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Abstract. In this paper we study the inverse problem of identifying a source or an initial state in a time-
fractional diffusion equation from the knowledge of a single boundary measurement. We derive logarithmic
stability estimates for both inverse problems. These results show that the ill-posedness increases exponen-
tially when the fractional derivative order tends to zero, while it exponentially decreases when the regularity
of the source or the initial state becomes larger.

1. Introduction and main results

1.1. Settings. Let Ω ⊂ Rd, d = 2, 3, be a bounded domain containing the origin, with C2 boundary ∂Ω.
With reference to [34], the Riemann-Liouville integral operator of order β, denoted by Iβ , is defined by

Iβh(t, ·) := 1
Γ(β)

ˆ t

0

h(τ, ·)
(t− τ)1−β dτ,

and the Riemann-Liouville fractional derivative of order β is Dβ
t := ∂t ◦ I1−β . Set

∂βt h := Dβ
t (h− h(0, ·)), h ∈ C([0,+∞);L2(Ω)).

The operator ∂βt is called the Caputo fractional derivative of order β, as we have

∂βt h = I1−β∂th, h ∈W 1,1
loc (R+;L2(Ω)),

where R+ := (0,+∞).
For α ∈ (0, 1) fixed, we consider the following initial boundary value problem (IBVP) ∂αt u(t, x)−∆u(t, x) = g(t)f(x), (t, x) ∈ R+ × Ω,

u(0, x) = u0(x), x ∈ Ω,
u(t, x) = 0, (t, x) ∈ (0,+∞)× ∂Ω,

(1)

where f ∈ L2(Ω), g ∈ L∞(R+) and u0 ∈ H1
0 (Ω). In this article, assuming that the function g is known and

satisfies an appropriate condition that we will make precise further, we aim to study the stability issue in
the inverse problem of determining either the source term f or the initial state u0, from a single boundary
measurement ∂νu = ∇u · ν on R+×∂Ω, of the solution u to (1). Here and in the remaining part of this text,
we denote by ν the outward unit normal vector to ∂Ω.

The time-fractional diffusion system (1) describes anomalous diffusion in homogeneous media. It has
multiple engineering applications in geophysics, environmental science and biology, see e.g., [1, 10, 22]. From
a mathematical viewpoint, the time-fractional diffusion equation of (1) can be seen as a corresponding
macroscopic model to microscopic diffusion processes governed by a continuous-time random walk, see e.g.,
[8, 32].
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1.2. A brief review of the existing literature. Inverse source problems have received a lot of attention
from the mathematical community over the last decade, owing it to the major impact they made in many
areas, including medical diagnosis and industrial nondestructive testing. We refer the reader to [18, 6] for an
overview of inverse source problems for partial differential equations, and to [22, 31] for the study of these
problems in the framework of fractional diffusion equations.

While several authors have already addressed the inverse problem of retrieving the space-varying part of
the source term in a fractional diffusion equation, see e.g., [14, 37], only uniqueness results are available in
the mathematical literature, see e.g., [19, 22, 25, 28, 36] (see also [23] for some related inverse problem) with
the exception of the recent stability result of [11] stated with specific norms. This is not surprising since the
classical methods used to build a stability estimate for the source of parabolic (α = 1) or hyperbolic (α = 2)
systems, see e.g., [12, 17, 27, 3], do not apply in a straightforward way to time-fractional diffusion equations.
One of the reasons for this is that Carleman estimates, which play an important role in the analysis of the
stability issue of parabolic or hyperbolic inverse problems, and whose derivation heavily relies on partial
time integration, generally cannot be adapted to time-fractional equations. Moreover, we point out that the
Carleman estimate designed in [16, 41] specifically for (1) with α = 1

2 (upon reduction to a multidimensional
fourth-order differential system), boils down to internal measurement of the solution and is not suitable for
solving inverse source problems with lateral data.

As far as we know, the only mathematical work dealing with the stability issue of the inverse source
problem under consideration in the present article, can be found in [11, 20, 29]. While the authors of [20, 29]
studied this problem in the peculiar framework of a cylindrical domain Ω′ × (−`, `), where Ω′ is an open
subset of Rd−1 and ` ∈ R+, the Lipschitz stability estimate presented in [11] is derived for α ∈ (1, 2) under
a specifically designed topology induced by the adjoint system of the fractional wave equation.

However, we could not find such thing as a stability inequality with respect to the usual norm in L2(Ω), of
the space-dependent part of the source term of time-fractional diffusion equations posed in a general bounded
domain, in the mathematical literature. Besides, the main achievement of this article is the logarithmic-
stable determination through one Neumann data, of either the space-varying part of the source term or the
initial state of the IBVP (1). The corresponding stability estimates are given in Theorems 1.1 and 1.2 below,
but prior to stating these two inverse results, we turn our attention to the direct problem associated with
(1).

1.3. The direct problem. With reference to [13, 25, 30], we define a weak solution to the IBVP as a
function u ∈ L1

loc(R+;L2(Ω)) satisfying the three following conditions simultaneously:
i) Dα

t [u− u0](t, x)−∆u(t, x) = f(x)g(t) in the distributional sense in R+ × Ω;
ii) I1−αu ∈W 1,1

loc (R+;H−2(Ω)) and I1−α[u− u0](0, x) = 0 for a.e. x ∈ Ω;
iii) p0 := inf{τ > 0 : e−τtu ∈ L1(R+;L2(Ω))} <∞ and

∃p1 ≥ p0, ∀p ∈ C, Rp > p1 =⇒ ũ(p, ·) :=
ˆ +∞

0
e−ptu(t, ·) dt ∈ H1

0 (Ω).

