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We consider the inverse problem of determining the coupling coefficients in a two-state
Schrödinger system. We prove a Lipschitz stability inequality for the zeroth- and first-
order coupling terms by finitely many partial lateral measurements of the solution to
the coupled Schrödinger equations.
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1. Introduction

Let Ω be a bounded domain of Rn, n ∈ N = {1, 2, . . .}, with smooth boundary
Γ = ∂Ω. Given T ∈ (0, +∞), we consider the following initial-boundary value
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problem (IBVP) for the coupled two-state Schrödinger equations in the unknowns
u± = u±(x, t):⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−i∂tu
+ − Δu+ + q+u+ + A · ∇u− + pu− = 0 in Q = Ω × (0, T ),

−i∂tu
− − Δu− + q−u− − A · ∇u+ + pu+ = 0 in Q,

u+(·, 0) = u+
0 , u−(·, 0) = u−

0 in Ω,

u+ = g+, u− = g− on Σ = Γ × (0, T ),

(1.1)

where u±
0 and g± are suitable initial states and Dirichlet boundary conditions,

respectively. Here, A : Ω → Rn, p : Ω → R and q± : Ω → R are all real-valued.
In this paper, we are concerned by the stability issue in the inverse problem of
determining the unknown functions A, p and q± from a finite number of local
boundary measurements of the solution to (1.1).

The IBVP (1.1) describes the dynamics of a two-state (or two-level) quantum
system. This terminology is justified by the fact that the quantum system modeled
by (1.1) can exist in any superposition of the two independent (in the sense that
they can be physically distinguished) states u±. As a matter of fact, particles such
as electrons, neutrinos or protons, are fermions, and they have a two-state quantum
mechanical label called spin. In Quantum Mechanics, the spin is an intrinsic form
of angular momentum carried by elementary particles and the spin of fermions is
half-integer. Namely, the electron is a spin-1/2 particle, i.e. the spin of the electron
can have values �/2 (spin up) or −�/2 (spin down), where � is the reduced Planck
constant. Note that for the sake of simplicity, the various physical constants appear-
ing in (1.1), such as �, the mass of the particle or its charge, are all taken equal to 1
in this text. In (1.1), the dynamics of the two states u± are bound together through
non-adiabatic linear coupling pu∓±A ·∇u∓, see [17] and the references therein for
the relevance of non-adiabatic processes in physics or reactive chemistry. Gradient
coupling appears also naturally in quantum fields theory (see [1, 21]) or quantum
cosmology (see [11, 7]), and it can sometimes be seen as a first-order approximation
of nonlinear coupling (see [24]).

1.1. What is known so far : A short bibliography

There is a wide mathematical literature on inverse coefficient problems for the
dynamic Schrödinger equation. Without trying to be exhaustive, one may mention
[4, 3, 9, 6, 15]. In all these papers, an infinite number of boundary observations
of the solution is required, but in [2, 25], the real-valued electric potential of the
Schrödinger equation is Lipschitz stably retrieved from a single partial boundary
measurement. This result was improved in [20] to smaller partial measurements
and extended in [12] to complex-valued electric potentials. The method used in
[2, 25, 20, 12] is based essentially on an appropriate Carleman estimate. We refer
to [12, 23, 25] for actual examples of this inequality for the Schrödinger equation.
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The idea of using a Carleman estimate for solving inverse problems first appeared in
Bukhgeim and Klibanov [8]. Since its inception in 1981, this technique has then been
widely and successfully applied by numerous authors to parabolic or hyperbolic
systems, to the dynamic Schrödinger equation, and even to coupled systems of
PDEs. See [16] and references therein, for a complete review of multidimensional
inverse problems solved by the Bukhgeim–Klibanov method.

Note that in [2, 25, 20, 12], the data are measured on a part of the boundary
that fulfills a geometric condition related to geometric optics condition insuring
observability. This condition was relaxed in [4] for a real-valued electric potential,
under the assumption that the potential is known in the vicinity of the bound-
ary. We refer to [13, 14, 5] for the same type of inverse problems but stated in an
infinite cylindrical domain. The problem of stably determining the space varying
part (respectively, static) magnetic potential of the autonomous (respectively, non-
autonomous) Schrödinger equation is treated in [10] (respectively, [12]). In both
cases, the nth-dimensional unknown magnetic vector potential, n ≥ 1, is recovered
from n partial Neumann data, obtained by n-times suitably changing the initial
condition attached at the magnetic Schrödinger equation. All the above-mentioned
papers are concerned with the “one state” Schrödinger equation. In [19], the authors
show unique determination of the static electric coupling potential in a two state
magnetic Schrödinger equation, by one partial measurement of the solution. Other-
wise stated, assuming that the gradient coupling potential is known, [19] claims that
knowledge of one partial Neumann data uniquely determines the scalar coupling
potential. In this paper, the framework is the same as in [19] but with uniformly
zero magnetic field, and we investigate the stability issue in the inverse problem of
identifying both the electric and the gradient coupling potentials, by finitely many
partial boundary observations of the solution.

1.2. Notations

Throughout the entire text, x = (x1, . . . , xn) is a generic point of Ω and we set
∂i = ∂

∂xi
and ∂2

i,j = ∂2

∂xi∂xj
for all i, j = 1, . . . , n. We write ∂2

i instead of ∂2

∂x2
i

and
as usual, Δ denotes the Laplace operator, i.e. Δ = ∂2

1 + · · · + ∂2
n. Next, for any

multi-index k = (k1, . . . , kn) ∈ Nn
0 , where N0 = {0} ∪ N, we put |k| = k1 + · · · + kn

and ∂k
x = ∂k1

1 . . . ∂kn
n . Similarly, we write ∂t = ∂

∂t .
Further, the symbol · denotes the scalar product in Cm, m ∈ N, and |ζ| =

√
ζ · ζ

for all ζ ∈ Cm. For any row vector a = (a1, a2, . . . , am) we write aT for the transpose
of a in such a way that ∇ = (∂1, . . . , ∂n)T is the gradient operator with respect
to x. Further, ∇· denotes the divergence operator and we set ∂νu = ∇u · ν, where
ν is the outward normal vector to the boundary Γ.

Let us now introduce the following functional spaces. For any manifold X , we set

Hr,s(X × (0, T )) = L2(0, T ; Hr(X)) ∩ Hs(0, T ; L2(X)), r, s > 0,
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where Hs(X) denotes the usual Sobolev space on X of order s. For the sake of
notational simplicity, we write Hr,s(Q) (respectively, Hr,s(Σ)) instead of Hr,s(Ω×
(0, T )) (respectively, Hr,s(Γ× (0, T ))). The space Hr,s(X × (0, T )) is endowed with
the norm ‖ · ‖Hr,s(X×(0,T )) = ‖ · ‖L2(0,T ;Hr(X)) + ‖ · ‖Hs(0,T ;L2(X)) and we recall
from [18, Sec. 4, Theorem 2.1] that for all u ∈ Hr,s(X × (0, T )), r, s > 0 and all
(j, k) ∈ Nn

0 × N0 such that 1 − |j|
r − k

s > 0, we have

∂j
x∂k

t u ∈ Hμ,ν(X × (0, T )) with
μ

r
=

ν

s
= 1 − |j|

s
− k

s
, (1.2)

and the estimate

‖∂j
x∂k

t u‖Hμ,ν(X×(0,T )) ≤ ‖u‖Hr,s(X×(0,T )). (1.3)

1.3. Main results

Prior to examining the inverse problem under consideration in this paper, we treat
the well-posedness issue for the IBVP (1.1). Let N be the unique natural number
satisfying

N ∈ N ∩
(

n + 2
4

+ 1,
n + 2

4
+ 2
]
.

