge current grows ex-
ponentially in time. In the case 0 < α = β < 1, the edge current is
asymptotically constant in time.

(2) Case 2: 0 < α < β 6 1. The current exhibits decays to zero as t→∞
like t−1−3α.

In particular, we mention three special cases discussed in the literature:

(1) Schrödinger equation [7]: α = β = 1. The solution to the initial-
value problem is

u(t) = E1,1(−itH(a))u0 = e−itH(a)u0.

The edge current is bounded for all time, see Remark 3.1. Lower bounds
on the edge current were derived in [7].

(2) Naber model [16]: α = β ∈ (0, 1). The solution to the initial-value
problem is

u(t) = Eα,1((−i)αtαH(a))u0.

The edge current is bounded for all time. This is similar to the
Schrödinger case.

(3) AYH model [17]: α ∈ (0, 1) and β = 1. The solution to the initial-
value problem is

u(t) = Eα,1(−itαH(a))u0.

The edge current decays to zero like t−1−3α.
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These results illustrate that, for fixed 0 < α < 1, tuning the parameter
β ∈ (0, 1] leads to qualitatively different behaviors in the long-time asymptotics
of the current. The critical value β = α is a transition between exponential
growth and inverse power decay. For 0 < α < 1 fixed, as β ∈ (0, 1) varies, we
have

0 < β < α Jy[u0](t) ∼ ect

β = α Jy[u0](t) ∼ C0

α < β 6 1 Jy[u0](t) ∼ t−1−3α

(1.16)

The Schrödinger case α = β = 1 is conservative and the edge current is
constant in time. For other values of α = β, the current is asymptotically
constant.

1.5. Outline of the paper. In section 2, we prove the existence and unique-
ness of the solution to the initial-value problem with u0 chosen from an appro-
priate function space depending on the exponents (α, β). Section 3 presents the
calculation of the edge current Jy[u0](t) in terms of the Mittag-Leffler functions.
The main results on the asymptotic behavior of the edge currents, for various
values of the exponents (α, β), are presented in section 4, including a the spe-
cial cases of the models of Naber and of AYH. In section 6, we calculate the
mean-square displacement (MSD) of the y-observable for the time-fractional
Hall model for the ranges of exponents (α, β). Details concerning the Mittag-
Leffler functions are summarized in the Appendix A.

1.6. Acknowledgement. The authors thank Yavar Kian for discussions on the
topics of this paper. PDH thanks Aix Marseille Université for some financial
support and hospitality during the time parts of this paper were written. PDH
is partially supported by Simons Foundation Collaboration Grant for Mathe-
maticians No. 843327. S is partially supported by the Agence Nationale de la
Recherche (ANR) under grant ANR-17-CE40-0029.

2. The well-posedness of constant-order time-fractional
Schrödinger equations

We prove the existence and uniqueness of the solution to the initial-value
problem for the time-fractional Schrödinger equation (TFSE) on general general
subdomains Ω0 ⊂ Rd, d > 1, with smooth boundary Γ0 := ∂Ω0. For α, β ∈
(0, 1), the initial-value problem for the time-fractional Schrödinger equation is:

−iβ∂αt u(·, t) +Hu(·, t) = 0, and u(·, t = 0) = u0(·). (2.1)

We assume that Ω0 is open and not necessarily bounded. Let H be a lower
semi-bounded (nonnegative) self-adjoint operator with domain D(H) ⊂ L2(Ω0)
and having discrete spectrum. For the sake of simplicity, we assume that
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D(H
1
2 ) = H1

0 (Ω0), and that H has a compact resolvent. We denote by
λ1 6 λ2 6 . . . the eigenvalues of H arranged in nondecreasing order and re-
peated with the multiplicity. We pick an orthonormal basis {φn, n ∈ N} in
L2(Ω0) of eigenvectors of H, satisfying

Hφn = λnφn.

In order to use the results of this section, we recall that the quantum Hall
model is described on Ω = R+

x ×Ry, with the self-adjoint Schrödinger operator
H(a) on L2(R+

x ×Ry). By means of the partial Fourier transform with respect to
y, see (1.5), the problem is reduced to the study of the family of fiber operators
hb(k), k ∈ R, acting on L2(R+

x ). These nonnegative operators hb(k) have
compact resolvent and, consequently, discrete, simple spectrum. So, the results
of this section apply to the operators hb(k) with Ω0 = R+

x .