Here and the remaining part of this article, Rz (resp., Iz) denotes the real part (resp., the imaginary part)
of the complex number z. Notice from iii) that ũ is the Laplace transform in time of u with respect to the
time-variable t.

As long as finite time evolution is concerned, we can rely on the results of [25, 30, 37]. Indeed, they ensure
us for all α ∈ (0, 1), all T > 0 and all (f, g, u0) ∈ L2(Ω) × L∞(R+) ×

(
H1

0 (Ω) ∩H2(Ω)
)
that the IBVP (1)

admits a unique weak solution u ∈ L2
loc(R+;H2(Ω) ∩H1

0 (Ω)) satisfying

‖u‖L2(0,T ;H2(Ω)) + ‖∂αt u‖L2((0,T )×Ω) ≤ C
(
‖g‖L∞(0,T )‖f‖L2(Ω) + ‖u0‖Hk(Ω)

)
,

for some constant C > 0 depending only on α, Ω and T . However, since C may blow up as T tends to
infinity, it is not clear how the global in time properties of the solution on R+, needed by the analysis of
the inverse problem under study in this article, can be inferred from the above estimate. For this reason we
proceed by establishing the following global time existence and uniqueness result.



INVERSE SOURCE PROBLEM 3

Proposition 1.1. Let α ∈ (0, 1) and let (f, g, u0) ∈ L2(Ω)×
(
L1(R+) ∩ L∞(R+)

)
×
(
H1

0 (Ω) ∩H2(Ω)
)
. Then,

there exists a unique weak solution u ∈ Lr(R+;H 7
4 (Ω)), r > α−1, to the IBVP (1). Moreover, we have

‖u‖
Lr(R+;H

7
4 (Ω))

≤ C
(
‖g‖Lr(R+)‖f‖L2(Ω) + ‖u0‖H2(Ω)

)
,(2)

for some positive constant C depending only on α and Ω.

Notice that similar results were obtained in [5, 7] upon applying the operator-valued Fourier multiplier
theorem of [40] to fractional diffusion equations with a Riemann-Liouville time fractional derivative. In light
of [21, Theorem 3], this method applies to the system (1) with initial state u0 which is identically zero. In
this peculiar framework, the solution u to (1) lies in Lr(R+;H2(Ω)) for all r > 1, and satisfies the energy
estimate

‖u‖Lr(R+;H2(Ω)) ≤ C‖g‖Lr(R+)‖f‖L2(Ω).

Nevertheless, as it remains to be seen whether the approach of [5, 7] can be adapted to a non-trivial u0, it is
not clear how Proposition 1.1 could be derived from the analysis developed in [5, 7]. Therefore we provide
an extensive proof of this result, which can be found in Appendix A.

Having expressed Proposition 1.1, we turn now to stating the two main results of this article. Each of
them is concerned with one of the inverse problems described in the introduction.

1.4. Inverse problems. In this section we present two stability estimates. The first one is associated with
the determination of the source term f of the IBVP (1), by one boundary measurement of the solution
over the entire time-span R+. The second one is related to the same inverse problem where the unknown is
replaced by the initial state u0. Prior to stating these two inequalities, we introduce the following notations.
Firstly, for all τ ∈ R, we note bτc the integer part of τ . Secondly, for all k ∈ N := {1, 2, . . .}, we denote by
Hk

0 (Ω) the closure of C∞0 (Ω) in the topology of the k-th order Sobolev space Hk(Ω).
We start with the determination of the source term f .

Theorem 1.1. Let α ∈ (0, 1), let f ∈ Hk
0 (Ω) for some k ∈ N and let g ∈ L∞(R+) ∩ L1(R+) satisfy the

condition
(3) ∃c0 > 0, ∀p ∈ R+, |g̃(p)| ≥ c0.

Assume that u0 = 0 and denote by u the L 2
α (R+;H 7

4 (Ω))-solution to (1), and let s = 1 + b 2
αc.

Then, for all θ ∈ (0, 1), there exists ε0 = ε0

(
Ω, d, k, θ, ‖f‖Hk(Ω)

‖f‖L1(Ω)

)
∈ (0, 1) such that we have

(4) ‖f‖L2(Ω) ≤ C‖f‖Hk(Ω)


∣∣∣ln ‖∂νu‖

L
2
α (R+;L2(∂Ω))

∣∣∣− k
1+θ if s ≤ d+ d2

2k∣∣∣ln ‖∂νu‖
L

2
α (R+;L2(∂Ω))

∣∣∣− d2
2(s−d)(1+θ) if s > d+ d2

2k ,

whenever ‖∂νu‖
L

2
α (R+;L2(∂Ω))

∈ (0, ε0). Here, C is a positive constant depending only on Ω, d, k, θ and c0.

It is worth noticing that the condition (3) (which is especially true when g is a non-trivial function that
does not change sign) is purely technical in the sense that it is needed by the proof of Theorem 1.1, displayed
in Section 2 below, to establish the key estimate (10) with the aid of (9). This being said, we may now state
the following corresponding result to Theorem 1.1 but for the determination of the initial state u0 instead
of the space-moving part of the source term f .

