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Abstract We consider the Dirichlet Laplacian Aq = −∆ + q in a bounded domain
Ω ⊂ Rd , d ≥ 3, with real-valued perturbation q ∈ Lmax(2,3d/5) (Ω). We examine the
stability issue in the inverse problem of determining the electric potential q from the
asymptotic behavior of the eigenvalues of Aq . Assuming that the boundary measure-
ment of the normal derivative of the eigenfunctions is a square summable sequence
in L2(∂Ω), we prove that q can be Hölder stably retrieved through knowledge of the
asymptotics of the eigenvalues.

1 Introduction

1.1 Settings

Let Ω ⊂ Rd , d ≥ 3, be a bounded domain with C2 boundary Γ := ∂Ω. We consider
the perturbed Dirichlet Laplacian Aq := −∆ + q in L2(Ω), where q is taken within
the class

Qc0 (M) :=
{
q ∈ Lmax(2,3d/5) (Ω,R) s. t. ‖q‖Lmax(2,3d/5) (Ω) ≤ M

and q(x) ≥ −c0, x ∈ Ω} ,

associated with two a priori fixed positive constants c0 and M . More precisely, Aq

is the self-adjoint operator in L2(Ω), generated by the closed Hermitian form
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aq (u, v) :=
∫
Ω

(
∇u · ∇v + quv

)
dx, u, v ∈ D(aq) := H1

0 (Ω),

see e.g. [6, Appendix A]. By compact embedding of H1
0 (Ω) in L2(Ω), the operator

Aq has a compact resolvent. Therefore, there exist a sequence of eigenfunctions
φk ∈ D(Aq) = {u ∈ H1

0 (Ω), (−∆ + q)u ∈ L2(Ω)} which form an orthonormal basis
of L2(Ω), and a sequence of eigenvalues

−c0 < λ1 ≤ λ2 ≤ . . . ≤ λk ≤ λk+1 ≤ . . . ,

repeated with the multiplicity, satisfying limk→∞ λk = ∞ and

Aqφk = λkφk, k ≥ 1.

For all k ≥ 1, we put ψk := (∂νφk ) |Γ, where ν denotes the outward pointing unit
normal vector to Γ.

In the present article we study the stability issue in the inverse problem of de-
termining the potential q from the asymptotic behavior with respect to k, of the
so-called boundary spectral data,

BSD(Aq) := {(λk, ψk ), k ≥ 1}.

1.2 State of the art

The study of mathematical inverse spectral problems has a long story which dates
back to, at least, 1929 and Ambarsumian’s pionneering article [2], where the author
proved that real-valued potential q of the Sturm-Liouville operator Aq = −∂

2
x + q

acting in L2(0, 2π) is zero if and only if the spectrum of the periodic realization of
Aq equals {k2, k ∈ N}. However the first breakthrough results in this field appeared
between 1945 and 1951, when Borg [3], Levinson [16], and Gel’fand and Levitan
[11] identified the electric potential of Aq through knowledge of the spectrum and
additional spectral data.

Almost 40 years later, in [18], Nachman, Sylvester and Uhlmann extended
Gel’fand and Levitan’s result to multidimensional Schrödinger operators. They
showed that full knowledge of the boundary spectral data uniquely determines the
electric potential. Later on, in [13], Isozaki showed that the identification result
of Nachman, Sylvester and Uhlmann is still valid when finitely many eigenpairs
(λn, ψn) remain unknown. This result, which is often referred to as the incom-
plete Borg-Levinson theorem, was extended by Canuto and Kavian to the case of
Schrödinger operators in the divergence form −ρ∇ · c∇ + q, when the conductivity
c and the density ρ satisfy min(c, ρ) ≥ ε for some ε > 0. More precisely, they
showed in [7, 8] that the boundary spectral data uniquely determine two out the three
functions (c, ρ, q).
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In 2013, further downsizing the data, Choulli and Stefanov established in [10] that
the electric potential can be retrieved from asymptotic knowledge of the boundary
spectral data. Namely, the authors proved that two potentials are equal whenever
their boundary spectral data are sufficiently close asymptotically. This result was
improved by [14, 21] upon weakening the condition imposed on the asymptotics of
the boundary spectral data.

The stability issue for the inverse problem of determining the electric potential
from the full boundary spectral data was first treated in byAlessandrini, Sylvester and
Sun in [1]. Their result was adapted to local Neumann data in [5] and to asymptotic
boundary spectral data in [10, 14, 21].

All the above results were obtained for bounded electric potentials. As for the
mathematical literature on inverse spectral problems with singular potentials, it
seems to be quite sparse. The first result on this topic was published in [19] by
Pävarinta and Serov, who showed that knowledge of the full boundary spectral data
uniquely determines the electric potential in Lp (Ω,R), provided that p > d/2. Later
on, in [20], Pohjola showed unique determination of q ∈ Ld/2(Ω,R) from either
full boundary spectral data when d = 3 or incomplete boundary spectral data when
d ≥ 4, and of q ∈ Lp (Ω,R) with p > d/2 and d = 3, from incomplete boundary
spectral data. More recently, it was proved in [6] that q ∈ Lmax(2,3d/5) (Ω) is uniquely
determined by the asymptotic boundary spectral data. The three above mentioned
papers are only concerned with the uniqueness problem. As far as we know, there is
only one mathematical result dealing with the stability issue in the inverse problem
of determining a singular potential from knowledge of the boundary spectral data.
The corresponding statement which can be found in [9, Theorem 1.2] establishes
that the electric potential q ∈ Lp (Ω,R) with p > d/2 when d = 3 and p = d/2
when d ≥ 4, can be Hölder stably retrieved from the incomplete boundary spectral
data of the Robin Laplacian. Moreover it is apparent that the strategy of the proof
of [9, Theorem 1.2] can be adapted to the case of the Laplace operator endowed
with Dirichlet boundary conditions. Nevertheless, to the best of our knowledge, the
inverse problemof stably determining the unbounded electric potential by asymptotic
boundary spectral data is still completely open, and this is precisely the problem that
the present article is concerned with.