2.1. Main results on the TFSE. We recall the time-fractional Schrödinger
equation for exponents (α, β) ∈ (0, 1) × (0, 1). We will also consider the end-
points α, β ∈ {0, 1} separately. The TFSE is the initial-value problem

−iβ∂αt u(x, t) +Hu(x, t) = 0, (x, t) ∈ Ω0 × (0, T ) (2.2)

with homogeneous Dirichlet boundary condition

u(x, t) = 0, (x, t) ∈ Γ0 × (0, T ) (2.3)

and initial state u0

u(x, 0) = u0(x), x ∈ Ω0, (2.4)

where ∂αt denotes the Caputo fractional derivative of order α. The Caputo
fractional derivative ∂αt is defined by

∂αt u(t) =
1

Γ(1− α)

∫ t

0

u′(s)

(t− s)α
ds. (2.5)

We note that ∂αt u → ∂tu, as α → 1, if, for example, u ∈ C2(R). This follows
from the formula (2.5) by an integration by parts.

We call u(x, t), with x ∈ Ω0 and t > 0, a solution to (2.2)–(2.4) if the 3
following conditions hold simultaneously:

(1) u(·, t) ∈ D(H), for a.e. t ∈ R+;
(2) the fractional Schrödinger equation (2.2) holds in L2(Ω0) for t ∈ R+:

iβ∂αt u(·, t) = Hu(·, t);

(3) u ∈ C(R+, L2(Ω0)), so limt↓0 ‖u(·, t)− u0‖L2(Ω0) = 0.

Using an eigenfunction expansion, we prove the existence and uniqueness of
solutions to the TFSE. We need to take the initial conditions from various func-
tion spaces in L2(Ω0) depending on the relationship between α and β. Recall
that D(H) denotes the domain of the self-adjoint operator H in L2(Ω0). For an
orthonormal basis {φn}n∈N and u0 ∈ L2(Ω0), we define the associated Fourier
coefficients by u0,n := 〈u0, φn〉L2(Ω0). We denote by CF (Ω0) the dense set of

initial conditions u0 ∈ L2(Ω0) with finitely-many nonzero Fourier coefficients
u0,n.
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Theorem 2.1. Let (α, β) ∈ (0, 1)2 be the parameters of the TFSE described in
(2.2)-(2.4). We distinguish three cases:

(1) Case 1: 0 < α < β 6 1. Let u0 ∈ L2(Ω0).

(2) Case 2: 0 < α = β 6 1. Let u0 ∈ D(H).

(3) Case 3: 0 6 β < α 6 1. Let u0 ∈ CF (Ω0).

In each case, there exists a unique solution u ∈ C(R+, L2(Ω0)) ∩C(R+, D(H))
to (2.2)–(2.4) of the form

u(x, t) =

∞∑
n=1

u0,nEα,1((−i)βλntα)φn(x), u0,n := 〈u0, φn〉L2(Ω0), (2.6)

such that

(1) Case 1: For each u0 ∈ L2(Ω0), there exists a finite constant C1 > 0, so
that

‖u‖C(R+,L2(Ω0)) 6 C1‖u0‖L2(Ω0).

Moreover, we have ∂αt u ∈ C(R+, L2(Ω0)), and there exists a finite con-

stant C̃1 > 0 so that

‖u(·, t)‖D(H) + ‖∂αt u(·, t)‖L2(Ω0) 6 C̃1‖u0‖L2(Ω0)t
−α,

for all t > 1.

(2) Case 2: For each u0 ∈ D(H), there exists a finite constant C2 > 0, so
that

‖u‖C(R+,L2(Ω0))
6 C2‖u0‖D(H).

Moreover, we have ∂αt u ∈ C(R+, L2(Ω0)), and there exists a finite con-

stant C̃2 > 0, so that

‖u(·, t)‖D(H) + ‖∂αt u(·, t)‖L2(Ω0) 6 C̃2‖u0‖D(H),∀t ∈ R+.

(3) Case 3: Let θ(α, β) := πβ
2α . For each u0 ∈ CF (Ω0), there exists a finite

constant C3 > 0, and an index n∗ ∈ N, so that

‖u‖C(R+,L2(Ω0))
6 C3(1 + tαλn∗)2( 1−β

α )e2tλ
1
α
n∗ cos θ(α,β)‖u0‖2L2(Ω0)

Moreover, we have ∂αt u ∈ C(R+, L2(Ω0)) and there exists a finite con-

stant C̃3 > 0, so that

‖u(·, t)‖D(H) + ‖∂αt u(·, t)‖L2(Ω0)

6 C̃3(1 + tαλn∗)2( 1−β
α )e2tλ

1
α
n∗ cos θ(α,β)‖u0‖2L2(Ω0). (2.7)

The constants Cj, j = 1, 2, 3 depend on α, β,Ω, and H.
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2.2. Proof of Theorem 2.1. We divide the proof of Theorem 2.1 into two
parts: existence and uniqueness.