Theorem 1.2. Let α ∈ (0, 1) and let u0 ∈ Hk
0 (Ω), where k ∈ N. Assume that f = 0, denote by u the

L
2
α (R+;H 7

4 (Ω))-solution to the IBVP (1), and let s = 1 + b 2
αc.

Then, for all θ ∈ (0, 1), there exists ε0 = ε0

(
Ω, d, k, θ, ‖u0‖Hk(Ω)

‖u0‖L1(Ω)

)
∈ (0, 1) such that we have

‖u0‖L2(Ω) ≤ C‖u0‖Hk(Ω)


∣∣∣ln ‖∂νu‖

L
2
α (R+;L2(∂Ω))

∣∣∣− k
1+θ if s ≤ d+ d2

2k∣∣∣ln ‖∂νu‖
L

2
α (R+;L2(∂Ω))

∣∣∣− d2
2(s−d)(1+θ) if s > d+ d2

2k ,

(5)
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provided ‖∂νu‖
L

2
α (R+;L2(∂Ω))

∈ (0, ε0). Here, C is a positive constant depending only on Ω, d, k and θ.

The result of Theorem 1.2 may also be seen as a weak observability inequality that could be helpful in
control theory, see e.g. [42, 4, 3], for proving approximate controllability of the time-fractional diffusion
equation appearing in (1). This open problem is of great importance in photoacoustic imaging in the sub-
diffusion regime [2, 38, 35].

To our knowledge, Theorem 1.1 (resp., Theorem 1.2) is the only existing mathematical result on the
stable recovery of the space-varying part of the source term (resp., the initial state) of a fractional diffusion
equation posed in a general spatial domain. As already mentioned in Section 1.2, there are two comparable
results available in [20, 29] but they only apply to cylindrical shaped domains.

Notice that the stability of the recovery of either f or u0, expressed in (4) and (5), respectively, degenerates
exponentially fast as the fractional order α tends to zero. In contrast, this stability exponentially improves
as their Sobolev regularity order k increases. Moreover, we point out that it is for simplicity’s sake that
‖ · ‖

L
2
α (R+,L2(∂Ω))

was used in (4) and (5), as it can be seen from Proposition 1.1 below that any norm
‖ · ‖Lr(R+,L2(∂Ω)) with r > α−1, is suitable for such inequalities.

Remark 1.1. It is not clear whether the approach developed in this article applies to fractional wave equations
(that is to say to the system (1) with α ∈ (1, 2)). Indeed, most of the intermediate technical results used
by the analysis carried out in this article, such as the unique continuation presented in Section 2.4, are
specifically written for the sub-diffusive case α < 1, and it remains to be seen whether they can be adapted
to the super-diffusive case α ∈ (1, 2).

The data used in Theorem 1.1 and 1.2 involve measuring the Neumann trace of the solution u to (1) over
the infinite time interval R+. This is because the analysis carried out in the present article is based on the
use of the Laplace transform with respect to the time variable. The question to know whether these data
could be replaced by a finite time observation of lateral measurements of ∂νu still remains unanswered, but
several lines of research can be pursued. One of them is to estimate ∂νu|R+×∂Ω in terms of ∂νu|(0,T )×∂Ω for
some T > 0. Another one is to try to adapt the method developed in this manuscript to the case of Laplace
transform of periodised functions.

1.5. Outline. This article is organized as follows. The proof of the two stability estimates (4)-(5) is presented
in Section 2. Their derivation boils down to a unique continuation result, that is established in Section 2.4.
The analysis of the direct problem associated with the IBVP (1) can be found in Appendix A, which contains
the proof of Proposition 1.1.

2. Proof of Theorems 1.1 and 1.2

In this section we derive the two stability inequalities (4) and (5). Our strategy is to study the IBVP
(1) in the so-called frequency domain, that is to say that we examine the elliptic system derived from (1)
upon applying the Laplace transform with respect to the time-variable t. This is made precise in the coming
section, which is a preamble to the proof of Theorems 1.1 and 1.2.

2.1. Preliminaries. Let u be the weak solution to (1) given by Propisition 1.1. In light of iii) in Section
1.3, the Laplace transform in time ũ(p, ·) of u is well-defined provided the real part of p ∈ C is sufficiently
large. As a matter of fact, it can be checked from [24, Theorem 1.3] or [25, Theorem 4.1] that ũ(p, ·) is
well-defined for all p ∈ C+ := {z ∈ C, R(z) > 0} and solves the following boundary value problem (BVP){

(−∆ + pα)ũ(p, ·) = g̃(p)f + pα−1u0 in Ω,
ũ(p, ·) = 0 on ∂Ω.(6)

Notice that since g ∈ L∞(R+), g̃(p, ·) is well-defined for p ∈ C+ as well.
Next, for all z ∈ C∗ \ iR+ := {τ ∈ C, −iτ /∈ [0,+∞)} and for all q ∈ R, we set zq := eq log z, where

log denotes the complex logarithm function defined and holomorphic on C∗ \ iR+. Thus, for all ω ∈ R+,
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U(ω, ·) := ũ(ω 2
α , ·) is a solution to{

(−∆ + ω2)U = g̃(ω 2
α )f + ω2− 2

αu0 in Ω,
U = 0 on ∂Ω.(7)