1.3 Stability estimate

The main achievement of this article is the following stability estimate.

Theorem 1 For j = 1, 2, let qj ∈ Qc0 (M), where c0 > 0 and M > 0 are fixed,
and denote by {(λ j,k, ψ j,k ), k ≥ 1} the boundary spectral data of the operator Aqj .
Assume that

+∞∑
k=1

ψ1,k − ψ2,k2
L2 (Γ) < ∞. (1)
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Then, there exists a positive constant C, depending only on Ω, c0 and M , such that
we have

‖q1 − q2‖H−1 (Ω) ≤ C
(
lim sup
k→∞

��λ1,k − λ2,k ��
) 1

d+2

. (2)

Theorem 1 is the main novelty of this work, as we are not aware of any stability
result available in the mathematical literature, dealing with the determination of
singular potentials by asymptotic boundary spectral data. It is proved in [14, 21] that
the potential depends continuously on asymptotic boundary spectral data but this is
for bounded potentials only.

Evidently, (2) yields unique determination of q ∈ Qc0 (M) by asymptotic knowl-
edge of the spectrum of Aq , in the sense that the following implication

lim sup
k→∞

��λ1,k − λ2,k �� = 0 =⇒ q1 = q2,

which was already established in [6, Theorem 1.1], holds under the conditions of
Theorem 1.

Notice that the stability inequality (2) involves only the asymptotic distance
between the eigenvalues of the operators Aqj , j = 1, 2, and does not need explicitly
any quantitative information about ψ1,k − ψ2,kL2 (Γ) . This might seem a little bit
surprising at first sight since distinct iso-spectral potentials q1 and q2 can be built on
certain domains Ω. But for such potentials the condition (1) is not fulfilled as one
has

∑∞
k=1

ψ1,k − ψ2,k2
L2 (Γ) = ∞.

In the same spirit, it is worth mentioning that Theorem 1 does not assume
that q1 − q2 ∈ L∞(Ω). As a matter of fact it seems very likely that we have
lim supk→∞ ��λ1,k − λ2,k �� = ∞, in which case (2) is trivially satisfied, when q1 − q2
is unbounded. However, we are not able to prove rigorously this claim (neither can
we guarantee that it is true) although the converse implication is obvious.

Finally, we point out that the assumption qj ∈ Lmax(2,3d/5) (Ω,R), j = 1, 2, is
purely technical, in the sense that it is requested by the proof technique of Theorem
1, conducted in Section 3 below. Notice that max(2, 3d/5) is equal to either 2 when
d = 3, and to 3d/5 when d ≥ 4, and that this condition is enforced to guarantee
that the potentials qj are simultaneously in L3d/5(Ω,R) and in L2(Ω,R). Namely,
the hypothesis qj ∈ L3d/5(Ω,R) is needed by Proposition 2 for establishing that the
Neumann traces ψ j,k , k ∈ N, are L2(Γ)-functions satisfying

ψ j,k
L2 (Γ)

≤ C
(
1 + ���λ j,k

���
)
,

for some positive constant C depending only on Ω and M . This estimate is crucial
for Step 3 in Section 3, of the proof of Theorem 1. As for the additional condition
qj ∈ L2(Ω,R), it is a byproduct of Aqj being defined as an operator acting in L2(Ω).
More precisely, this can be understood from the representation formula (10) below,
requiring that qj f ±τ is in L2(Ω), which is achieved by taking qj within the class
L2(Ω,R).
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1.4 Structure of the article

The paper is organized as follows. In Section 2 we extend the celebrated Isozaki’s
representation formula, which was initially established for bounded potentials, to the
case of unbounded potentials. In Section 3 we prove Theorem 1 by mean of Isozaki’s
formula. Finally, in the appendix, we collect several technical results that are needed
for the proof of Theorem 1.

2 Isozaki’s asymptotic formula

The goal of this section, which is inspired from [6, Section 3], is to relate the
Fourier transform of q1 − q2 to BSD(qj ), j = 1, 2, by triggering the boundary
value problem (59) with suitable Dirichlet boundary data f . This approach was
introduced by Isozaki in [13], and since then it has been successfully applied by
numerous authors to the analysis of multidimensional inverse spectral problems, see
e.g., [4, 10, 14, 15, 20, 21].

2.0.1 A sufficiently rich set of test functions

Let ξ ∈ Rd and set λ±τ = (τ ± i)2 for all τ ≥ |ξ |. We seek two functions f ±τ such that

(−∆ − λ±τ ) f ±τ = 0 in Ω (3)

and satisfying
lim
τ→∞

f +τ (x) f −τ (x) = e−iξ ·x, x ∈ Ω, (4)

sup
τ≥ |ξ |

 f ±τ L∞ (Ω) < ∞. (5)

Pick η ∈ Sn−1 such that ξ · η = 0, and for τ ≥ |ξ |, put

βτ :=
√

1 −
|ξ |2

4τ2 and η±τ := βτη ∓
ξ

2τ

in such a way that ��η±τ �� = 1. Then, it is apparent that

f ±τ (x) := ei(τ±i)η
±
τ ·x, x ∈ Ω,

fulfill (3) and (4). Moreover, we have �� f ±τ (x)�� ≤ e |x | for all x ∈ Ω, and hence

 f ±τ Lr (X) ≤ |X |
1/r sup

x∈Ω

e |x | := Cr,X, X = Ω, Γ, (6)
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whenever r ∈ [2,∞) or r = ∞. More specifically, we notice that (6) with (r, X ) =
(∞,Ω) yields (5).