Proof. Part 1: Existence.
1. We show that the solution exists as the L2-norm limit of the sequence
of partial sums given by the expansion of the solution with respect to the
orthonormal basis φn of eigenfunctions of H. The relationship between the
exponents α and β determine the choice of the initial conditions u0 for which
these expansion converge. This is controlled by the bounds on the Mittag-
Leffler functions as described in section A.2. Given u0 ∈ L2(Ω0), we let u0,n :=

〈u0, φn〉L2(Ω0) be the nth-Fourier coefficient of u0 relative to this orthonormal
basis. We first consider the finite sum

SN (x, t) :=

N∑
n=1

u0,nEα,1((−i)βλntα)φn(x), N ∈ N. (2.8)

We define the function Fα,β,n(t), for t > 0, based on the bounds (A.4) and
(A.5):

0 < α < β Fα,β,n(t) = C
1+tαλn

6 C1 (2.9)

α = β Fα,β,n(t) = C2 (2.10)

β < α 6 1 Fα,β,n(t) = C3

[
(1 + tαλn)

1−β
α etλ

1
α
n cos θ(α,β) + 1

1+tαλn

]
,

(2.11)

where θ(α, β) :=
(
πβ
2α

)
. The finite constants Cj > 0, for j = 1, 2, 3, depend on

(α, β), but are independent of (n, t).
2. For any t > 0, we have

‖SN (t)‖2L2(Ω0) =
N∑
n=1

|u0,n|2
∣∣∣Eα,1((−i)βλntα)

∣∣∣2
6

N∑
n=1

|u0,n|2F 2
α,β,n(t). (2.12)

For cases 1 and 2, the bounds (2.9) and (2.10) show that the function Fα,β,n(t)
is uniformly bounded in (n, t). As a result, the right side of (2.12) is finite for
any u0 ∈ L2(Ω0). Since the bound on the partial sum is

‖SN (t)‖2L2(Ω0) 6 C
2
j ‖u0‖2L2(Ω0), j = 1, 2, (2.13)

the L2 limit exists. For case 3, the cosine factor in the exponential of (2.11) is

positive since 0 6 β
α < 1. Since the eigenvalues λn are increasing functions of

n, the initial state u0 has to be chosen so that∑
n

|u0,n|2(1 + tαλn)2( 1−β
α )e2tλ

1
α
n cos θ(α,β),
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is finite. A sufficient condition for this is that {n ∈ N | u0,n 6= 0} is finite,
that is, we require u0 ∈ CF (Ω0), the set of initial conditions u0 ∈ L2(Ω0) with
finitely-many nonzero Fourier coefficients u0,n. Let n∗ denote the largest index
for which u0,n 6= 0. In this case, we obtain

‖SN (t)‖2L2(Ω0) 6 C
2
3 (1 + tαλn∗)2( 1−β

α )e2tλ
1
α
n∗ cos θ(α,β)‖u0‖2L2(Ω0). (2.14)

The L2 limit exists but the norm increases exponentially in time. It follows from
this, that for cases 1 and 2, with u0 ∈ L2(Ω0), or case 3, with u0 ∈ CF (Ω0), we
have u(t) in (2.6) exists for all t > 0. In addition, the analyticity properties of

the Mittag-Leffler functions ensure that u ∈ C(R+, L2(Ω0)).
3. We next show that u(t) ∈ D(H) provided u0 satisfies the conditions in
Theorem 2.1. For case 1, if t > 0, the first bound of Lemma A.1 shows that

‖Hu(·, t)‖2L2(Ω0) =
∞∑
n=1

λ2
n|u0,n|2|Eα,1(−iλntα)|2

6 C2
∞∑
n=1

|u0,n|2
λ2
n

(1 + λntα)2
6 C2t−2α‖u0‖2L2(Ω0).(2.15)

For case 2, we have u0 ∈ D(H), so that for any t > 0,

‖Hu(·, t)‖2L2(Ω0) =
∞∑
n=1

λ2
n|u0,n|2|Eα,1(−iλntα)|2

6 C2
2‖u0‖2D(H). (2.16)

For case 3, we have u0 ∈ CF (Ω0), and since CF (Ω0) ⊂ D(H), we have for any
t > 0,

‖Hu(·, t)‖2L2(Ω0) 6 C
2
3 (1 + tαλn∗)2( 1−β

α )e2tλ
1
α
n∗ cos θ(α,β)‖u0‖2D(H). (2.17)

As a consequence we have Hu ∈ C(R+, L2(Ω0)), and hence u ∈ C(R+, D(H)).
4. We next prove that u(t) solves the TFSE. For all λ > 0, we have

∂αt Eα,1((−i)βλtα) = (−i)βλEα,1((−i)βλtα), t > 0.

Therefore, in light of (2.15), we obtain for all t ∈ R+, that

∂αt u(·, t) = (−i)β
∞∑
n=1

λnu0,nEα,1((−i)βλntα)φn

= (−i)βHu(·, t).