Let us denote by (λk)k≥1 ∈ RN
+ the eigenvalues of the self-adjoint operator A in L2(Ω), acting as −∆ on its

domainH1
0 (Ω)∩H2(Ω), which is positive and has a compact resolvent. Since F := g̃(ω 2

α )f+ω2− 2
αu0 ∈ L2(Ω),

the BVP (7) admits a unique solution U = (A+ω2)−1F within the space H1
0 (Ω)∩H2(Ω), provided we have

ω ∈ C \ {±iλk, k ≥ 1}. In particular, this entails that U(ω, ·) ∈ H2(Ω) for all ω ∈ C+.
Further, recalling that the Fourier transform φ̂ of a function φ ∈ L1(Ω) reads

φ̂(ξ) = 1
(2π) d2

ˆ
Ω
e−ix·ξφ(x)dx, ξ ∈ Rd,(8)

we pick ξ ∈ Sd−1, multiplying the first equation of (7) by eωx·ξ, where ω ∈ R+ is fixed, and we integrate by
parts over Ω. We obtain that

g̃(ω 2
α )f̂(iωξ) + ω2− 2

α û0(iωξ) = (2π)− d2
ˆ
∂Ω
∂νU(ω, x)eωx·ξdσ(x), ξ ∈ Sd−1, ω ∈ R+.(9)

The above identity is a stepping stone to the proof of Theorems 1.1 and 1.2.

2.2. Proof of Theorem 1.1. Since u0 = 0 by assumption and |g̃(p)| ≥ c0 > 0 for all p ∈ R+, according to
(3), it follows from (9) that

(10)
∣∣∣f̂(iωξ)

∣∣∣ ≤ c−1
0 (2π)− d2 |∂Ω|

1
2 eκΩω‖∂νU(ω, ·)‖L2(∂Ω), ξ ∈ Sd−1, ω ∈ R+,

where κΩ := supx∈∂Ω |x|.
Next, we have u ∈ L 2

α (R+;H 7
4 (Ω)) from Proposition 1.1, and hence ∂νu ∈ L

2
α (R+;H 1

4 (∂Ω)) ⊂ L 2
α (R+;L2(∂Ω)),

and
∂νU(ω, x) = ∂̃νu(ω 2

α , x), x ∈ ∂Ω, ω ∈ R+,

from [26, Step 2 in the proof of Theorem 2.2]. Thus, applying Hölder’s inequality, we get that

‖∂νU(ω, ·)‖L2(∂Ω) ≤
ˆ +∞

0
e−ω

2
α t‖∂νu(t, ·)‖L2(∂Ω)dt

≤
(ˆ +∞

0
e−

2
2−αω

2
α tdt

) 2−α
2

‖∂νu‖
L

2
α (R+;L2(∂Ω))

≤ ω
α−2
α ‖∂νu‖

L
2
α (R+;L2(∂Ω))

.(11)

Now, putting (10) together with (11), we find for all ξ ∈ Sd−1 that∣∣∣f̂(iωξ)
∣∣∣ ≤ c−1

0 (2π)− d2 |∂Ω|
1
2 ω

α−2
α eκΩω‖∂νu‖

L
2
α (R+;L2(∂Ω))

, ω ∈ R+.

Since ω α−2
α ≤

( 2+ω
ω

)s for all ω ∈ R+, where s := 1 + b 2
αc, we deduce from the above line that(

ω

2 + ω

)s
e−κΩω

∣∣∣f̂(iωξ)
∣∣∣ ≤ c−1

0 (2π)− d2 |∂Ω|
1
2 ‖∂νu‖

L
2
α (R+;L2(∂Ω))

, ω ∈ [0,+∞).(12)

Further, the right-hand-side on (12) being independent of ξ, we substitute −ξ for ξ in (12) and obtain that(
−ω

2− ω

)s
eκΩω

∣∣∣f̂(iωξ)
∣∣∣ ≤ c−1

0 (2π)− d2 |∂Ω|
1
2 ‖∂νu‖

L
2
α (R+;L2(∂Ω))

, ω ∈ (−∞, 0].

Then we use the fact that eκΩω ≥ e−2κΩe−κΩω and (2− ω)−1 ≥ 3−1(2 + ω)−1 whenever ω ∈ [−1, 0), to get
that

(
−ω
2+ω

)s
e−κΩω

∣∣∣f̂(iωξ)
∣∣∣ ≤ 3sc−1

0 (2π)− d2 e2κΩ |∂Ω|
1
2 ‖∂νu‖

L
2
α (R+;L2(∂Ω))

for all ω ∈ [−1, 0). From this and
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(12) it then follows for all ξ ∈ Sd−1 that

(13)
∣∣∣∣( ω

2 + ω

)s
e−κΩω f̂(iωξ)

∣∣∣∣ ≤ ε, ω ∈ [−1,+∞),

where
(14) ε := 3sc−1

0 (2π)− d2 e2κΩ |∂Ω|
1
2 ‖∂νu‖

L
2
α (R+;L2(∂Ω))

.