Let q ∈ Qc0 (M), where c0 > 0 and M > 0 are fixed. Then, for all τ ≥ |ξ | we have
q f ±τ ∈ L2(Ω) by (6), and the estimate q f ±τ L2 (Ω) ≤ ‖q‖L2 (Ω)

 f ±τ L∞ (Ω) ≤ MC∞,Ω
when d = 3, whereas q f ±τ L2 (Ω) ≤ ‖q‖L3d/5 (Ω)

 f ±τ 
L

2d
d−2 (Ω)

≤ MC 2d
d−2 ,Ω

when
d ≥ 4. Therefore, we have

q f ±τ L2 (Ω) ≤ C. (7)

Here and below, C denotes a generic positive constant depending only on Ω and M ,
which may change from line to line but is independent of τ.

2.0.2 Triggering the system with f ±τ

For j = 1, 2, let qj ∈ Qc0 (M), z ∈ C \ [−c0,∞), and denote by u±j,z the W2,p (Ω)-
solution to the boundary value problem{

(−∆ + qj − z)u = 0 in Ω,
u = f ±τ on Γ. (8)

Since (−∆ + qj − z) f ±τ = (qj + λ
±
τ − z) f ±τ from (3), the function

v±j,z := u±j,z − f ±τ (9)

solves {
(−∆ + qj − z)v = −(−∆ + qj − z) f ±τ in Ω
v = 0 on Γ,

and consequently we have

v±j,z = −(Aqj − z)−1(qj + λ
±
τ − z) f ±τ . (10)

In the special case where z = λ±τ , the above identity reads v±
j,λ±τ
= −(Aqj −

λ±τ )−1(qj f ±τ ). Since Im λ±τ = ±2τ, we infer from (7) that

v
±

j,λ±τ

L2 (Ω)
≤ Cτ−1, τ ≥ |ξ |, (11)

wherewe recall that the constantC is independent of τ. From this, (7) and theCauchy-
Schwarz inequality, it then follows that

����
∫
Ω

qjv
+
j,λ+τ

f −τ dx
���� ≤ C2τ−1, and consequently

we have
lim
τ→∞

∫
Ω

qjv
+
j,λ+τ

f −τ dx = 0, j = 1, 2. (12)

Armed with (12), we are now in position to establish the Isozaki formula for the
unbounded potentials qj , j = 1, 2.
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2.0.3 Isozaki’s asymptotic representation formula

For τ ≥ |ξ |, put
Sj,τ := 〈∂νu+

j,λ+τ
, f −τ 〉L2 (Γ), j = 1, 2, (13)

and recall from (9)-(10) that u+
j,λ+τ
= f +τ + v+

j,λ+τ
and v+

j,λ+τ
= −(Aqj − λ

+
τ )−1(qj f +τ ).

Since v+
j,λ+τ
∈ D(Aqj ), we have ∂νu+

j,λ+τ
∈ L2(Γ) from Appendix 3.1, and hence Sj,τ

is well-defined.
The following identity extends the classical Isozaki formula established in [13]

for bounded potentials, to possibly unbounded potentials lying in Qc0 (M). Its proof
can be found in [6, Proposition 3.1] but, for the sake of completeness and for the
convenience of the reader, we provide it below.

Proposition 1 Let qj ∈ Qc0 (M), j = 1, 2. Then, for all ξ ∈ Rd , we have

lim
τ→∞

(S1,τ − S2,τ ) =
∫
Ω

(q1 − q2)e−iξ ·xdx.

Proof For j = 1, 2, we have




(−∆ + qj − λ
+
τ )u+

j,λ+τ
= 0 in Ω

u+
j,λ+τ
= f +τ on Γ, (14)

hence by multiplying the first line of (14) by f −τ , integrating on Ω and applying the
Green formula, we obtain that

0 =
∫
Ω

(−∆ + qj − λ
+
τ )u+

j,λ+τ
f −τ (x)dx

=

∫
Γ

f +τ ∂ν f −τ dσ −
∫
Γ

(∂νu+
j,λ+τ

) f −τ dσ +
∫
Ω

u+
j,λ+τ

(−∆ + qj − λ
−
τ ) f −τ dx

=

∫
Γ

f +τ ∂ν f −τ dσ − Sj,τ +

∫
Ω

u+
j,λ+τ

qj f −τ dx, j = 1, 2.

Here, we used (3) and (13) in the last line. Thus, we have

S1,τ − S2,τ =

∫
Ω

(
q1u+1,λ+τ − q2u+2,λ+τ

)
f −τ dx.

This and u+
j,λ+τ
= f +τ + v

+
j,λ+τ

, j = 1, 2, then yield

S1,τ − S2,τ =

∫
Ω

(q1 − q2) f +τ f −τ dx +
∫
Ω

q1v
+
1,λ+τ

f −τ dx −
∫
Ω

q2v
+
2,λ+τ

f −τ dx.

Taking the limit as τ → ∞ in the above identity and using (12), we get that

lim
τ→∞

(
S1,τ − S2,τ −

∫
Ω

(q1 − q2) f +τ f −τ dx
)
= 0, (15)



8 Yavar Kian and Éric Soccorsi

and since q1 − q2 ∈ L1(Ω), we have limτ→∞

∫
Ω

(q1 − q2) f +τ f −τ dx =
∫
Ω

(q1 −

q2)e−iξ ·xdx by (4) and the dominated convergence theorem. Finally, this and (15)
entail (14). �

3 Proof of Theorem 1

Since the stability estimate (2) is obviously satisfiedwhen lim supk→∞ ��λ1,k − λ2,k �� =
∞, we assumewithout loss of generality in the sequel that lim supk→∞ ��λ1,k − λ2,k �� <
∞. As a consequence we have

sup
k≥1

��λ1,k − λ2,k �� ≤ C, (16)

for some positive constant C, and hence

��λ2,k �� ≤ C
(
1 + ��λ1,k ��

)
, k ≥ 1, (17)

upon possibly enlarging C. Here and in the remaining part of this proof, C denotes
a generic positive constant independent of k, which may change from line to line.