Therefore, for t ∈ R+, the function u(x, y, t) is a solution to (2.2) in L2(Ω0) ∩
D(H) and ∂αt u ∈ C(R+, L2(Ω0)).
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5. We establish the property that u(t) converges to u0 as t→ 0. For all t ∈ R+,
we have

‖u(·, t)− u0‖2L2(Ω0) =
∞∑
n=1

|u0,n|2|Eα,1(−iλntα)− 1|2

6
∞∑
n=1

|u0,n|2 (|Eα,1(−iλntα)|+ 1)2

6 C(t)‖u0‖2L2(Ω0), (2.18)

where C(t) > 0 is a constant in cases 1 and 2, and given by the expression
on the right side of (2.17) in case 3. Since limt↓0 (Eα,1(−iλntα)− 1) = 0, for
all n ∈ N, inequality (2.18) and the dominated convergence theorem yield that
limt↓0 ‖u(·, t)− u0‖L2(Ω0) = 0. As a consequence, u given by (2.6) is a solution

to (2.2)–(2.4).
Part 2: Uniqueness.
6. In order to show that this weak solution is unique, we assume that u0 = 0
and prove that (2.2)–(2.4) admits only the trivial solution. To do so, we take
the scalar product in L2(Ω0) of both sides of (2.2), with φn, for some n ∈ N.
Putting un(t) := 〈u(·, t), φn〉L2(Ω0), we get that

−iβ∂αt un(t) + λnun(t) = 0.

Moreover, we have limt↓0 un(t) = 〈limt↓0 u(·, t), φn〉L2(Ω0) = 0 from the ex-

pansion (2.6). Thus, un(t) = 0 for a.e. t ∈ R+. This shows that u(·, t) =∑
n>1 un(t)φn = 0 in L2(Ω0) for all t ∈ R+. �

3. Calculation of the edge current

We consider the initial-value problem for the general TFSE with exponents
(α, β) ∈ (0, 1]:

(−iβ∂αt +H(a))u(x, y, t) = 0, (3.1)

with initial condition u(x, y, t = 0) = u0(x, y). The solution is given in terms
of the Mittag-Leffler functions:

u(·, t) = (Eα,1((−i)βtαH(a))u0)(·), (3.2)

where (·) stands for the spatial coordinates (x, y) ∈ Ω := R+
x ×Ry. To compute

the edge current Jy[u0], we need

∂tu(·, t) = (−i)βtα−1(Eα,α((−i)βtαH(a))H(a)u0)(·), (3.3)

where we used the identity (A.2) for the derivative of the Mittag-Leffler func-
tion. This provides a compact expression for the edge current:

Jy[u0](t) := ∂t〈yu(·, t), u(·, t)〉L2(Ω)

= 2tα−1 Re{(−i)β〈yEα,α((−i)βtαH(a))H(a)u0, Eα,1((−i)βtαH(a))u0〉L2(Ω)}.
(3.4)
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3.1. Choice of the initial state u0. We select an initial state that is a trun-
cation in the k-variable of the first eigenfunction φ1(x, k) of the fiber operator
hb(k) with eigenvalue λ1(k). We choose a compactly supported function χ(k)
with support in a closed interval I ⊂ R so that λ1(I) ⊂ (b, 3b). We select
u0(x, y) by taking

û0(x, k) =
1√
2π

∫
R
e−ikyu0(x, y) dy := χ(k)φ1(x, k). (3.5)

We recall that we choose φ1(x, k) to be real.

3.2. Formula for the edge current. To facilitate the calculation of Jy[u0],
we define two functions

uα := Eα,1((−i)βtαH(a))u0 (3.6)

vα := Eα,α((−i)βtαH(a))u0. (3.7)

Using these two functions, we may express the current in (3.4) as

Jy[u0](t) = 2tα−1 Re{(−i)β〈H(a)vα, yuα〉}. (3.8)

Let us reduce the matrix element

Ku0(t) := 〈H(a)vα, yuα〉. (3.9)

Using the choice of u0 in (3.5), we obtain for the partial Fourier transforms
with respect to y:

ûα(x, k, t) = Eα,1((−i)βtαλ1(k))χ(k)φ1(x, k), (3.10)

and
v̂α(x, k, t) = Eα,α((−i)βtαλ1(k))χ(k)φ1(x, k). (3.11)

Substituting these into the expression (3.9) for Ku0(t) yields

Ku0(t) =

∫
R
〈hb(k)v̂α(·, k, t), ŷuα(·, k, t)〉L2(R+) dk. (3.12)

We note that

ŷuα(x, k, t) = i∂k(Eα,1((−i)βtαλ1(k))χ(k)φ1(x, k)). (3.13)

We obtain from (3.12)-(3.13):