The remaining part of our analysis boils down to a quantitative unique continuation result which is expressed
in Lemma 2.1 below. For this purpose, we consider φ ∈ L1(Ω), put H := {z ∈ C, Rz > −1} and with
reference to (8), we set

(15) F (z) :=
(

z

2 + z

)s
e−κΩzφ̂(izξ), z ∈ H = {z ∈ C, Rz ≥ −1},

where we recall that φ̂ is the Fourier transform of φ and κΩ = supx∈Ω |x| is the Euclidean diameter of Ω.
Evidently, the function F is holomorphic in the half-plane H and continuous on ∂H = {z ∈ C, Rz = −1}.
Moreover, we have

(16) |F (z)| ≤ (2π)−d/2e2κΩ‖φ‖L1(Ω), z ∈ H,
directly from (8). With reference to (16) we set for further use

(17) M := 1 + (2π)−d/2e2κΩ‖φ‖L1(Ω) ∈ [1,+∞).
Next, as we aim to compute a suitable upper bound of F in the quadrant Q := {z ∈ C, Rz > −1 and Iz < 0},
we introduce

(18) w(z) := 2
π

(π
2 + arg(z + 1)

)
, z ∈ Q \ {−1} = {z ∈ C, Rz ≥ −1 and Iz ≤ 0} \ {−1}.

Here and below, arg z, for all z ∈ C satisfying Rz > 0, denotes the angle θ ∈
(
−π2 ,

π
2
)
such that z = |z| eiθ.

The unique continuation result that we have in mind can now be stated as follows.

Lemma 2.1. Let F be defined by (15), let M be given by (17) and let w be the same as in (18). Then, we
have
(19) |F (z)| ≤Mmw(z), z ∈ Q \ {−1},
where m := supt∈[−1,+∞) |F (t)|.

The proof of Lemma 2.1 being independent of the one of Theorem 1.1, we postpone it to Section 2.4.
Now, putting F (z) :=

(
z

2+z

)s
e−κΩz f̂(izξ) for all z ∈ C such that Rz ≥ −1, we get upon substituting f

for φ in Lemma 2.1, that

(20) |F (z)| ≤Mmw(z), z ∈ Q \ {−1},

where M := 1 + (2π) d2 e2κΩ‖f‖L1(Ω). Further, since m ≤ ε from (13)-(14), and since w(z) ≥ 0 for all
z ∈ Q \ {−1}, (20) yields that∣∣∣∣( z

2 + z

)s
e−κΩz f̂(izξ)

∣∣∣∣ ≤Mεw(z), z ∈ Q \ {−1}.

In the particular case where z = −it, t ∈ R+, this leads to ts

(4+t2)
s
2

∣∣∣f̂(tξ)
∣∣∣ ≤ Mεw(−it) and w(−it) =

2
π

(
π
2 + arg(1− it)

)
= 2

π

(
π
2 − arctan t

)
= 2

π arctan t−1. As a consequence we have

(21)
∣∣∣f̂(tξ)

∣∣∣ ≤M (4 + t2) s2
ts

ε
2
π arctan t−1

, t ∈ R+, ξ ∈ Sd−1.

Therefore, for all δ ∈ (0, 1) and all R ∈ (1,+∞), we get

(22) ‖f̂‖L2(BR,δ(0)) ≤ hs(δ,R),
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through standard computations, where

(23) hs(δ,R) := 5 s2MCdε
2
π arctanR−1

ks(δ,R) and ks(δ,R) :=


Rd if s < d,
− ln δ +Rd if s = d,
δ−(s−d) +Rd if s > d,

and Cd is a positive constant depending only on d. Here and in the remaining part of this article, Bρ(0)
(resp., Bρ(0)), ρ ∈ R+, denotes the open (resp., closed) ball of Rd centered at 0 and with radius ρ, i.e.,
Bρ(0) := {x ∈ Rd, |x| < ρ} (resp., Bρ(0) := {x ∈ Rd, |x| ≤ ρ}), and BR,δ(0) := BR(0) \Bδ(0). Notice that
the upper-bound on ‖f̂‖L2(BR,δ(0)) given by (23) was obtained upon decomposing the annulus BR,δ(0) into
BR,1(0)∪B1,δ(0) and majorizing

∣∣∣f̂(tξ)
∣∣∣ by 5 s2Mε

2
π arctanR−1 for all t ∈ BR,1(0), and by 5 s2Mt−sε

2
π arctanR−1

for all t ∈ B1,δ(0).
Further, since f ∈ L1(Ω), we have

∣∣∣f̂(ξ)
∣∣∣ ≤ (2π)− d2 ‖f‖L1(Ω) for all ξ ∈ Rd and hence

∣∣∣f̂(ξ)
∣∣∣ ≤ (2π)− d2 |Ω|

1
2 ‖f‖Hk(Ω)

by the Cauchy-Schwarz inequality. This entails that

(24) ‖f̂‖L2(Bδ(0)) ≤ Cδ
d
2 ‖f‖Hk(Ω),

where, here and below, C denotes a generic positive constant depending only on d and Ω, which may change
from line to line. Next, since the function f ∈ Hk

0 (Ω) extended by zero in Rd \ Ω, lies in Hk(Rd), we infer
from the Fourier-Plancherel theorem that

‖f̂‖2L2(Rd\BR(0)) =
ˆ
Rd\BR(0)

∣∣∣f̂(ξ)
∣∣∣2 dξ

≤ R−2k
ˆ
Rd\BR(0)

(1 + |ξ|2)k
∣∣∣f̂(ξ)

∣∣∣2 dξ
≤ R−2k

ˆ
Rd

(1 + |ξ|2)k
∣∣∣f̂(ξ)

∣∣∣2 dξ
≤ R−2k‖f‖2Hk(Ω).