The proof being quite lengthy, we split it into 7 steps.
Step 1: Introducing an additional spectral parameter. We use the same notations as
in Section 2. Namely, for z ∈ C \ [−c0,∞), j = 1, 2, we denote by u+j,z the W2,p (Ω)-
solution to the boundary value problem (8) with u = f +τ on Γ. Since qj f +τ ∈ L2(Ω)
by (7), we have v+j,z = u+j,z − f +τ ∈ D(Aqj ) from (9)-(10). Therefore, ∂νu+j,z ∈ L2(Γ)
according to Appendix 3.1, and for all µ ∈ C \ [−c0,∞) the normal derivative of
v+
j,λ+τ,µ

:= u+
j,λ+τ
− u+j,µ lies in L2(Γ). Moreover, we have

S1,τ − S2,τ

= 〈∂νu+1,λ+τ − ∂νu+2,λ+τ , f −τ 〉L2 (Γ)

= 〈∂νv
+
1,λ+τ,µ

, f −τ 〉L2 (Γ) − 〈∂νv
+
2,λ+τ,µ

, f −τ 〉L2 (Γ) + 〈∂νu+1,µ − ∂νu+2,µ, f −τ 〉L2 (Γ), (18)

from (13). We first examine the last term on the right-hand-side of (18). By Hölder’s
inequality, we have

���〈∂νu+1,µ − ∂νu+2,µ, f −τ 〉L2 (Γ)
��� ≤

∂νu+1,µ − ∂νu+2,µ
Lp (Γ)

 f −τ Lp′ (Γ),

where p′ := 2d
d−2 is the Hölder conjugate of p. Thus, we have limµ→−∞〈∂νu+1,µ −

∂νu+2,µ, f −τ 〉L2 (Γ) = 0 by Lemma 1, and hence

S1,τ − S2,τ = lim
µ→−∞

〈∂νv
+
1,λ+τ,µ

− ∂νv
+
2,λ+τ,µ

, f −τ 〉L2 (Γ), (19)

from (18).
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Step 2: Decomposition. The next step is to apply (61) on the right-hand side of (19).
We get through direct computation that

〈∂νv
+
1,λ+τ,µ

− ∂νv
+
2,λ+τ,µ

, f −τ 〉L2 (Γ) =

∞∑
k=1

(Ak (µ, τ) + Bk (µ, τ) + Ck (µ, τ)) , (20)

where

Ak (µ, τ) :=
µ − λ+τ

(λ+τ − λ1,k )(µ − λ1,k )
〈 f +τ , ψ1,k − ψ2,k〉L2 (Γ)〈 f −τ , ψ1,k〉L2 (Γ),

Bk (µ, τ) :=
µ − λ+τ

(λ+τ − λ1,k )(µ − λ1,k )
〈 f +τ , ψ2,k〉L2 (Γ)〈 f −τ , ψ1,k − ψ2,k〉L2 (Γ)

and

Ck (µ, τ) :=
(

µ − λ+τ
(λ+τ − λ1,k )(µ − λ1,k )

−
µ − λ+τ

(λ+τ − λ2,k )(µ − λ2,k )

)
×

〈 f +τ , ψ2,k〉L2 (Γ)〈 f −τ , ψ2,k〉L2 (Γ) .

Step 3: Majorizing Ak (µ, τ) and Bk (µ, τ). Let us recall from (43) that ψ j,k
L2 (Γ)

≤

C
(
1 + ���λ j,k

���
)
for j = 1, 2 and all k ≥ 1, where C > 0 depends only on Ω and qj .

Thus, with reference to (6) with r = 2 and X = Γ, we obtain that

���〈 f
±
τ , ψ j,k〉L2 (Γ)

��� ≤ C
(
1 + ���λ j,k

���
)
, k ≥ 1.

This, (6) and (17) then yield for all µ ≤ −(1 + c) and all τ ≥ 1 + |ξ |, that

|Ak (µ, τ) | + |Bk (µ, τ) | ≤ Cτψ1,k − ψ2,kL2 (Γ), k ≥ 1. (21)

Here and below, Cτ denotes a generic positive constant possibly depending on τ,
which is independent of k and µ.
Step 4: The case of Ck (µ, τ).We turn now to estimating Ck (µ, τ). This can be made
by rewriting µ−λ+τ

(λ+τ−λ1,k )(µ−λ1,k ) −
µ−λ+τ

(λ+τ−λ2,k )(µ−λ2,k ) as
λ1,k−λ2,k

(λ+τ−λ1,k )(λ+τ−λ2,k ) −
λ1,k−λ2,k

(µ−λ1,k )(µ−λ2,k )
and using (16). We obtain that

|Ck (µ, τ) | ≤ C
(�����
λ+τ − λ2,k

λ+τ − λ1,k

�����
Φk (λ+τ ) +

�����
µ − λ2,k

µ − λ1,k

�����
Φk (µ)

)
, (22)

where

Φk (z) :=
�����
〈 f −τ , ψ2,k〉L2 (Γ)

z − λ2,k

�����

�����
〈 f +τ , ψ2,k〉L2 (Γ)

z − λ2,k

�����
, z ∈ C \ [−c0,∞). (23)

Notice from (16) that
�����
λ+τ − λ2,k

λ+τ − λ1,k

�����
≤ 1 + C, k ≥ 1, (24)
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whenever τ ≥ 1, and that

�����
µ − λ2,k

µ − λ1,k

�����
≤ 1 + C, k ≥ 1, (25)

provided that µ ≤ −(1 + c0). Further, bearing in mind that u±j,z , j = 1, 2, is the
solution to the boundary value problem (8), we find upon multiplying by φ2,k the
first line of (8) with j = 2, integrating the result over Ω and applying the Green
formula, that

〈u±2,z, φ2,k〉L2 (Ω) =
〈 f ±τ , ψ2,k〉L2 (Γ)

z − λ2,k
, k ≥ 1.