Then we have the following existence, uniqueness and regularity result for the solu-
tion to the IBVP (1.1).

Proposition 1.1. Assume that Γ is C2(N+1) and pick M ∈ (0, +∞). Let A ∈
W 2N+1,∞(Ω, Rn) verify ∇ · A = 0 a.e. in Ω and let p ∈ W 2N+1,∞(Ω, R) and
q± ∈ W 2N+1,∞(Ω, R) be such that

‖A‖W 2N+1,∞(Ω)n + ‖p‖W 2N+1,∞(Ω) + ‖q+‖W 2N+1,∞(Ω) + ‖q−‖W 2N+1,∞(Ω) ≤ M.

Then, for all g = (g+, g−)T ∈ H2(N+7/4),N+7/4(Σ)2 and all u0 = (u+
0 , u−

0 )T ∈
H2N+3(Ω)2, fulfilling the following compatibility conditions

∂�
tg(·, 0) = (−i)�

( −Δ + q+ A · ∇ + p

−A · ∇ + p −Δ + q−

)�

u0 on Γ, � = 0, . . . , N, (1.4)

the IBVP (1.1) admits a unique solution u = (u+, u−)T ∈ W 1,∞(0, T ; W 1,∞(Ω)2).
Moreover, there exists a positive constant C, depending only on Ω, T, M, u0 and g,

such that

‖u‖W 1,∞(0,T ;W 1,∞(Ω)2) ≤ C. (1.5)

One can see that rather strong regularities are assumed in Proposition 1.1, on
the data u0 and g, and on the coefficients A, p and q±, of the IBVP (1.1). These
hypotheses (and the corresponding compatibility conditions (1.4)) are only suffi-
cient conditions for getting a suitably smooth weak-solution to (1.1), as required
by the main result of this paper, stated in Theorem 1.2. Of course, Theorem 1.2
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could be established independently of Proposition 1.1, under the indirect assump-
tion that the solution to (1.1) is sufficiently regular. But in doing so we could not
guarantee that the result of Theorem 1.2 is applicable to some two-level quantum
system.

As a preamble, we introduce the sets of admissible unknown coefficients A,
p and q±. To this purpose, for M ∈ (0, +∞), A0 ∈ W 2N+1,∞(Ω, Rn) and q0 ∈
W 2N+1,∞(Ω, R), we define

(i) the set of admissible unknown gradient vector potentials as

AM (A0) = {A ∈ W 2N+1,∞(Ω, Rn), ‖A‖W 2N+1,∞(Ω)n ≤ M,

∇ · A = 0 and ∂k
xA = ∂k

xA0 on Γ, |k| ≤ 2(N − 1)},
(ii) and the set of admissible unknown electric potentials as

QM (q0) = {q ∈ W 2N+1,∞(Ω, R), ‖q‖W 2N+1,∞(Ω) ≤ M and

∂k
xq = ∂k

xq0 on Γ, |k| ≤ 2(N − 1)}.
Next, p0 and q±0 being fixed in W 2N+1,∞(Ω, R), the main result of this paper is as
follows.

Theorem 1.2. Assume that Γ is C2(N+1) and for j = 1, 2, let Aj ∈ AM (A0),
pj ∈ QM (p0) and q±j ∈ QM (q±0 ). Then, there exist a sub-boundary Γ∗ ⊂ Γ, and
n + 2 initial states uk

0 = (u+,k
0 , u−,k

0 )T ∈ H2N+3(Ω)2 and boundary conditions gk =
(g+,k, g−,k)T ∈ H2(N+7/4),N+7/4(Σ)2, k = 1, . . . , n + 2, fulfilling the compatibility
conditions

∂�
t g

k(·, 0) = (−i)�

( −Δ + q+
0 A0 · ∇ + p0

−A0 · ∇ + p0 −Δ + q−0

)�

uk
0 on Γ, � = 0, . . . , N,

(1.6)

such that we have

‖A1 − A2‖2
L2(Ω)n + ‖p1 − p2‖2

L2(Ω) + ‖q+
1 − q+

2 ‖2
L2(Ω) + ‖q−1 − q−2 ‖2

L2(Ω)

≤ C

n+2∑
k=1

(‖∂ν∂tu
−,k
1 − ∂ν∂tu

−,k
2 ‖2

L2(Σ∗) + ‖∂ν∂tu
+,k
1 − ∂ν∂tu

+,k
2 ‖2

L2(Σ∗)),

for some positive constant C, depending only on Ω, T, M and (u±,k
0 , g±,k) for

k = 1, . . . , n + 2. Here, we have set Σ∗ = Γ∗ × (0, T ) and uk
j = (u+,k

j , u−,k
j )T , for

j = 1, 2 and k = 1, . . . , n+2, is the solution to (1.1) given by Proposition 1.1, where
(Aj , pj , q

±
j , u±,k

0 , g±,k) is substituted for (A, p, q±, u±
0 , g±).

Theorem 1.2 claims Lipschitz stable recovery of n+3 unknown functions (p and
q± and the n components of A) by n + 2 local boundary measurements of the
solution u = (u+, u−) to (1.1). Bearing in mind that A is divergence free and
that its trace on Γ is prescribed, this amounts to saying that n + 2 unknown scalar
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functions can be stably retrieved by the same number of local Neumann data. From
this viewpoint, the result of Theorem 1.2 is thus optimal.

Further, we point out that Theorem 1.2 applies in particular for any sub-
boundary Γ∗ ⊂ Γ obeying the geometric condition

{x ∈ Γ, (x − x0) · ν(x) ≥ 0} ⊂ Γ∗

for an arbitrary x0 ∈ R
n\Ω. We refer to Assumption 3.1 and Remark 3.2 in Sec. 3.1

for more details on this specific matter.

1.4. Outline

The derivation of Proposition 1.1 can be found in Sec. 2 while Sec. 3 contains the
proof of Theorem 1.2. Finally, several technical results used for establishing that the
elliptic part of the Schrödinger equation (1.1) is self-adjoint in L2(Ω)2, are collected
in the appendix.

2. Analysis of the Direct Problem

In this section, we prove Proposition 1.1.

2.1. Preliminaries: Self-adjointness and basic regularity

2.1.1. Self-adjointness

In this section, we assume that Γ is C2, that A ∈ L∞(Ω, Rn) is gradient free, i.e.
that ∇ · A = 0 a.e. in Ω, and that p ∈ L∞(Ω, R) and q± ∈ L∞(Ω, R).

Let ΔD denote the Dirichlet-Laplacian in L2(Ω), with domain D0 = H1
0 (Ω) ∩

H2(Ω). Since Γ is C2 then it is well known that ΔD is self-adjoint in L2(Ω). As a
consequence, the operator

ΔDu = (ΔDu+, ΔDu−)T , u = (u+, u−)T ∈ D2
0,

is self-adjoint in L2(Ω)2. Put

Ã =

(
0 A

−A 0

)
, p̃ =

(
0 p

p 0

)
and q̃ =

(
q+ 0

0 q−

)
.