From this and (24) it then follows that ‖f̂‖L2(Rd\BR,δ(0)) ≤ C(δ d2 +R−k)‖f‖Hk(Ω), which together with (22)
yields ‖f̂‖L2(Rd) ≤ hs(δ,R) + C(δ d2 + R−k)‖f‖Hk(Ω). And since ‖f‖L2(Ω) = ‖f̂‖L2(Rd) from the Fourier-
Plancherel theorem, we have

(25) ‖f‖L2(Ω) ≤ hs(δ,R) + C(δ d2 +R−k)‖f‖Hk(Ω).

The rest of the proof is to estimate hs(δ,R) with the aid of (23). This leads us to examine the three cases
s < d, s = d and s > d separately.

First case: s < d. Taking δ = R−
2k
d in (25), we find that

(26) ‖f̂‖L2(Rd) ≤ 5 s2CdMRdε
2
π arctanR−1

+ CR−k‖f‖Hk(Ω).

Next, assuming without loss of generality that ε ∈ (0, 1), we pick θ ∈ (0, 1), choose R = (− ln ε)
1

1+θ in (26)
and get that

‖f‖L2(Ω) ≤ 5 s2CdM(− ln ε)
d

1+θ e−
2
π (− ln ε) arctan(− ln ε)−

1
1+θ + C(− ln ε)−

k
1+θ ‖f‖Hk(Ω).
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Since arctan u =
´ u

0
1

1+v2 dv and since the function v 7→ 1
1+v2 is decreasing on [0,+∞), we obtain arctan u ≥

u
1+u2 for all u ≥ 0, and hence

‖f‖L2(Ω) ≤ 5 s2CdM(− ln ε)
d

1+θ e
− 2
π

(− ln ε)
θ

1+θ

1+(− ln ε)
− 2

1+θ + C(− ln ε)−
k

1+θ ‖f‖Hk(Ω)

≤ (− ln ε)−
k

1+θ

5 s2CdM(− ln ε)
d+k
1+θ e

− 2
π

(− ln ε)
2+θ
1+θ

1+(− ln ε)
2

1+θ + C‖f‖Hk(Ω)

 .

This entails that

(27) ‖f‖L2(Ω) ≤ (− ln ε)−
k

1+θ

(
5 s2CdM(− ln ε)

d+k
1+θ e−

1
π (− ln ε)

2+θ
1+θ + C‖f‖Hk(Ω)

)
, ε ∈ (0, e−1).

Now, since limε↓0(− ln ε)
d+k
1+θ e−

1
π (− ln ε)

2+θ
1+θ = 0, there exists ε0 > 0, depending only on Ω, d, k, s, θ and

‖f‖L1(Ω)
‖f‖

Hk(Ω)
, such that we have

(28) ‖f‖L2(Ω) ≤ C‖f‖Hk(Ω)(− ln ε)−
k

1+θ , ε ∈ (0, ε0),

which immediately yields (4).

Second case: d = s. Choosing δ = e−R
d in (25), we get (26) where the constant Cd is substituted for 2Cd.

This leads to (4) upon arguing as in the First case.

Third case: s > d. Taking δ = R−
d
s−d in (25), we obtain that

(29) ‖f‖L2(Ω) ≤ 5 s2CdMRdε
2
π arctanR−1

+ CR−k
(

1 +R
k
s−d (s−d(1+ d

2k ))
)
‖f‖Hk(Ω),

where 2Cd is replaced by Cd.
i) If s ≤ d + d2

2k then it is apparent that (29) yields (26), from where we get (4) by following the exact
same path as in the First case.

ii) If s > d+ d2

2k then (29) may be equivalently rewritten as

‖f‖L2(Ω) ≤ 5 s2CdMRdε
2
π arctanR−1

+ CR−
d2

2(s−d) ‖f‖Hk(Ω),

which is the same estimate as (26) where the power k of the second occurence of R is replaced by d2

2(s−d) .
Thus, by arguing in the same way as in the derivation of (28) from (26), we obtain that

‖f‖L2(Ω) ≤ C‖f‖Hk(Ω)(− ln ε)−
d2

(1+θ)(s−d) , ε ∈ (0, ε0),

for some positive constant ε0 depending only on Ω, d, k, s, θ and ‖f‖L1(Ω)
‖f‖

Hk(Ω)
, giving (4).

2.3. Proof of Theorem 1.2. We keep the notations of Section 2.2. Assuming that f = 0, we infer from
(9) that

|û0(iωξ)| ≤ (2π)− d2 |∂Ω|
1
2 eκΩωω

2−2α
α ‖∂νU(ω, ·)‖L2(∂Ω), ω ∈ R+.(30)

Plugging (11) into (30) then yields

|û0(iωξ)| ≤ (2π)− d2 |∂Ω|
1
2 ω−1eκΩω‖∂νu‖

L
2
α (R+;L2(∂Ω))

, ω ∈ R+,

and since ω−1 ≤
( 2+ω

ω

)s for all ω ∈ R+, where we recall that s := 1 + b 2
αc ∈ [3,+∞), we end up getting that

(31)
(

ω

2 + ω

)s
e−κΩω |û0(iωξ)| ≤ (2π)− d2 |∂Ω|

1
2 ‖∂νu‖

L
2
α (R+;L2(∂Ω))

, ω ∈ [0,+∞).
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The above estimate being similar to (12) where f replaced by u0 and c0 is equal to one, the desired result
then follows from (31) by arguing in the same way as in the derivation of Theorem 1.1 from (12).