Ku0(t) =

∫
R
λ1(k)χ(k)Eα,α((−i)βtαλ1(k))〈φ1(·, k),

i∂k(χ(k)φ1(·, k)Eα,1((−i)βtαλ1(k)))〉L2(R+) dk. (3.14)

The inner product in (3.14) may be expanded to obtain

〈φ1(·, k), i∂k(Eα,1((−i)βtαλ1(k))χ(k)φ1(·, k))〉L2(R+)

= −i∂k(Eα,1((−i)βtαλ1(k))χ(k)), (3.15)

since 〈φ1(·, k), φ1(·, k))〉L2(R+) = 1, and 〈φ1(·, k), ∂kφ1(·, k))〉L2(R+) = 0, since
φ1(x, k) may be chosen to be real. Consequently, the expression for Ku0(t) is

Ku0(t) = −i
∫
R
λ1(k)Eα,α((−i)βtαλ1(k))χ(k)∂k(Eα,1((−i)βtαλ1(k))χ(k)) dk.

(3.16)
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We write Eα,j(k, t) := Eα,j((−i)βtαλ1(k)), for j = 1, α, for short. We de-

compose Ku0(t) := −i[K(1)
u0 (t) +K

(2)
u0 (t)], where

K(1)
u0 (t) :=

∫
R
λ1(k)χ(k)χ′(k)Eα,α(k, t)Eα,1(k, t) dk, (3.17)

and

K(2)
u0 (t) :=

∫
R
λ1(k)χ2(k)Eα,α(k, t)∂kEα,1(k, t) dk. (3.18)

We may reduce the form of K
(2)
u0 (t) using the fact that

∂kEα,1(k, t) =
1

α
(−i)βtαλ′1(k)Eα,α(k, t). (3.19)

From this, we may write

K(2)
u0 (t) :=

iβtα

α

∫
R
λ1(k)λ′1(k)χ2(k)|Eα,α(k, t)|2 dk. (3.20)

The final formula for the current is:

Jy[u0](t) = 2tα−1 Re

{
(−i)1+β

∫
R

[
λ1(k)χ(k)χ′(k)Eα,α(k, t)Eα,1(k, t)

+iβ
tα

α
λ1(k)λ′1(k)χ2(k)|Eα,α(k, t)|2

]
dk

}
= 2tα−1

∫
R
λ1(k)χ(k)χ′(k) Re

{
(−i)1+βEα,α(k, t)Eα,1(k, t)

}
dk.

(3.21)

Remark 3.1. The formula (3.21) reduces to the classical result when α = β =
1:

Jy[u0](t) = −2

{∫
R
λ1(k)χ(k)χ′(k)|E1,1(k, t)|2 dk

}
. (3.22)

We recall that E1,1(z) = ez so that E1,1(k, t) = e−iλ1(k)t, and hence

Jy[u0](t) = −2

{∫
R
λ1(k)χ(k)χ′(k) dk

}
=

∫
R
λ′1(k)χ2(k) dk. (3.23)

This result agrees with the calculation of the edge current for the Schrödinger
equation using the unitary group since u(t) = e−iH(a)tu0 so that one may use
(1.11), with initial condition (3.5). Explicit positive lower bounds on λ′1(k) are
given in [7, Theorem 2.1].

Remark 3.2. It is interesting to compute the edge current for α = 1 and
β ∈ (0, 1). In this case, the solution to the initial-value problem is similar to

the Schrödinger case: u(t) = e(−i)βH(a)tu0. Using (3.21), with the fact that

E1,1(k, t) = e(−i)βλ1(k)t, we find that the edge current has the form:

Jy[u0](t) = 2 cos
(π

2
(1 + β)

)∫
R
λ1(k)χ′(k)χ(k)e2tλ1(k) cos(πβ2 ) dk. (3.24)
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We note that when β = 1, we obtain (3.23).

4. Asymptotic behavior of the edge current

In this section, we use formula (3.21) of section 3 in order to calculate the
asymptotic behavior in time of the edge currents. We first summarize the
asymptotic expansions of the Mittag-Leffler functions.

4.1. Asymptotic expansions of Mittag-Leffler functions. In order to an-
alyze the long-time behavior of Jy[u0](t), we need the large t behavior of the
functions Eα,α(k, t) and Eα,1(k, t). We use formulas (A.4)-(A.5) of Appendix
A.3 to write the expansions of Eα,σ(k, t) to fourth order in κ. For this, we recall
the notation:

Eα,σ(k, t) := Eα,σ((−i)βtαλ1(k)),

for σ = 1, α. The choice of the expansion depends on the relationship between
α and β. To apply the asymptotics of the Mittag-Leffler functions, we note that
z = (−i)βκ, with κ := tαλ1(k) > 0, so that | arg z| = πβ

2 < π, for β ∈ [0, 1]. The
Mittag-Leffler functions have different asymptotic behaviors in z depending on
the sector in which |z| → ∞. These sectors are determined by a real parameter
µ satisfying (A.3). We have two cases:

Case 1: β 6 α. | arg z| < µ for all µ satisfying (A.3). The asymptotics (A.4)
hold.