Since p ∈ L∞(Ω, R) (respectively, q±L∞(Ω, R)) then the multiplication operator by
p̃ (respectively, q̃), defined by p̃u = (pu−, pu+)T (respectively, q̃u = (q−u+, q−u−)T )
for all u = (u+, u−)T ∈ L2(Ω)2, and denoted by p̃ (respectively, q̃) is symmetric in
L2(Ω)2. Similarly, since ∇ · A = 0, then we infer from the Stokes formula that the
operator

Ã · ∇u = (A · ∇u−,−A · ∇u+)T , u = (u+, u−)T ∈ H1
0 (Ω)2,

is symmetric in L2(Ω)2 as well (see Appendix A). As a consequence, the operator
Ã · ∇ + p̃ + q̃, with domain H1

0 (Ω)2, is symmetric in L2(Ω)2. Moreover, we know
from Appendix B that Ã · ∇ + p̃ + q̃ is ΔD-bounded in L2(Ω)2, with relative
bound zero: For any ε ∈ (0, 1), there exists Cε > 0, depending only on ε, ‖A‖L∞(Ω),
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‖p‖L∞(Ω) and ‖q±‖L∞(Ω), such that

‖(Ã · ∇ + p̃ + q̃)u‖L2(Ω)2 ≤ ε‖ΔDu‖L2(Ω)2 + Cε‖u‖L2(Ω)2 , u ∈ D2
0 .

Therefore, the Kato–Rellich Theorem (see [22, Theorem X.12]) yields the following.

Lemma 2.1. Assume that Γ is C2, that A ∈ L∞(Ω, Rn) fulfills ∇·A = 0 a.e. in Ω,

and that p ∈ L∞(Ω, R) and q± ∈ L∞(Ω, R). Then the operator H(A, q±, p) =
−ΔD + q̃ + Ã · ∇ + p̃, with domain D(H(A, q±, p)) = D2

0 , is self-adjoint in
L2(Ω)2.

Otherwise stated, H(A, q±, p) is the self-adjoint realization in L2(Ω)2 of the
formal operator acting in (C∞

0 (Ω)2)′, H(A, q±, p) = −Δ + q̃ + Ã · ∇ + p̃, endowed
with homogeneous boundary conditions on Γ. We point out for further use that
u = (u+, u−)T solves (1.1) may be equivalently rewritten as u is solution to the
IBVP ⎧⎪⎪⎨

⎪⎪⎩
−i∂tu + H(A, q±, p)u = 0 in Q,

u = g on Σ,

u(·, 0) = u0 in Ω.

(2.1)

2.1.2. Existence, uniqueness and basic regularity result

In this section, we establish the following existence and uniqueness result by adapt-
ing the analysis carried out in [12, Sec. 2] to the coupled system (1.1).

Lemma 2.2. Assume that Γ, A, p and q± are the same as in Lemma 2.1. Then,

for all g = (g+, g−)T ∈ H7/2,7/4(Σ)2 and all u0 = (u+
0 , u−

0 )T ∈ H3(Ω)2 such that

g(·, 0) = u0 on Γ, (2.2)

the IBVP (1.1) admits a unique solution u = (u+, u−)T ∈ H2,1(Q)2 to (1.1).
Moreover, there exists a constant C, depending only on Ω, T and M, such that

‖u‖H2,1(Q)2 ≤ C(‖u0‖H3(Ω)2 + ‖g‖H7/2,7/4(Σ)2). (2.3)

Proof. Since g ∈ H7/2,7/4(Σ)2 and u0 ∈ H3(Ω)2 fulfill (2.2), then, by virtue of
[18, Sec. 4, Theorem 2.3], there exists G = (G+, G−)T ∈ H4,2(Q)2 such that G = g

on Σ and G(·, 0) = u0 in Ω. Moreover, we have

‖G‖H4,2(Q)2 ≤ C(‖u0‖H3(Ω)2 + ‖g‖H7/2,7/4(Σ)2), (2.4)

for some constant C > 0, depending only on Ω, T and M .
Evidently, u = (u+, u−)T is solution to (1.1) if and only if v = u − G = (u+ −

G+, u− − G−)T is solution to the following Cauchy problem{−i∂tv + H(A, q±, p)v = f in Q,

v(·, 0) = 0 in Ω,
(2.5)
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where f = (f+, f−)T = −(−i∂t − Δ + q̃)G. Further, with reference to [18, Sec. 4,
Proposition 2.3] we have ∂tG ∈ H2,1(Q)2 with ‖∂tG‖H2,1(Q)2 ≤ C‖G‖H4,2(Q)2 ,
whence f ∈ H1(0, T ; L2(Ω)2) and

‖f‖H1(0,T ;L2(Ω)2) ≤ C(‖∂tG‖H2,1(Q)2 + ‖G‖H2,1(Q)2) ≤ C‖G‖H4,2(Q)2 . (2.6)

Moreover, since the operator −iH(A, q±, p) is m-dissipative in L2(Ω)2, by
Lemma 2.1, we deduce from (2.5) upon applying [9, Lemma 2.1] (with X = L2(Ω)2,
U = −iH(A, q±, p) and B = 0) that there exists a unique solution v ∈ H2,1(Q)2

to (2.5), such that

‖v‖H2,1(Q)2 ≤ C‖f‖H1(0,T ;L2(Ω)2).

Finally, bearing in mind that u = v + G, we obtain (2.3) by combining the above
estimate with (2.4) and (2.6).

Armed with Lemma 2.1, we may now seek higher regularity for the solution to
the IBVP (1.1) upon imposing more restrictive conditions on Γ, A, p, q±, u0 and g.

2.2. Improved regularity and proof of Proposition 1.1

2.2.1. Improved regularity result

The statement we are aiming for can be formulated as follows.

Lemma 2.3. Fix m ∈ N0 and assume that Γ is C2(m+1). Let A ∈ W 2m+1,∞(Ω, Rn)
verify ∇ · A = 0 a.e. in Ω and pick p ∈ W 2m+1,∞(Ω, R) and q± ∈ W 2m+1,∞(Ω, R)
in such a way that

‖A‖W 2m+1,∞(Ω)n + ‖p‖W 2m+1,∞(Ω) + ‖q+‖W 2m+1,∞(Ω) + ‖q−‖W 2m+1,∞(Ω) ≤ M,

for some a priori fixed positive constant M . Then for all g = (g+, g−)T ∈
H2(m+7/4),m+7/4(Σ)2 and all u0 = (u+

0 , u−
0 )T ∈ H2m+3(Ω)2 fulfilling the compati-

bility conditions

∂�
t g(·, 0) = (−i)�H(A, q±, p)�u0 on Γ, � = 0, . . . , m, (2.7)

there exists a unique solution u ∈ ⋂m+1
�=0 Hm+1−�(0, T ; H2�(Ω)2) to (2.5). Moreover

u satisfies the estimate
m+1∑
�=0

‖u‖Hm+1−�(0,T ;H2�(Ω)2) ≤ C(‖u0‖H2m+3(Ω)2 + ‖g‖H2(m+7/4),m+7/4(Σ)2),

(2.8)

where C is a positive constant depending only on Ω, T and M .