2.4. Unique continuation. In this section we prove the quantitative unique continuation result stated in
Lemma 2.1. We start by recalling the following technical result, which is borrowed from [15].

Lemma 2.2. The function w defined in (18) is a harmonic measure and is the unique solution to the system

(32)

 ∆w(z) = 0, z ∈ Q,
w(t) = 1, t ∈ (−1,+∞),
w(−1− it) = 0, t ∈ (0,+∞).

Proof. To make the present paper self-contained and for the convenience of the reader we include the proof
of this result. First, we notice that w(t) = 2

π

(
π
2 + arg(t+ 1)

)
= 2

π

(
π
2 + 0

)
= 1 for all t ∈ (−1,+∞) and

that w(−1− it) = 2
π

(
π
2 + arg(−it)

)
= 2

π

(
π
2 −

π
2
)

= 0 for t ∈ (0,+∞). Next, in order to show that ∆w = 0
in Q, it is enough to we rewrite w as

w(z) = 2
π

(π
2 + I log(z + 1)

)
, z ∈ Q,

where log denotes the complex logarithmic function log, defined in {z ∈ C, −iz /∈ [0,+∞)}. The desired
result then follows from the holomorphicity of z 7→ log(z + 1) in the quadrant Q. �

Armed with Lemma 2.2 we can now complete the proof of Lemma 2.1. For this purpose we combine the
estimate |F (t)| ≤ m for all t ∈ (−1,+∞), with the basic identity m = M1−1m1 and the second line of (32),
and get that

(33) |F (t)| ≤M1−w(t)mw(t), t ∈ (−1,+∞).

Further we have

(34) |F (z)| ≤M, z ∈ Q,

from (16)-(17), hence |F (−1− it)| ≤ M for all t ∈ (0,+∞). From this, the identity M = M1−0m0 and the
third line of (32), it then follows that

(35) |F (−1− it)| ≤M1−w(−1−it)mw(−1−it), t ∈ (0,+∞),

Summing up (33) and (35), we have

(36) |F (z)| ≤M1−w(z)mw(z), z ∈ ∂Q \ {−1}.

Since F is holomorphic in Q and w is a harmonic measure of Q by Lemma 2.2, (34), (36) and the Two-
constants theorem (see, e.g., [33, Chap. III, Section 2.1] or [39]) yield

|F (z)| ≤M1−w(z)mw(z), z ∈ Q.

Thus, by continuity of F on ∂Q and w on ∂Q \ {−1}, we obtain that

|F (z)| ≤M1−w(z)mw(z), z ∈ Q \ {−1}.

Finally, (19) follows readily from this and the inequality M ≥ 1 arising from (17). �

Appendix A. The direct problem

This section is devoted to the proof of Proposition 1.1. For this purpose we introduce the self-adjoint
operator A in L2(Ω), acting as −∆ on his domain D(A) := H2(Ω) ∩ H1

0 (Ω), that is to say the operator
generated in L2(Ω) by the closed quadratic form a(u) :=

´
Ω |∇u|

2
dx, u ∈ D(a) := H1

0 (Ω). Since H1
0 (Ω) is

compactly embedded in L2(Ω), the operator A has a compact resolvent and consequently a discrete spectrum.
We denote by (λk)k∈N the non-decreasing sequence of the eigenvalues of A, and by {φk, k ∈ N} a set of
eigenfunctions such that Aφk = λkφk, which form an orthonormal basis in L2(Ω).
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With reference to [30, 37], the L2
loc(R+;H2(Ω) ∩H1

0 (Ω))-solution u to (1) reads

(37) u(t) = S0(t)u0 +
ˆ t

0
S1(t− s)fg(s)ds, t ∈ R+,

where

(38) S0(t)h :=
+∞∑
k=1

Eα,1(−λktα)〈h, φk〉L2(Ω), t ∈ R+, h ∈ L2(Ω),

(39) S1(t)h :=
+∞∑
k=1

tα−1Eα,α(−λktα)〈h, φk〉L2(Ω), t ∈ R+, h ∈ L2(Ω),

and Eβ1,β2 , for (β1, β2) ∈ R2
+, is the the Mittag-Leffler function defined by

(40) Eβ1,β2(z) :=
+∞∑
k=0

zk

Γ(β1k + β2) , z ∈ C.

The rest of the proof is to show that the function u defined by (37)-(40), lies in Lr(R+;H 7
4 (Ω)) for all

r > α−1, and that u satisfies the energy estimate (2). As will appear further, this essentially boils down
to the following properties of the Mittag-Leffler functions defined by (40), which can be found in, e.g., [34,
Section 1.2.7 (pp. 34–35)].

Lemma A.1. Let β1 ∈ (0, 2) and all β2 ∈ R. Then, there exists a constant c = c(β1, β2) > 0 such that

(41) |Eβ1,β2(τ)| ≤ c

1 + |τ | , τ ∈ (−∞, 0],

and it holds true for all N ∈ N that

(42) Eβ1,β2(τ) = −
N∑
k=1

τ−k

Γ(β2 − β1k) + O
τ→−∞

(|τ |−N−1).