Case 2: α < β. All µ ∈
(
πα
2 ,min(πα, πβ2 )

)
satisfy (A.3), and we have µ <

| arg z| < π. The asymptotics (A.5) hold.

From this analysis, the fact that z = (−i)βκ, with κ := tαλ1(k) > 0, and the
asymptotics (A.4)-(A.5), we obtain:

Case 1. β 6 α.

Eα,1(z) =
1

α
e(−i)

β
α κ

1
α − iβ

κΓ(1− α)
− i2β

κ2Γ(1− 2α)
− i3β

κ3Γ(1− 3α)
+O(κ−4)

(4.1)

Eα,α(z) =
1

α
(−i)

β(1−α)
α κ

1−α
α e(−i)

β
α κ

1
α − i2β

κ2Γ(−α)
− i3β

κ3Γ(−2α)
+O(κ−4)

(4.2)

Case 2. β > α.

Eα,1(z) = − iβ

κΓ(1− α)
− i2β

κ2Γ(1− 2α)
− i3β

κ3Γ(1− 3α)
+O(κ−4) (4.3)

Eα,α(z) = − i2β

κ2Γ(−α)
− i3β

κ3Γ(−2α)
+O(κ−4) (4.4)

We note that Γ(−n)−1 = 0, for n ∈ N ∪ {0}.
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We recall that the integrand of the edge current contains the factor:

Re
{

(−i)1+βEα,α(k, t)Eα,1(k, t)
}
, (4.5)

whose asymptotic expansion we now compute for each case. We note that as
long as α, σ > 0, the Mittag-Leffler function satisfies

Eα,σ(z) = Eα,σ(z).

4.2. Asymptotic expansion for the current in Case 1: 0 < β 6 α < 1.
We first compute the leading term of (4.5) using the asymptotics (4.1)-(4.2).
The result is

1

α2
cos

[(
πβ

2α

)
(1− α) +

π

2
(1 + β)

]
λ1(k)

1−α
α t1−αe2tλ1(k)

1
α cos(πβ2α ). (4.6)

This term is positive since 0 < β
α 6 1. The leading term grows exponentially

in time. The other terms in the expansion are of lower order. To simplify the
notation, we introduce two angles:

θ :=
πβ

2α
, γ(k) := λ1(k)

1
α sin θ. (4.7)

We express the next lower-order term in (4.5) as follows:

−t1−2αetλ1(k)
1
α cos θ

[
1

αΓ(1− α)
cos
(
tγ(k) + θ +

π

2
(1 + β)

)
λ1(k)

1−2α
α

]
. (4.8)

The remainder is seen to be O(t−2α).
As a consequence of (4.6)-(4.8), the edge current (3.21) may be expressed as

Jy[u0](t) = 2tα−1 Re

{
(−i)1+β

∫
R

[
λ1(k)χ(k)χ′(k)Eα,α(k, t)Eα,1(k, t)

]
dk

}
=

2

α2
cos
(
θ(1− α) +

π

2
(1 + β)

)∫
R
λ

1
α
1 (k)χ(k)χ′(k)e2tλ

1
α
1 (k) cos θ dk

− 2t−α

αΓ(1− α)

∫
R

cos
(
tγ(k) + θ +

π

2
(1 + β)

)
λ

1−α
α

1 (k)χ(k)χ′(k)etλ
1
α
1 (k) cos θ dk

+O(t−1−α). (4.9)

The main characteristic of the edge current in Case 1 with 0 < β < α < 1 is
the exponential growth of the current with time. However, for the case α = β,
the factor in the exponential cos θ = 0 and the edge current is asymptotically
constant in time, see section 5.1.

4.3. Asymptotic expansion for the current in Case 2: 0 < α < β 6 1.
The edge current in Case 2 decays with time. Using the asymptotics for Case2,
(4.3)-(4.4), we find:

Jy[u0](t) =
2

t1+3α

(∫
R

1

λ3
1(k)

χ(k)χ′(k) dk

)
× cos

(
(β + 1)π

2

)[
1

Γ(1− 2α)Γ(−α)
− 1

Γ(1− α)Γ(−2α)

]
+O(t−1−4α). (4.10)
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In the regime of Case 2, 0 < α < β 6 1, the edge current decays like t−1−3α.

5. Asymptotics of the edge current in special cases

In this section, we discuss the results of section 4 for two well known models.