Proof. We will prove the result by induction on m ∈ N0.

(1) Base case. We first consider the case m = 0. Since the compatibility conditions
(2.7) with m = 0 reduce to (2.2) (as we have (−i)0 = 1, ∂0

t g(·, 0) = g(·, 0) and
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H(A, q±, p)0 is the identity operator in L2(Ω)2, by convention), then the claim of
Lemma 2.3 follows readily from Lemma 2.2.

(2) Induction step. Let us suppose that the claim of Lemma 2.3 holds for some
m ∈ N0. We shall prove that it is still true for m + 1, provided Γ is C2m+3,
A ∈ W 2m+3,∞(Ω, Rn), q± ∈ W 2m+3,∞(Ω, R), p ∈ W 2m+3,∞(Ω, R) and (g, u0) ∈
H2(m+11/4),m+11/4(Σ)2×H2m+5(Ω)2 verify the compatibility condition (2.7) where
m + 1 is substituted for m, i.e.

∂�
tg(·, 0) = (−i)�H(A, q±, p)�u0 on Γ, � = 0, . . . , m + 1. (2.9)

Let u denote the
⋂m+1

�=0 Hm+1−�(0, T ; H2�(Ω)2)-solution to (2.1), satisfying
(2.8). Then upon differentiating (2.1) with respect to t, we see that z = ∂tu solves⎧⎪⎪⎨

⎪⎪⎩
−i∂tz + H(A, q±, p)z = 0 in Q,

z = ∂tg on Σ,

z(·, 0) = z0 in Ω,

(2.10)

with z0 = −iH(A, q±, p)u0 ∈ H2m+3(Ω)2. Moreover, we know from (1.2) that
∂tg ∈ H2(m+7/4),m+7/4(Σ)2 and from (2.9) that

∂�
t (∂tg)(·, 0) = ∂�+1

t g(·, 0) = (−i)�+1H(A, q±, p)�+1u0

= (−i)�H(A, q±, p)�z0, � = 0, . . . , m.

Therefore, we have z ∈ ⋂m+1
�=0 Hm+1−�(0, T ; H2�(Ω)2) and

m+1∑
�=0

‖z‖Hm+1−�(0,T ;H2�(Ω)2) ≤ C(‖z0‖H2m+3(Ω)2 + ‖∂tg‖H2(m+7/4),m+7/4(Σ)2)

≤ C(‖u0‖H2m+5(Ω)2 + ‖g‖H2(m+11/4),m+11/4(Σ)2),

(2.11)

by induction hypothesis (and from the estimate ‖∂tg‖H2(m+7/4),m+7/4(Σ)2 ≤
‖g‖H2(m+11/4),m+11/4(Σ)2 , arising from (1.3)). Since u ∈ ⋂m+1

�=0 Hm+1−�(0, T ;
H2�(Ω)2), then this may be equivalently rewritten as

u ∈
m+1⋂
�=0

Hm+2−�(0, T ; H2�(Ω)2) (2.12)

and we infer from (2.8) and (2.11) that
m+1∑
�=0

‖u‖Hm+2−�(0,T ;H2�(Ω)2) ≤ C(‖u0‖H2m+5(Ω)2 + ‖g‖H2(m+11/4),m+11/4(Σ)2).

(2.13)

Thus, we are left with the task of showing that u ∈ L2(0, T ; H2(m+2)(Ω)2) and that

‖u‖L2(0,T ;H2(m+2)(Ω)2) ≤ C(‖u0‖H2m+5(Ω)2 + ‖g‖H2(m+11/4),m+11/4(Σ)2).
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This can be done by applying the elliptic regularity theorem twice. Indeed, for a.e.
t ∈ (0, T ) we infer from (2.1) that u(·, t) is solution to the following elliptic system:{

Δu(·, t) = h(·, t) in Ω,

u(·, t) = g(·, t) on Γ,
(2.14)

where h(·, t) = −iz(·, t) − q̃u(·, t) − Ã · ∇u(·, t) + p̃u(·, t). As h(·, t) ∈ H2m+1(Ω)2

and g(·, t) ∈ H2(m+11/4)(Γ)2 ⊂ H2m+5/2(Γ)2, then we have u(·, t) ∈ H2m+3(Ω)2 by
the elliptic regularity theorem, with

‖u(·, t)‖H2m+3(Ω)2 ≤ C(‖h(·, t)‖H2m+1(Ω)2 + ‖g(·, t)‖H2m+5/2(Γ)2)

≤ C(‖z(·, t)‖H2m+1(Ω)2 + ‖u(·, t)‖H2m+2(Ω)2

+ ‖g(·, t)‖H2(m+11/4)(Γ)2). (2.15)

Therefore, it holds true that h(·, t) ∈ H2(m+1)(Ω)2 for a.e. t ∈ (0, T ). Moreover, as
we have g(·, t) ∈ H2(m+11/4)(Γ)2 ⊂ H2m+7/2(Γ)2, then another application of the
elliptic regularity theorem yields u(·, t) ∈ H2(m+2)(Ω)2 and

‖u(·, t)‖H2(m+2)(Ω)2 ≤ C(‖h(·, t)‖H2(m+1)(Ω)2 + ‖g(·, t)‖H2m+7/2(Γ)2)

≤ C(‖z(·, t)‖H2(m+1)(Ω)2 + ‖u(·, t)‖H2m+3(Ω)2

+ ‖g(·, t)‖H2(m+11/4)(Γ)2).

Putting the above estimate with (2.15), we end up getting that

‖u(·, t)‖H2(m+2)(Ω)2 ≤ C(‖z(·, t)‖H2(m+1)(Ω)2 + ‖u(·, t)‖H2(m+1)(Ω)2

+ ‖g(·, t)‖H2(m+11/4)(Γ)2). (2.16)

Further, since u and z are in L2(0, T ; H2(m+1)(Ω)2) and since g ∈
L2(0, T ; H2(m+11/4)(Γ)2), we infer from (2.16) that u ∈ L2(0, T ; H2(m+2)(Ω)2)
verifies

‖u‖L2(0,T ;H2(m+2)(Ω)2) ≤ C(‖u‖H1(0,T ;H2(m+1)(Ω)2) + ‖g‖L2(0,T ;H2(m+11/4)(Γ)2)).

In view of (2.13) this entails that

‖u‖L2(0,T ;H2(m+2)(Ω)2) ≤ C(‖u0‖H2m+5(Ω)2 + ‖g‖H2(m+11/4),m+11/4(Σ)2),

which, together with (2.12) and (2.13) yield the statement of Lemma 2.3 for m+1.

Having established Lemma 2.3, we turn now to proving Proposition 1.1.

2.2.2. Proof of Proposition 1.1

We apply Lemma 2.3 with m = N and get a unique solution u to (1.1) within the
space H2(0, T ; H2(N−1)(Ω)2). Since 2(N − 1) > n

2 + 1 from the very definition of
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N , then u ∈ W 1,∞(0, T ; W 1,∞(Ω)2) by the Sobolev embedding theorem. Moreover,
(2.8) yields

‖u‖W 1,∞(0,T ;W 1,∞(Ω)2) ≤ ‖u‖H2(0,T ;H2(N−1)(Ω)2)

≤ C(‖u0‖H2N+3(Ω)2 + ‖g‖H2(N+7/4),N+7/4(Σ)2),

for some constant C depending only on Ω, T and M . This proves the desired result.