Thus,
∞∑
k=1

�����
〈 f ±τ , ψ2,k〉L2 (Γ)

z − λ2,k

�����

2

=
u±2,z


2
L2 (Ω)

, (26)

from the Parseval formula. Moreover, we have

u±2,λ+τ
L2 (Ω)

≤ C, (27)

whenever τ ≥ 1, according to (6) with (r, X ) = (2,Ω), and to (9) and (11) with
j = 2. Similarly, since u±2,µ = f ±τ − (Aq2 − µ)−1(q2 + λ

±
τ − µ) f ±τ from (9)-(10), we

have

u±2,µ
L2 (Ω)

≤  f ±τ L2 (Ω) +
q2 f ±τ L2 (Ω) + (��λ±τ �� + |µ|) f ±τ L2 (Ω)

|µ + c0 |

for µ ≤ −(1 + c0), and consequently u±2,µ
L2 (Ω)

≤ (2 + ��λ±τ �� + c) f ±τ L2 (Ω) +

q2 f ±τ L2 (Ω) . This, (6) with (r, X ) = (2,Ω) and (7) entail that

u±2,µ
L2 (Ω)

≤ Cτ, µ ≤ (−1 + c0). (28)

Step 5: Sending µ to −∞.With reference to (1) and to (21)–(28), it follows from (20)
and the dominated convergence theorem that

S1,τ − S2,τ = lim
µ→−∞

〈∂νv
+
1,λ+τ,µ

− ∂νv
+
2,λ+τ,µ

, f −τ 〉L2 (Γ) =

∞∑
k=1

(
A∗k (τ) + B∗k (τ) + C∗k (τ)

)
,

(29)
where

A∗k (τ) :=
1

λ+τ − λ1,k
〈 f +τ , ψ1,k − ψ2,k〉L2 (Γ)〈 f −τ , ψ1,k〉L2 (Γ), (30)

B∗k (τ) :=
1

λ+τ − λ1,k
〈 f +τ , ψ2,k〉L2 (Γ)〈 f −τ , ψ1,k − ψ2,k〉L2 (Γ) (31)

and
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C∗k (τ) :=
λ1,k − λ2,k

(λ+τ − λ1,k )(λ+τ − λ2,k )
〈 f +τ , ψ2,k〉L2 (Γ)〈 f −τ , ψ2,k〉L2 (Γ) . (32)

Step 5: Sending τ to∞. Since Im(λ+τ − λ j,k ) = 2τ for all k ≥ 1, we deduce from (6)
that

���A
∗
k (τ)��� +

���B
∗
k (τ)��� ≤ Cτ−1ψ1,k − ψ2,kL2 (Γ)

(ψ1,kL2 (Γ) +
ψ2,kL2 (Γ)

)
and ���C

∗
k (τ)��� ≤ Cτ−2��λ1,k − λ2,k ��ψ2,k2

L2 (Γ),

where the positive constant C is independent of k and τ. As a consequence we have

lim
τ→∞

A∗k (τ) = lim
τ→∞

B∗k (τ) = lim
τ→∞

C∗k (τ) = 0, k ≥ 1. (33)

This and (29) yield for any natural number N , that

lim
τ→∞

��S1,τ − S2,τ �� ≤ lim sup
τ→∞

∞∑
k=N

(���A
∗
k (τ)��� +

���B
∗
k (τ)��� +

���C
∗
k (τ)���

)
. (34)

On the other hand, applying the Cauchy-Schwarz inequality in (30), we get from
(26) that

∞∑
k=N

���A
∗
k (τ)��� ≤

 f +τ L2 (Ω)
*
,

∞∑
k=1

�����
〈 f −τ , ψ1,k〉L2 (Γ)

λ+τ − λ1,k

�����

2
+
-

1
2

*
,

∞∑
k=N

ψ1,k − ψ2,k2
L2 (Γ)

+
-

1
2

≤  f +τ L2 (Ω)
u−1,λ+τ

L2 (Ω)
*
,

∞∑
k=N

ψ1,k − ψ2,k2
L2 (Γ)

+
-

1
2

. (35)

Further, since supτ≥1
 f +τ L2 (Ω)

u−1,λ+τ
L2 (Ω)

< ∞ according to (6) with (r, X ) =

(2,Ω), (9) and (11), it follows from (35) that

lim sup
τ→∞

∞∑
k=N

���A
∗
k (τ)��� ≤ C *

,

∞∑
k=N

ψ1,k − ψ2,k2
L2 (Γ)

+
-

1
2

, (36)

for some constant C > 0 depending only on Ω and M . It should be noticed in
particular that C is independent of N and qj , j = 1, 2.

Similarly, by arguing as above with (31) and (32) instead of (30), we find that

lim sup
τ→∞

∞∑
k=N

���B
∗
k (τ)��� ≤ C *

,

∞∑
k=N

ψ1,k − ψ2,k2
L2 (Γ)

+
-

1
2

and
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lim sup
τ→∞

∞∑
k=N

���C
∗
k (τ)��� ≤ C sup

k≥N

��λ1,k − λ2,k ��,

which together with (34) and (36), yields

lim sup
τ→∞

��S1,τ − S2,τ �� ≤ C *.
,

sup
k≥N

��λ1,k − λ2,k �� + *
,

∞∑
k=N

ψ1,k − ψ2,k2
L2 (Γ)

+
-

1
2 +/

-
. (37)

Therefore, we have

�����

∫
Ω

e−ix ·ξ (q1 − q2)dx
�����
≤ C *.