5.1. Asymptotics of the current for the Naber model. The original
TFSE model proposed by Naber [16] consists of taking 0 < α = β < 1. This
model is an example of Case 1. We note that for α = β > 0, the term in the ex-

ponent (−i)
β
α = −i and the exponential factors in (4.1) and (4.2) have modulus

one. Consequently, the edge current (4.9) in this case has the expansion:

Jy[u0](t) = 2tα−1 Re

{
(−i)1+α

∫
R

[
λ1(k)χ(k)χ′(k)Eα,α(k, t)Eα,1(k, t)

]
dk

}
=

1

α2

∫
R

(λ1(k)
1
α )′χ2(k) dk

+
2t−α

αΓ(1− α)

∫
R
λ

1−α
α

1 (k)χ(k)χ′(k) cos

(
πα

2
+ tλ

1
α
1 (k)

)
dk

+O(t−1−α). (5.1)

Thus, the edge current in the Naber model is a asymptotically constant in
time. Taking α = β = 1, the leading term of (5.1) is the same as (3.23) for the
Schrödinger model, and the next term in the expansion vanishes.

5.2. Asympotics of the current for the AYH model. The TFSE model
proposed by Narahari Achar, et. al., [17] consists of taking 0 < α < 1 and
β = 1. This is an example of Case 2. Evaluating the asymptotic formula in
(4.10), we obtain

Jy[u0](t) = − 2

t1+3α

(∫
R

1

λ3
1(k)

χ(k)χ′(k) dk

)[
1

Γ(1− 2α)Γ(−α)
− 1

Γ(1− α)Γ(−2α)

]
+O(t−1−4α). (5.2)

The edge current decays to zero as t → ∞. We note that, unlike the Naber
model, when α→ 1−, the leading term in (5.2) vanishes.

6. Mean square displacement in the time-fractional Hall model

In a related paper [8], we studied the effect of the fractional time derivative
on the free propagation properties of wave packets in Rd, d > 1, through the
evolution of mean square displacement. As another indicator of the anomalous
transport induced by a fractional time derivative in the quantum Hall model,
we compute the mean square displacement (MSD) of a wave packet in the y
direction for the TFSE:

iβ∂αt u = H(a)u, u(t = 0) = u0, (6.1)

with an initial condition u0 as defined in (3.5).
We recall that the solution to (6.1) u(x, y, t), with (x, y) ∈ Ω := R+

x × Ry, is
given by

u(x, y, t) = Eα,1((−i)βtαH(a))u0(x, y), (6.2)
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so that after a partial Fourier transform with respect to the y variable, we have

û(x, k, t) = Eα,1((−i)βtαλ1(k))χ(k)φ1(x, k). (6.3)

We define the MSD for the solution u(x, y, t) in (6.2) by

D2(u0, t) := 〈u(t), y2u(t)〉L2(Ω). (6.4)

Similar to calculations in section 3, by means of (3.13), we easily find

D2(u0, t) =

∫
R
|∂kû(x, k, t)|2 dx dk, (6.5)

where, using (6.3) and (A.2) for the derivative of the Mittag-Leffer function,
we obtain,

∂kû(x, k, t) = I + II + III. (6.6)

Using the notation Eα,j(k, t) := Eα,j((−i)βtαλ1(k)), for j = 1, α, as above, we
have for the three terms in (6.6):

I = Eα,α(k, t)(−i)βtαλ′1(k)χ(k)φ1(x, k),

II = Eα,1(k, t)χ′(k)φ1(x, k),

III = Eα,1(k, t)χ(k)∂kφ1(x, k). (6.7)

Using the properties of the eigenfunction φ1(x, k), and its orthogonality to
∂kφ1(x, k), we find that the MSD is the sum of four terms

D2(u0, t) = A+B + C + F,

where the square terms are

A =

∫
R
|Eα,α(k, t)|2t2α(λ′1(k))2χ2(k) dk,

B =

∫
R
|Eα,1(k, t)|2(χ′(k))2 dk,

C =

∫
R
|Eα,1(k, t)|2χ2(k)

(∫
R+

|∂kφ1(x, k)|2dx
)
dk, (6.8)

and the one nonvanishing cross term is

F = 2tα
∫
R

Re
{

(−i)βEα,α(k, t)Eα,1(k, t)
}
λ′1(k)χ′(k)χ(k) dk. (6.9)

Case 1. For 0 < β < α < 1, the asymptotics (4.1)-(4.2) indicate that the MSD
increases exponentially in time. However, for the case 0 < α = β < 1, the Naber
model, the asymptotic behavior of the MSD is a result of the asymptotics given
in (4.1)-(4.2), for α = β:

D2(u0, t) =
t2

α2

∫
R
λ1(k)2( 1−α

α )λ′1(k)2χ2
1(k) dk +O(1). (6.10)

Hence, the MSD D2(u0, t) is ballistic in the y-direction for the model of Naber
(1.2) (with −∆ replaced by H(a), and q = 0).
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Case 2: 0 < α < β 6 1. The expansions (4.3)-(4.4) lead to the following
expression for the asymptotics of the MSD:

D2(u0, t) =
1

t2α

{
1

Γ(−α)2

∫
R

λ′(k)2

λ4
1(k)

χ2(k) dk

+
1

Γ(1− α)2

∫
R

(χ′(k)2 + χ2(k)Φ(k))

λ2
1(k)

χ2(k) dk

}
+O(t−3α),

(6.11)

where

Φ(k) :=

∫
R+

|∂kφ1(x, k)|2dx.