3. Analysis of the Inverse Problem

This section contains the proof of Theorem 1.2.

3.1. Preliminaries: Carleman estimate and all that

In this section, we establish in Corollary 3.4 a weighted energy estimate for the
Schrödinger equation, which is the main tool used in the derivation of Theorem 1.2.
This inequality is a byproduct of the global Carleman estimate for the Schrödinger
operator of [2, Proposition 1], that we recall in Proposition 3.3. In order to state
this inequality, we consider a function β̃ ∈ C4(Ω, R+) and an open subset Γ∗ ⊂ Γ
fulfilling the following conditions:

Assumption 3.1. (1) There exists a constant c > 0 such that the estimate
|∇β̃(x)| ≥ c holds for all x ∈ Ω;

(2) ∂ν β̃(x) = ∇β̃(x) · ν(x) < 0 for all x ∈ ∂Ω\Γ∗, where ν is the outward unit
normal vector to Γ;

(3) There exists Λ1 > 0 and ε > 0 such that λ|∇β̃(x) · ζ|2 + D2β̃(x, ζ, ζ) ≥ ε|ζ|2
for all ζ ∈ Rn, x ∈ Ω and λ > Λ1, where D2β̃(x) = ( ∂2β̃(x)

∂xi∂xj
)1≤i,j≤n and

D2β̃(x, ζ, ζ) denotes the R
n-scalar product of D2β̃(x)ζ with ζ.

Remark 3.2. We stress out that there exist actual β̃ and Γ∗ satisfying Assump-
tion 3.1. As a matter of fact, for all x0 ∈ Rn\Ω fixed, this is the case of the
function β̃(x) = |x− x0|2 and any open subset Γ∗ ⊂ Γ containing {x ∈ Γ; (x− x0) ·
ν(x) ≥ 0}.

Next, we put

β(x) = β̃(x) + r‖β̃‖L∞(Ω), x ∈ Ω, (3.1)

for some r > 1 and K = ‖β‖L∞(Ω), and we set

ϕ(x, t) =
e2λβ(x)

(T + t)(T − t)
and

η(x, t) =
e2λK − eλβ(x)

(T + t)(T − t)
, (x, t) ∈ Q̃ = Ω × (−T, T ),

(3.2)

for some λ > 0. Further, for all s > 0, we introduce the two following operators
acting in (C∞

0 )′(Q̃) :

M1 = i∂t + Δ + s2|∇η|2 and M2 = isη′ + 2s∇η · ∇ + s(Δη). (3.3)
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It can be checked that M1 (respectively, M2) is the adjoint (respectively, skew-
adjoint) part of the operator e−sηLesη, where L = i∂t + Δ. Then the global Carle-
man estimate borrowed from [2, Proposition 1] is as follows.

Proposition 3.3. Let β̃ and Γ∗ fulfill Assumption 3.1, let β, ϕ and η be given by
(3.1)–(3.2), and let the operators Mj, j = 1, 2, be defined by (3.3). Then there are
two constants s0 > 1 and C0 > 0, depending only on Ω, T and Γ∗, such that the
estimate

s‖e−sη∇w‖2
L2(Q̃)n + s3‖e−sηw‖2

L2(Q̃)
+
∑

j=1,2

‖Mje
−sηw‖2

L2(Q̃)

≤ C0(s‖e−sηϕ1/2(∂νβ)1/2∂νw‖2
L2(Σ̃∗)

+ ‖e−sηLw‖2
L2(Q̃)

),

holds for all s > s0 and all w ∈ L2(−T, T ; H1
0(Ω)) satisfying Lw ∈ L2(Q̃) and

∂νw ∈ L2(Σ̃∗), where Σ̃∗ = Γ∗ × (−T, T ).

As a corollary, we have the following technical result. Its proof can be found in
[12, Sec. 4.1], but for the sake of self-containedness and for the convenience of the
reader, we give it at the end of the section.

Corollary 3.4. Under the conditions of Proposition 3.3, we have

s−1/2(‖e−sηz‖2
L2(Q̃)

+ ‖e−sη∇z‖2
L2(Q̃)n) + ‖e−sη(·,0)z(·, 0)‖2

L2(Ω)

≤ 2C0s
−3/2(s‖e−sηϕ1/2(∂νβ)1/2∂νz‖2

L2(Σ̃∗)
+ ‖e−sηLz‖2

L2(Q̃)
), s > s0,

for all z ∈ L2(−T, T ; H1
0 (Ω)) fulfilling Lz ∈ L2(Q̃) and ∂νz ∈ L2(Σ̃∗), where the

constants C0 and s0 are the same as in Proposition 3.3.

Proof. Put w = e−sηz. Since limt→−T η(x, t) = +∞ for all x ∈ Ω, then it holds
true that limt→−T w(·, t) = 0 in L2(Ω) and hence

‖w(·, 0)‖2
L2(Ω) =

∫
(−T,0)×Ω

∂t|w(x, t)|2dxdt = 2
(∫

(−T,0)×Ω

(∂tw)w(x, t)dxdt

)
.

On the other hand, we have

�
(∫

(−T,0)×Ω

(M1w)w(x, t)dxdt

)

= 
(∫

(−T,0)×Ω

(∂tw)w(x, t)dxdt

)

+�
(∫

(−T,0)×Ω

(Δw + s2|∇η|2w)w(x, t)dxdt

)
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= 
(∫

(−T,0)×Ω

(∂tw)w(x, t)dxdt

)

−�
(∫

(−T,0)×Ω

(|∇w|2 − s2|∇η|2|w|2)(x, t)dxdt

)

= 
(∫

(−T,0)×Ω

(∂tw)w(x, t)dxdt

)
,

whence ‖w(·, 0)‖2
L2(Ω) = 2�(

∫
(−T,0)×Ω

(M1w)w(x, t)dxdt). Therefore, we get

‖e−sη(·,0)z(·, 0)‖2
L2(Ω) ≤ 2‖M1w‖L2(Q̃)‖w‖L2(Q̃)

≤ s−3/2(s3‖e−sηz‖2
L2(Q̃)

+ ‖M1e
−sηz‖2

L2(Q̃)
)

with the help of the Cauchy–Schwarz and Hölder inequalities. As a consequence we
have

s−1/2(‖e−sηz‖2
L2(Q̃)

+ ‖e−sη∇z‖2
L2(Q̃)n) + ‖e−sη(·,0)z(·, 0)‖2

L2(Ω)

≤ s−3/2(s‖e−sη∇z‖2
L2(Q̃)n + 2s3‖e−sηz‖2

L2(Q̃)
+ ‖M1e

−sηz‖2
L2(Q̃)

)

≤ 2C0s
−3/2(s‖e−sηϕ1/2(∂νβ)1/2∂νz‖2

L2(Σ̃∗)
+ ‖e−sηLz‖2

L2(Q̃)
), s > s0,

by Proposition 3.3, which is the desired result.