,
sup
k≥N

��λ1,k − λ2,k �� + *
,

∞∑
k=N

ψ1,k − ψ2,k2
L2 (Γ)

+
-

1
2 +/

-
,

from Proposition 1, where C is independent of N . Now, with reference to (1), we
find upon sending N to infinity in the above estimate, that

�����

∫
Ω

e−ix ·ξ (q1 − q2)dx
�����
≤ C lim sup

k→∞

��λ1,k − λ2,k ��. (38)

Step 7: End of the proof. Let us denote by q the extension of q1−q2 by zero inRd \Ω,
and by q̂ the Fourier transform of q, i.e.,

q̂(ξ) =
∫
Rd

e−ix ·ξq(x)dx =
∫
Ω

e−ix ·ξ (q1 − q2)dx, ξ ∈ Rd .

Then, setting Λ := lim supk→∞ ��λ1,k − λ2,k ��, we may rewrite (38) as

|q̂(ξ) | ≤ CΛ, ξ ∈ Rd . (39)

Let r > 0 be fixed. Putting Br := {ξ ∈ Rd, |ξ | < r } and using that
∫
Br
|q̂(ξ) |2dξ ≤

Crd ‖q̂‖2L∞ (Br ) , we deduce from (39) that∫
Br

|q̂(ξ) |2dξ ≤ CrdΛ2. (40)

Next, since
∫
Rd\Br

(1+|ξ |2)−1 |q̂(ξ) |2dξ ≤ r−2
∫
Rd\Br

|q̂(ξ) |2dξ ≤ r−2
∫
Rd
|q̂(ξ) |2dξ,

we have ∫
Rd\Br

(1 + |ξ |2)−1 |q̂(ξ) |2dξ ≤ r−2‖q‖2
L2 (Rd )

by Parseval’s theorem. Thus, keeping in mind that ‖q‖L2 (Rd ) = ‖q‖L2 (Ω) ≤ M , we
obtain that ∫

Rd\Br

(1 + |ξ |2)−1 |q̂(ξ) |2dξ ≤ M2r−2.
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From this, (40) and the identity ‖q‖2
H−1 (Ω) =

∫
Rd

(1+ |ξ |2)−1 |q̂(ξ) |2dξ, it then follows
that

‖q‖H−1 (Ω) ≤ C
(
r

d
2 Λ + r−1

)
, r > 0.

Finally, taking r =
(

4
nC

) 2
n+2
Λ−

2
n+2 in the above inequality to minimize its right-hand

side, we get (2). This completes the proof of Theorem 1.
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Appendix

3.1 L2(Γ)-regularity of the ψk ’s

For F ∈ L2(Ω) we consider the solution u ∈ H1
0 (Ω) to the boundary value problem{

(−∆ + q)u = F in Ω
u = 0 on Γ, (41)

given by Lax-Milgram’s theorem. If q were in L∞(Ω) then u would be in H2(Ω) by
elliptic regularity, and satisfy

‖u‖H2 (Ω) ≤ C(‖u‖L2 (Ω) + ‖F‖L2 (Ω))

for some positive constant C = C(Ω, ‖q‖L∞ (Ω)). As a result, we would have ∂νu ∈
L2(Γ) and the estimate

‖∂νu‖L2 (Γ) ≤ C(‖u‖L2 (Ω) + ‖F‖L2 (Ω)), (42)

where C is another positive constant depending only on Ω and ‖q‖L∞ (Ω) . However,
since q is possibly unbounded in the framework of this article, we cannot apply the
standard theory of elliptic PDEs here, which leaves us with the task of establishing
the following result.

Proposition 2 Let q ∈ Qc0 (M), where c0 > 0 and M > 0 are fixed, and let F ∈
L2(Ω). Let u ∈ H1(Ω) be a solution to (41). Then, we have ∂νu ∈ L2(Γ) and the
estimate (42) holds for some positive constant C depending only on Ω, c0 and M .

The derivation of Proposition 2 is similar to the one of [6, Proposition 2.2] but
for the sake of self-containedness of this paper and for the convenience of the reader,
we provide the proof of this technical result in Appendix 3.2, below.

Notice that it follows from Proposition 2 that any function u ∈ D(Aq) has a
normal derivative ∂νu ∈ L2(Γ) satisfying
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‖∂νu‖L2 (Γ) ≤ C
(
‖u‖L2 (Ω) +

AquL2 (Ω)

)
,

where C is a positive constant depending only on Ω and M . Specifically, since all
the eigenfunctions φk , k ≥ 1, lie in D(Aq), we get that ψk ∈ L2(Γ) and that

‖ψk ‖L2 (Γ) ≤ C(1 + |λk |). (43)

3.2 Proof of Proposition 2

By linearity of (41), we may assume without limiting the generality of the foregoing
that F is real-valued. As a consequence, the solution u to (41) is real-valued as well.