In this case, the MSD in the y-direction decays like t−2α.
In summary, the MSD in the y-direction behaves like t2 for the Naber model

and like t−2α for the AYH model. For fixed α, the MSD, like the edge current,
exhibits a transport transition between 0 < β < α and α 6 β 6 1.

A. Mittag Leffler functions

A.1. Definitions. The Mittag-Leffler functions are generalizations of the ex-
ponential function. They are indexed by two parameters (α, σ):

Eα,σ(z) :=

∞∑
n=0

zn

Γ(αn+ σ)
. (A.1)

These are entire functions of z ∈ C for α, σ > 0. Note that E1,1(z) = ez. The
function Eα,1(−λtα) satisfies the fractional differential equation:

(∂αt + λ)Eα,1(−λtα) = 0.

We need the derivative of the Mittag-Leffler function Eα,1(z) with respect to
z.

dEα,1
dz

(z) =
∞∑
m=0

(m+ 1)zm

Γ(α(m+ 1) + 1)
=

1

α

∞∑
m=0

zm

Γ(αm+ α)
=

1

α
Eα,α(z), (A.2)

using the property that Γ(z + 1) = zΓ(z).

A.2. Bounds on Mittag-Leffler functions. The following technical result,
needed by the proof of Theorem 2.1, is a byproduct of [18, (1.147), (1.148)].
The asymptotic expansions are presented in (A.4) and (A.5). We consider only
the case α ∈ (0, 1].

Lemma A.1. [18, Theorems 1.5 and 1.6] Let σ ∈ R, α < 2, and µ ∈(
πα
2 ,min{πα, π}

)
.

(1) There exists a finite constant C = C(α, σ) > 0 so that

|Eα,σ(z)| 6 C
(

(1 + |z|)
1−σ
α eRe(z

1
α ) +

1

1 + |z|

)
,

for all | arg z| 6 µ and |z| > 0.
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(2) There exists a finite constant C = C(α, σ) > 0 so that

|Eα,σ(z)| 6 C

1 + |z|
,

for all µ < | arg z| 6 π and |z| > 0.

A.3. Asymptotic expansions of the Mittag-Leffler functions. The
asymptotics of the Mittag-Leffler functions are presented in section 1.2.7 of
Podnubny [18], Theorems 1.3 and 1.4. The asymptotics as |z| → ∞ depend on
the location of z ∈ C. For any α ∈ (0, 1) (actually, α ∈ (0, 2) is allowed), and
σ ∈ C, choose any µ > 0 satisfying

πα

2
< µ < min{π, πα} = πα. (A.3)

Theorem 1.3 of section 1.2.7 of [18] states that if | arg z| 6 µ, then, for any
p > 1, we have:

Eα,σ(z) =
1

α
z

1−σ
α ez

1
α −

p∑
k=1

z−k

Γ(σ − αk)
+O(|z|−p−1). (A.4)

Theorem 1.4 of section 1.2.7 of [18] states that if µ 6 | arg z| 6 π, then, for any
p > 1, we have:

Eα,σ(z) = −
p∑

k=1

z−k

Γ(σ − αk)
+O(|z|−p−1). (A.5)

We note that Γ(−n)−1 = 0, for n ∈ N ∪ {0}.
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vol. 268, no. 46, pp. 298305, 2000.

[15] N. Laskin, Fractional Schrödinger equation, Physical Review E, 66, no. 5, Article ID

056108, 7 pages, 2002.

[16] N. Naber, Time fractional Schrödinger equation, Journal of Mathematical Physics, vol.

45, no. 8, pp. 33393352, 2004.

[17] B. N. Narahari Achar, B. T. Yale, J. W. Hanneken, Time Fractional Schrödinger Equa-

tion Revisited, Advances in Mathematical Physics, Volume 2013, Article ID 290216, 11

pages.

[18] I. Podlubny, An introduction to fractional derivatives, fractional differential equations,

Academic Press, 1998.

[19] S. Wang, M. Xu, Generalized fractional Schrdinger equation with spacetime fractional

derivatives, J. Math. Phys. 48, 043502 (2007).

Department of Mathematics, University of Kentucky, Lexington, Kentucky
40506-0027, USA

E-mail address: peter.hislop@uky.edu
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