3.2. Proof of Theorem 1.2

We start by linearizing the system (1.1). That is, we denote by uj = (u+
j , u−

j ),
j = 1, 2, the solution to (1.1), where (Aj , pj , q

±
j ) is substituted for (A, p, q±) and we

take the difference of the two systems (1.1) associated with j = 1, 2. Thus, putting
A = A1 − A2, p = p1 − p2 and q± = q±1 − q±2 , we get that u = (u+, u−)T , where
u± = u±

1 − u±
2 , solves⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−i∂tu
+ − Δu+ + q+

1 u+ = −A1 · ∇u− − p1u
− in Q,

−A · ∇u−
2 − pu−

2 − q+u+
2

−i∂tu
− − Δu− + q−1 u− = A1 · ∇u+ − p1u

+ in Q,

+ A · ∇u+
2 − pu+

2 − q−u−
2

u+(·, 0) = 0, u−(·, 0) = 0 in Ω,

u+ = 0, u− = 0 on Σ.

(3.4)

Since u± ∈ H2(0, T ; L2(Ω)) ∩ H1(0, T ; H2(Ω) ∩ H1
0 (Ω)), we can differentiate (3.4)

with respect to the time-variable. We obtain that v = ∂tu = (v+, v−), where
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v± = ∂tu
± ∈ H1(0, T ; L2(Ω)) ∩ L2(0, T ; H2(Ω) ∩ H1

0 (Ω)), is solution to the fol-
lowing coupled system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−i∂tv
+ − Δv+ + q+

1 v+ = −A1 · ∇v− − p1v
− − A in Q,

· ∇∂tu
−
2 − p∂tu

−
2 − q+∂tu

+
2

−i∂tv
− − Δv− + q−1 v− = A1 · ∇v+ − p1v

+ + A in Q,

· ∇∂tu
+
2 − p∂tu

+
2 − q−∂tu

−
2

v+(·, 0) = −i(A · ∇u−
0 + pu−

0 + q+u+
0 ) in Ω,

v−(·, 0) = −i(−A · ∇u+
0 + pu+

0 + q−u−
0 ) in Ω,

v+ = 0, v− = 0 on Σ.

(3.5)

We extend u±
2 on Q̃ by setting u±

2 (x, t) = u±
2 (x,−t) for a.e. (x, t) ∈ Ω × (−T, 0).

Since u±
0 , A, p and q± are all real valued, then it is easy to see that the function v,

where v± is extended on Ω × (−T, 0) as v±(x, t) = −v±(x,−t), is solution to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−i∂tv
+ − Δv+ + q+

1 v+ = −A1 · ∇v− − p1v
− in Q̃,

−A · ∇∂tu
−
2 − p∂tu

−
2 − q+∂tu

+
2

−i∂tv
− − Δv− + q−1 v− = A1 · ∇v+ − p1v

+ in Q̃,

+ A · ∇∂tu
+
2 − p∂tu

+
2 − q−∂tu

−
2

v+(·, 0) = −i(A · ∇u−
0 + pu−

0 + q+u+
0 ) in Ω,

v−(·, 0) = −i(−A · ∇u+
0 + pu+

0 + q−u−
0 ) in Ω,

v+ = 0, v− = 0 on Σ̃,

(3.6)

with Σ̃ = Γ × (−T, T ).
Let us apply Corollary 3.4 to v±, where for the sake of notational simplicity we

write μ± instead of ‖e−sηϕ1/2(∂νβ)1/2∂νv±‖2
L2(Σ̃∗)

. Then, in light of (3.6), we get
for all s > s0 that

s−1/2(‖e−sηv±‖2
L2(Q̃)

+ ‖e−sη∇v±‖2
L2(Q̃)n)

+ ‖e−sη(·,0)(±A · ∇u∓
0 + pu∓

0 + q±u±
0 )‖2

L2(Ω)

≤ 2C0s
−3/2(‖e−sηA · ∇∂tu

∓
2 ‖2

L2(Q̃)
+ ‖e−sηp∂tu

∓
2 ‖2

L2(Q̃)

+ ‖e−sηq±∂tu
±
2 ‖2

L2(Q̃)
+ ‖e−sηA1 · ∇v∓‖2

L2(Q̃)
+ ‖e−sηp1v

∓‖2
L2(Q̃)

+ sμ±)

≤ C1s
−3/2(‖e−sηA‖2

L2(Ω)n + ‖e−sηp‖2
L2(Ω) + ‖e−sηq±‖2

L2(Q̃)

+ ‖e−sηv∓‖2
L2(Q̃)

+ ‖e−sη∇v∓‖2
L2(Q̃)

+ sμ±),
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with C1 = 2C0 max(M2, C2), where C is the constant appearing in Proposi-
tion 1.1. Indeed, in the last line we used the energy inequality (1.5), entail-
ing that ‖∂tu

±
2 ‖L∞(Q̃) + ‖∇∂tu

±
2 ‖L∞(Q̃)n ≤ C. Summing up the two above esti-

mates and recalling that e−sη(x,t) ≤ e−sη(x,0) for all (x, t) ∈ Q̃ then leads for all
s > s1 = max(s0, 2C1) to

‖e−sη(·,0)(−A · ∇u+
0 + pu+

0 + q−u−
0 )‖2

L2(Ω)

+ ‖e−sη(·,0)(A · ∇u−
0 + pu−

0 + q+u+
0 )‖2

L2(Ω)

≤ C′
1(s

−3/2(‖e−sη(·,0)A‖2
L2(Ω)n + ‖e−sη(·,0)p‖2

L2(Ω)

+ ‖e−sη(·,0)q+‖2
L2(Ω) + ‖e−sη(·,0)q−‖2

L2(Ω))

+ s−1/2(‖e−sη(·,0)ϕ1/2(∂νβ)1/2∂νv−‖2
L2(Σ̃∗)

+ ‖e−sη(·,0)ϕ1/2(∂νβ)1/2∂νv+‖2
L2(Σ̃∗)

)), (3.7)

where C′
1 = 2C1.

Having established (3.7), we shall now specify u±
0 in order to estimate A, p and

q±. Namely we probe the system (1.1) with n+2 initial states uk
0 = (u+,k

0 , u−,k
0 ), k =

1, . . . , n+2, that we shall describe in the following, and suitable Dirichlet boundary
conditions gk = (g+,k, g−,k) fulfilling the compatibility condition (1.6). We proceed
in two steps: In the first one, we describe uk

0 for k = 1, 2, while the initial states uk
0

associated with k = 3, . . . , n + 2, are defined in the second one. In the sequel, uk =
(u+,k, u−,k) denotes the solution to (1.1) associated with (u±

0 , g±) = (u±,k
0 , g±,k),

we put v±,k = ∂tu
±,k and μ±

k (s) = ‖e−sη(·,0)ϕ1/2(∂νβ)1/2∂νv±,k‖2
L2(Σ̃∗)

, and we set

μk = μ+
k + μ−

k .