Put q0 := q + c0. Since q0 ≥ 0 by assumption, we pick a sequence (q` )`≥1 ∈
C∞(Ω) of non-negative functions satisfying

lim
`→∞
‖q` − q0‖

L
3d
5 (Ω)

= 0. (44)

Then, for each ` ≥ 1 we consider the solution u` ∈ H2(Ω) ∩H1
0 (Ω) to the boundary

value problem {
(−∆ + q` )u` = c0u + F in Ω
u` = 0 on Γ. (45)

We split the proof into 4 steps.
Step 1: The sequence (u` )`≥1 is bounded in H1(Ω). For ` ∈ N fixed, we multiply
the first equation of (45) by u` and integrate over Ω. We obtain

∫
Ω
|∇u` |2dx +∫

Ω
q` |u` |2dx =

∫
Ω

Gu`dx with the help of Green’s formula, where G := c0u+ F. As
a consequence, we have∫

Ω

|∇u` |2dx +
∫
Ω

q0 |u` |2dx =
∫
Ω

Gu`dx −
∫
Ω

(q` − q0) |u` |2dx,

which, upon applying Poincaré’s inequality and remembering that q0 ≥ 0 a.e. in Ω,
leads to

‖u` ‖2H1 (Ω) ≤ C0

(∫
Ω

|q` − q0 | |u` |2dx +
∫
Ω

|G | |u` |dx
)
.

Here and in the sequel, C0 denotes a generic positive constant, depending only onΩ.
Taking into account that H1(Ω) ⊂ L

2d
d−2 (Ω) and that the embedding is continuous,

by the Sobolev embedding theorem (see e.g. [12, Theorem 1.4.4.1]), we infer from
the above inequality and Hölder’s inequality that for all ε > 0,
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‖u` ‖2H1 (Ω)

≤ C0

(
‖q` − q0‖

L
3d
5 (Ω)
‖u` ‖2

L
6d

3d−5 (Ω)
+

∫
Ω

|G | |u` |dx
)

≤ C0

(
‖q` − q0‖

L
3d
5 (Ω)
‖u` ‖2H1 (Ω) + ε ‖u` ‖

2
L2 (Ω) + ε

−1‖G‖2
L2 (Ω)

)
. (46)

Now, with reference to (44), we pick `0 ≥ 1 so large ‖q` − q0‖
L

3d
5 (Ω)

≤ ε for all ` ≥

`0. From this and (46) it then follows that ‖u` ‖2H1 (Ω) ≤ C0
(
ε ‖u` ‖2H1 (Ω) + ε

−1‖G‖2
L2 (Ω)

)
whenever ` ≥ `0. Thus, by taking ε = (2C0)−1 in this estimate, we find that

‖u` ‖H1 (Ω) ≤ C0
(
‖u‖L2 (Ω) + ‖F‖L2 (Ω)

)
, ` ≥ `0. (47)

Step 2: (u` )`≥1 converges to u in W2,p (Ω), where p := 2d/(d + 2). For ` ≥ `0 fixed,
we put v` := u − u` in such a way that{

−∆v` + q0v` = (q` − q0)u` in Ω
v` = 0 on Γ, (48)

according to (41) and (45). Thus, bearing in mind that q0 ≥ 0 a.e. in Ω, we have

‖v` ‖H1 (Ω) ≤ C0‖(q` − q0)u` ‖H−1 (Ω) . (49)

Moreover, H1
0 (Ω) being continuously embedded in L

2d
d−2 (Ω), the space Lp (Ω) is, by

duality, continuously embedded in H−1(Ω), and (49) yields

‖v` ‖H1 (Ω) ≤ C0‖(q` − q0)u` ‖Lp (Ω) . (50)

Further, in light of (48) we have

‖v` ‖W 2,p (Ω) ≤ C0
(
‖q0v` ‖Lp (Ω) + ‖(q` − q0)u` ‖Lp (Ω)

)
,

from [12, Theorems 2.4.2.5], and

‖q0v` ‖Lp (Ω) ≤ ‖q0‖
L

d
2 (Ω)
‖v` ‖

L
2d
d−2 (Ω)

≤ C‖v` ‖H1 (Ω),

by Hölder’s inequality and the Sobolev embedding theorem, where, from now on, C
is a generic positive constant depending only on Ω, c0 and M . From this and (50) it
then follows that

‖v` ‖W 2,p (Ω) ≤ C‖(q` − q0)u` ‖Lp (Ω)

≤ C‖q` − q0‖
L

3d
5 (Ω)
‖u` ‖H1 (Ω),

which together with (44) and (47), yields

lim
`→∞
‖u` − u‖W 2,p (Ω) = 0. (51)
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Step 3: The sequence (u` )`≥1 is bounded in W2,r (Ω), where r := 6d/(3d + 4). In
light of (45) and the identity G = cu + F, we infer from [12, Theorem 2.4.2.5] upon
taking into account that L2(Ω) is continuously embedded in Lr (Ω), that

‖u` ‖W 2,r (Ω) ≤ C(‖q`u` ‖Lr (Ω) + ‖G‖L2 (Ω)), ` ≥ 1. (52)

Further, aswe have ‖q`u` ‖Lr (Ω) ≤ ‖q` ‖
L

3d
5 (Ω)
‖u` ‖

L
2d
d−2 (Ω)

≤ C‖q` ‖
L

3d
5 (Ω)
‖u` ‖H1 (Ω)

by Hölder’s inequality and the Sobolev embedding theorem, and hence

‖q`u` ‖Lr (Ω) ≤ C(‖u‖L2 (Ω) + ‖F‖L2 (Ω)), ` ≥ `0,

from (44) and (47), it follows from (52) that

‖u` ‖W 2,r (Ω) ≤ C
(
‖u‖L2 (Ω) + ‖F‖L2 (Ω)

)
, ` ≥ `0. (53)

Step 4: End of the proof. We are left with the task of establishing that

‖∂νu` ‖L2 (Γ) ≤ C
(
‖u‖L2 (Ω) + ‖F‖L2 (Ω)

)
, ` ≥ `0. (54)

For this end we consider a vector field γ ∈ C1(Ω,Rd) satisfying γ |Γ = ν, multiply
the first line of (45) by γ · ∇u` , and integrate over Ω. We obtain that∫
Ω

(−∆u` )γ ·∇u`dx+
∫
Ω

q` u`γ ·∇u`dx =
∫
Ω

c uγ ·∇u`dx+
∫
Ω

Fγ ·∇u`dx, ` ≥ 1.

(55)
Applying the divergence formula, the first term on the left-hand side of (55) reads∫

Ω

(∆u` )γ · ∇u`dx =
∫
Γ

|∂νu` |2dσ −
∫
Ω

∇(γ · ∇u` ) · ∇u`dx, ` ≥ 1. (56)

Further, writing γ = (γ1, . . . , γd)T , we get through direct computation that

∇(γ · ∇u` ) · ∇u` =
d∑

i, j=1

(
∂i

(
γj∂ju`

))
∂iu`

=

d∑
i, j=1

(∂iγj )(∂ju` )∂iu` +
1
2
γ · ∇|∇u` |2, ` ≥ 1. (57)

Next, since γ · ν = 1 on Γ and |∇u` | = |∂νu` | on Γ, we have∫
Ω

γ · ∇|∇u` |2dx = ‖∂νu` ‖2L2 (Γ) −

∫
Ω

(∇ · γ) |∇u` |2dx,

and hence∫
Ω

∆u` (γ · ∇u` )dx =
1
2
‖∂νu` ‖2L2 (Γ) +

∫
Ω

H (x)∇u` (x)dx, ` ≥ 1.



Stable determination of unbounded potential by asymptotic boundary spectral data 17

from (56)-(57), where

H (x)X := −
d∑

i, j=1
(∂iγj )(x)X jXi+

1
2

(∇ · γ(x)) |X |2, X = (X1, . . . , Xd) ∈ Rd, x ∈ Ω.

It follows readily from this and (55) that

1
2
‖∂νu` ‖2L2 (Γ) = −

∫
Ω

H (x)∇u` (x)dx+
∫
Ω

q`u` γ · ∇u`dx−
∫
Ω

G γ · ∇u`dx, ` ≥ 1.

(58)
The second term on the right hand side of (58) can be bounded with the help of
Hölder’s inequality, as

�����

∫
Ω

q` u` γ · ∇u`dx
�����
≤ ‖γ‖L∞ (Ω)d ‖q` ‖

L
3d
5 (Ω)
‖u` ‖

L
6d

3d−8 (Ω)
‖∇u` ‖

L
6d

3d−2 (Ω)

≤ C‖q` ‖
L

3d
5 (Ω)
‖u` ‖

L
6d

3d−8 (Ω)
‖u` ‖

W
1, 6d

3d−2 (Ω)
,

in such a way that we have ���
∫
Ω

q` u` γ · ∇u`dx��� ≤ C‖q` ‖
L

3d
5 (Ω)
‖u` ‖2W 2,r (Ω) by the

Sobolev embedding theorem, and consequently

�����

∫
Ω

q` u` γ · ∇u`dx
�����
≤ C

(
‖u‖L2 (Ω) + ‖F‖L2 (Ω)

)2
, ` ≥ `0

from (53). Putting this together with (47) and (58), we obtain (54).
As a consequence, the sequence (∂νu` )`≥1 is weakly convergent in L2(Γ), by

Banach-Alaoglu’s theorem, and we denote by w its weak limit in L2(Γ). On the
other hand, since (u` )`≥1 converges to u in the norm-topology ofW2,p (Ω) according
to (51), (∂νu` )`≥1 strongly converges to ∂νu in Lp (Γ). Therefore, we have ∂νu =
w ∈ L2(Γ) by uniqueness of the limit, which proves the first claim of Proposition
2. Finally, (42) follows from (54) together with the weak convergence in L2(Γ) of
(∂νu` )`≥1 to ∂νu.

3.3 Influence of potential and spectral parameter on the Neumann
response

Let q ∈ Qc0 (M), where c0 > 0 and M > 0 are fixed, and pick λ ∈ C \ [−c0,∞) in
such a way that λ lies in the resolvent set of Aq . Then, for all f ∈ H3/2(Γ), we recall
from [20, Lemma 2.3 and Corollary 2.4] that the boundary value problem{

(−∆ + q − λ)u = 0 in Ω
u = f on Γ, (59)

admits a unique solution uλ ∈ W2,p (Ω), where p = 2d
d+2 , satisfying
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‖uλ‖W 2,p (Ω) ≤ Cλ‖ f ‖H3/2 (Γ), (60)

for some positive constant Cλ depending on λ. Evidently, uλ depends on q as well,
but to ease the notation we suppress this dependence.

Next, since the trace operator v 7−→ ∂νv sends W2,p (Ω) into W1− 1
p ,p (Γ), we

see that ∂νuλ is well-defined in Lp (Γ). We first examine the dependence of ∂νuλ
with respect to q in the asymptotic regime λ → −∞. The following result, which
is borrowed from [6, Lemma 2.1], specifies that the influence of the potential q on
∂νuλ is, in some sense, dimmed as λ goes to −∞.

Lemma 1 Let qj ∈ Qc0 (M), j = 1, 2. For λ ∈ R \ [−c0,∞), denote by u j,λ the
solution to the boundary value problem (59) with q = qj . Then, we have

lim
λ→−∞

‖∂νu1,λ − ∂νu2,λ‖Lp (Γ) = 0,

where p = 2d
d+2 .

Having seen this, we seek to examine the dependence of ∂νuλ with respect to
the spectral parameter λ when the potential q is fixed. This can be done with the
aid of [6, Lemma 2.2], which expresses the difference ∂ν (uλ − uµ) in terms of λ,
µ ∈ C \ [−c0,∞) and BSD(Aq), as

∂ν (uλ − uµ) = (µ − λ)
∞∑
k=1

〈 f , ψk〉L2 (Γ)

(λ − λk )(µ − λk )
ψk, (61)

the series on the right-hand-side of (61) being convergent in L2(Γ).
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