Step 1. Choose (u+,1
0 , u−,1

0 ) = (0, 1) and (u+,2
0 , u−,2

0 ) = (1, 0). Then, taking u±
0 =

u±,1
0 in (3.7), we get for all s > s1 that

‖e−sη(·,0)p‖2
L2(Ω) + ‖e−sη(·,0)q−‖2

L2(Ω)

≤ C′
1s

−3/2(‖e−sη(·,0)A‖2
L2(Ω)n + ‖e−sη(·,0)p‖2

L2(Ω)

+ ‖e−sη(·,0)q+‖2
L2(Ω) + ‖e−sη(·,0)q−‖2

L2(Ω) + sμ1),

whereas with u±
0 = u±,2

0 , we obtain

‖e−sη(·,0)q+‖2
L2(Ω) + ‖e−sη(·,0)p‖2

L2(Ω)

≤ C′
1s

−3/2(‖e−sη(·,0)A‖2
L2(Ω)n + ‖e−sη(·,0)p‖2

L2(Ω)

+ ‖e−sη(·,0)q+‖2
L2(Ω) + ‖e−sη(·,0)q−‖2

L2(Ω) + sμ2).
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Summing up the two above estimates then yields

(1 − 2C′
1s

−3/2)(‖e−sη(·,0)p‖2
L2(Ω) + ‖e−sη(·,0)q+‖2

L2(Ω) + ‖e−sη(·,0)q−‖2
L2(Ω))

≤ 2C′
1

(
s−3/2‖e−sη(·,0)A‖2

L2(Ω)n + s−1/2
2∑

k=1

μk(s)

)
, s > s1.

Therefore, for all s > s2 = max(s1, (4C′
1)2/3) we have

‖e−sη(·,0)p‖2
L2(Ω) + ‖e−sη(·,0)q+‖2

L2(Ω) + ‖e−sη(·,0)q−‖2
L2(Ω)

≤ C2

(
s−3/2‖e−sη(·,0)A‖2

L2(Ω) + s−1/2
2∑

k=1

μk(s)

)
, (3.8)

with C2 = 4C′
1.

Step 2. For k = 1, . . . , n, we choose (u+,k+2
0 , u−,k+2

0 ) = (xk, 0) in (3.7) and find
that

‖e−sη(·,0)(−Ak + xkp)‖2
L2(Ω) + ‖e−sη(·,0)xkq+‖2

L2(Ω)

≤ C′
1s

−3/2(‖e−sη(·,0)A‖2
L2(Ω)n + ‖e−sη(·,0)p‖2

L2(Ω)

+ ‖e−sη(·,0)q+‖2
L2(Ω) + ‖e−sη(·,0)q−‖2

L2(Ω) + sμk+2(s)),

provided s > s1. Thus, taking into account that

| ± Ak + xkp|2 ≥ 1
2
|Ak|2 − |xkp|2, k = 1, . . . , n,

we get for all s > s1 that

1
2
‖e−sη(·,0)Ak‖2

L2(Ω) ≤ C′
1s

−3/2(‖e−sη(·,0)A‖2
L2(Ω)n + ‖e−sη(·,0)p‖2

L2(Ω)

+ ‖e−sη(·,0)q+‖2
L2(Ω) + ‖e−sη(·,0)q−‖2

L2(Ω) + sμk+2(s))

+ ‖e−sη(·,0)xkq+‖2
L2(Ω),

whence

‖e−sη(·,0)Ak‖2
L2(Ω) − C1,ks−3/2‖e−sη(·,0)A‖2

L2(Ω)n

≤ C1,k(‖e−sη(·,0)p‖2
L2(Ω) + ‖e−sη(·,0)q+‖2

L2(Ω)

+ ‖e−sη(·,0)q−‖2
L2(Ω) + s−1/2μk+2(s)),
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where C1,k = 2(C′
1 + ‖xk‖2

L∞(Ω)). Summing up over k = 1, . . . , n, we obtain for all
s > s1 that

(1 − C′′
1 s−3/2)‖e−sη(·,0)A‖2

L2(Ω)n ≤ C′′
1

(
‖e−sη(·,0)p‖2

L2(Ω) + ‖e−sη(·,0)q+‖2
L2(Ω)

+ ‖e−sη(·,0)q−‖2
L2(Ω) + s−1/2

n∑
k=1

μk+2(s)

)
,

with C′′
1 =

∑n
k=1 C1,k. Thus, taking s > s′2 = max(s1, (2C′′

1 )2/3) and setting C′
2 =

2C′′
1 , we find that

‖e−sη(·,0)A‖2
L2(Ω)n ≤ C′

2

(
‖e−sη(·,0)p‖2

L2(Ω) + ‖e−sη(·,0)q+‖2
L2(Ω)

+ ‖e−sη(·,0)q−‖2
L2(Ω) + s−1/2

n∑
k=1

μk+2(s)

)
.

From this and (3.8), it then follows for all s > s∗ = max(s2, s
′
2, (2C2C

′
2)

2/3) that

‖e−sη(·,0)A‖2
L2(Ω)n + ‖e−sη(·,0)p‖2

L2(Ω) + ‖e−sη(·,0)q+‖2
L2(Ω) + ‖e−sη(·,0)q−‖2

L2(Ω)

≤ C3

n+2∑
k=1

μk(s),

with C3 = (1 + C2)C′
2. Thus, bearing in mind that 0 ≤ η(x, 0) ≤ e2λK/T 2 for all

x ∈ Ω, we find upon setting C4 = e(2s∗e2λK)/T 2
C3 that

‖A‖2
L2(Ω)n + ‖p‖2

L2(Ω) + ‖q+‖2
L2(Ω) + ‖q−‖2

L2(Ω) ≤ C4

n+2∑
k=1

μk(s∗).

Now, the result follows from this upon noticing that

μ±,k(s∗) = 2‖e−s∗η(·,0)ϕ1/2(∂νβ)1/2∂νv±,k‖2
L2(Σ∗)

≤ C‖∂νv±,k‖2
L2(Σ∗), k = 1, . . . , n + 2,

with C = 2‖e−η(·,0)ϕ1/2(∂νβ)1/2‖2
L∞(Σ∗) < +∞, since ϕ(x, t) = ϕ(x,−t), η(x, t) =

η(x,−t) and v±,k+2(x, t) = −v±,k+2(x,−t) for all (x, t) ∈ Ω × (−T, 0).

3.3. Remark : A wider choice of initial conditions

We point out that Theorem 1.2 works for a much wider choice of initial conditions
than the ones we used in the proof presented above. As a matter of fact, it is easy
to see that we may as well choose (u+,1

0 , u−,1
0 ) = (0, z−) and (u+,2

0 , u−,2
0 ) = (z+, 0)

in Step 1 of Sec. 3.2, where z± is any non-zero complex number, and that Step 2
can be rewritten as follows:
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Step 2′. We choose 2n functions u±,k+2
0 : Ω → C, for k = 1, . . . , n, such that the

twoa matrices (U±
0 )∗U±

0 , where U±
0 = (∂lu

±,k+2
0 )1≤k,l≤n and (U±

0 )∗ is the Hermitian
conjugate of U±

0 , are strictly positive definite, i.e.

∃ c±0 > 0, |U±
0 ξ| ≥ c±0 |ξ|, ξ ∈ C

n. (3.9)

For each k = 1, . . . , n, we substitute u±,k+2
0 for u±

0 in (3.7) and find that

‖e−sη(·,0)(−A · ∇u+,k+2
0 + pu+,k+2

0 + q−u−,k+2
0 )‖2

L2(Ω)

+ ‖e−sη(·,0)(A · ∇u−,k+2
0 + pu−,k+2

0 + q+u+,k+2
0 )‖2

L2(Ω)

can be upper bounded by

C′
1s

−3/2(‖e−sη(·,0)A‖2
L2(Ω)n + ‖e−sη(·,0)p‖2

L2(Ω) + ‖e−sη(·,0)q+‖2
L2(Ω)

+ ‖e−sη(·,0)q−‖2
L2(Ω) + sμk+2(s)),

provided s > s1. Thus, taking into account that

| ± A · ∇u∓,k+2
0 + pu∓,k+2

0 + q±u±,k+2
0 |2

≥ 1
2
|A · ∇u∓,k+2

0 |2 − |pu∓,k+2
0 + q±u±,k+2

0 |2, k = 1, . . . , n,

we get for all s > s1 that

1
2
(‖e−sη(·,0)A · ∇u+,k+2

0 ‖2
L2(Ω) + ‖e−sη(·,0)A · ∇u−,k+2

0 ‖2
L2(Ω))

≤ C′
1s

−3/2(‖e−sη(·,0)A‖2
L2(Ω)n + ‖e−sη(·,0)p‖2

L2(Ω) + ‖e−sη(·,0)q+‖2
L2(Ω)

+ ‖e−sη(·,0)q−‖2
L2(Ω) + sμk+2(s)) + ‖e−sη(·,0)(pu+,k+2

0 + q−u−,k+2
0 )‖2

L2(Ω)

+ ‖e−sη(·,0)(pu−,k+2
0 + q+u+,k+2

0 )‖2
L2(Ω),

whence

‖e−sη(·,0)A · ∇u+,k+2
0 ‖2

L2(Ω) + ‖e−sη(·,0)A · ∇u−,k+2
0 ‖2

L2(Ω)

−C1,ks−3/2‖e−sη(·,0)A‖2
L2(Ω)n

≤ C1,k(‖e−sη(·,0)p‖2
L2(Ω) + ‖e−sη(·,0)q+‖2

L2(Ω)

+ ‖e−sη(·,0)q−‖2
L2(Ω) + s−1/2μk+2(s)),

aActually, it is enough that either U+
0 or U−

0 fulfills (3.9) for the result of Theorem 1.2 to hold,
but for the sake of simplicity, we assume here that both matrices satisfy this condition.
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where C1,k = 2(C′
1 + ‖u+,k+2

0 ‖2
L∞(Ω) + ‖u−,k+2

0 ‖2
L∞(Ω)). Summing up over k =

1, . . . , n, we obtain for all s > s1 that

‖e−sη(·,0)U+
0 A‖2

L2(Ω)n + ‖e−sη(·,0)U−
0 A‖2

L2(Ω)n − C′′
1 s−3/2‖e−sη(·,0)A‖2

L2(Ω)n

≤ C′′
1

(
‖e−sη(·,0)p‖2

L2(Ω) + ‖e−sη(·,0)q+‖2
L2(Ω)

+ ‖e−sη(·,0)q−‖2
L2(Ω) + s−1/2

n∑
k=1

μk+2(s)

)
,

with C′′
1 =

∑n
k=1 C1,k. Consequently we have

(c+
0 + c−0 − C′′

1 s−3/2)‖e−sη(·,0)A‖2
L2(Ω)n

≤ C′′
1

(
‖e−sη(·,0)p‖2

L2(Ω) + ‖e−sη(·,0)q+‖2
L2(Ω)

+ ‖e−sη(·,0)q−‖2
L2(Ω) + s−1/2

n∑
k=1

μk+2(s)

)
,

by virtue of (3.9). Thus, taking s > s′2 = max(s1, (2C′′
1 /(c−0 + c+

0 ))2/3) and setting
C′

2 = 2C′′
1 /(c−0 + c+

0 ), we find that

‖e−sη(·,0)A‖2
L2(Ω)n ≤ C′

2

(
‖e−sη(·,0)p‖2

L2(Ω) + ‖e−sη(·,0)q+‖2
L2(Ω)

+ ‖e−sη(·,0)q−‖2
L2(Ω) + s−1/2

n∑
k=1

μk+2(s)

)
.

Now, the end of the proof is similar to the one presented in Sec. 3.2.
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Appendix A. Symmetry

To prove that Ã · ∇ is symmetric it is enough to see for all u = (u+, u−)T and
v = (v+, v−)T in (H1

0 (Ω))2, that we have

〈Ã · ∇u, v〉L2(Ω)2 =
∫

Ω

A · ∇u−v+dx −
∫

Ω

A · ∇u+v−dx

=
∫

Ω

(∇ · (Au−))v+dx −
∫

Ω

(∇ · (A · u+))v−dx

= −
∫

Ω

u− · Av+dx +
∫

Ω

u+ · Av−dx

=
∫

Ω

u+ · Av−dx −
∫

Ω

u− · Av+dx

= 〈u, Ã · ∇v〉L2(Ω)2 .

Note that we used the facts that A is real-valued and divergence free, i.e. that
∇ · A = 0.

Appendix B. ΔD-bounded perturbation

Each of the three operators p̃, q̃ and Ã ·∇ is ΔD-bounded with relative bound zero.
Indeed, for all u = (u+, u−)T ∈ D2

0, we have

‖p̃u‖2
L2(Ω)2 = ‖pu−‖2

L2(Ω) + ‖pu+‖2
L2(Ω) ≤ 2‖p‖2

L∞(Ω)‖u‖2
L2(Ω)2 ,

‖q̃u‖2
L2(Ω)2 = ‖q+u+‖2

L2(Ω) + ‖q−u−‖2
L2(Ω)

≤ (‖q+‖2
L∞(Ω) + ‖q−‖2

L∞(Ω))‖u‖2
L2(Ω)2

and

‖Ã · ∇u‖2
L2(Ω)2 = ‖A · u−‖2

L2(Ω) + ‖A · u+‖2
L2(Ω)

≤ ‖A‖2
L∞(Ω)n(‖∇u+‖2

L2(Ω) + ‖u−‖2
L2(Ω))

≤ ‖A‖2
L∞(Ω)n

∫
Ω

(−Δu+u+ − Δu−u−)dx

≤ ‖A‖2
L∞(Ω)n(‖Δu+‖L2(Ω)‖u+‖L2(Ω) + ‖Δu−‖L2(Ω)‖u−‖L2(Ω))

by the Cauchy–Schwarz inequality, with

‖Δu+‖L2(Ω)‖u+‖L2(Ω) + ‖Δu−‖L2(Ω)‖u−‖L2(Ω)

≤ ‖A‖2
L∞(Ω)n

(
ε

‖A‖2
L∞(Ω)n

(‖Δu+‖2
L2(Ω) + ‖Δu−‖2

L2(Ω))

+
‖A‖2

L∞(Ω)n

ε
(‖u+‖2

L2(Ω) + ‖u−‖2
L2(Ω))

)
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uniformly in ε ∈ (0, 1), upon applying the Hölder inequality, whence

‖Ã · ∇u‖2
L2(Ω)2 ≤ ε‖ΔDu‖2

L2(Ω)2 +
‖A‖4

L∞(Ω)n

ε
‖u‖2

L2(Ω)2 .
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[14] Y. Kian, Q. S. Phan and E. Soccorsi, Hölder stable determination of a quantum scalar
potential in unbounded cylindrical domains, J. Math. Anal. Appl. 426(1) (2015)
194–210.
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