Here and in the remaining part of this appendix, we follow the convention used in [34] by setting

(43) 1
Γ(m) := 0, m ∈ Z \ N := {. . . ,−2,−1, 0}.

We recall that for all γ > 0, D(Aγ) = {v ∈ L2(Ω),
∑+∞
k=1 λ

2γ
k

∣∣〈v, ϕk〉L2(Ω)
∣∣2 <∞} is a Hilbert space with

the norm

‖v‖D(Aγ) :=
(+∞∑
k=1

λ2γ
k

∣∣〈v, ϕk〉L2(Ω)
∣∣2) 1

2

, v ∈ D(Aγ),

and that D(Aγ) ⊂ H2γ(Ω), the injection being continuous. In light of this we write ‖S0(t)u0‖H2(Ω) ≤
C‖S0(t)u0‖D(A), where, from now on, C denotes a generic positive constant depending only on Ω and α,
which may change from line to line, and then deduce from (41) that

‖S0(t)u0‖2H2(Ω) ≤ C

+∞∑
k=1

λ2
k |Eα,1(−λktα)|2

∣∣〈u0, φk〉L2(Ω)
∣∣2

≤ C

+∞∑
k=1

λ2
k

(1 + λktα)2

∣∣〈u0, φk〉L2(Ω)
∣∣2

≤ C

(1 + λ1tα)2

+∞∑
k=1

λ2
k

∣∣〈u0, φk〉L2(Ω)
∣∣2 .
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Thus, we have ‖S0(t)u0‖H2(Ω) ≤ C
1+λ1tα

‖u0‖D(A), and consequently

‖S0(t)u0‖H2(Ω) ≤
C‖u0‖D(A)

1 + tα
, t ∈ R+.

For r > α−1, this entails that t 7→ S0(t)u0 ∈ Lr
(
R+;H 7

4 (Ω)
)
, with

(44) ‖S0(·)u0‖
Lr
(
R+;H

7
4 (Ω)

) ≤ C‖u0‖H2(Ω).

Similarly, since ‖S1(t)f‖
H

7
4 (Ω)

≤ C‖S1(t)f‖
D(A

7
8 )

for all t ∈ R+, we have

‖S1(t)f‖2
H

7
4 (Ω)

≤ Ct2(α−1)
+∞∑
k=1

λ
7
4
k |Eα,α(−λktα)|2

∣∣〈f, φk〉L2(Ω)
∣∣2

≤ Ct2(α−1)
+∞∑
k=1

λ
7
4
k

(1 + λktα)2

∣∣〈f, φk〉L2(Ω)
∣∣2 .

Taking into account that λ
7
4
k

(1+λktα)2 = t−
7α
4

(
λkt

α

1+λktα

) 7
4 1

(1+λktα)
1
4
≤ t− 7α

4 for all k ∈ N, we get from the above

estimate that ‖S1(t)f‖2
H

7
4 (Ω)

≤ Ct2(α−1)t−
7
4α
∑+∞
k=1

∣∣〈f, φk〉L2(Ω)
∣∣2, which entails that

(45) ‖S1(t)f‖
H

7
4 (Ω)

≤ Ct2(
α
8−1)‖f‖L2(Ω), t ∈ R+.

Further, applying (42) with β1 = β2 = α and N = 2, we have Eα,α(τ) = τ−2

Γ(−α) + O
τ→−∞

(|τ |−3), by virtue of
(43). Thus, there exists a positive constant C, depending only on α, such that the following estimate∣∣tα−1Eα,α(−λktα)

∣∣ ≤ Ctα−1(λktα)−2 ≤ Cλ−2
k t−(α+1), t ∈ [1,+∞),

holds uniformly in k ∈ N. As a consequence we have

‖S1(t)f‖2H2(Ω) ≤ C‖S1(t)f‖2D(A)

≤ C

+∞∑
k=1

λ2
k

∣∣tα−1Eα,α(−λktα)
∣∣2 ∣∣〈f, φk〉L2(Ω)

∣∣2
≤ C

+∞∑
k=1

λ−2
k t−2(α+1) ∣∣〈f, φk〉L2(Ω)

∣∣2 ,
and hence ‖S1(t)f‖H2(Ω) ≤ Ct−(α+1)‖f‖L2(Ω) for all t ∈ [1,+∞), where we used that λ−2

k ≤ λ−2
1 for all

k ∈ N. From this and (45) it then follows that

(46) ‖S1(t)f‖
H

7
4 (Ω)

≤ C
(
t
α
8−11(0,1)(t) + t−(α+1)1[1,+∞)(t)

)
, t ∈ R+,

where the notation 1I stands for the characteristic function of any subinterval I ⊂ R. Putting (45) and (46)
together, we obtain that S1(t)f ∈ L1

(
R+;H 7

4 (Ω)
)
, with

(47) ‖S1(·)f‖
L1
(
R+;H

7
4 (Ω)

) ≤ C‖f‖L2(Ω).

Moreover, we have

‖u(t)‖
H

7
4 (Ω)

≤ ‖S0(t)u0‖
H

7
4 (Ω)

+
ˆ t

0
‖S1(t− s)f‖

H
7
4 (Ω)
|g(s)| ds

≤ ‖S0(t)u0‖
H

7
4 (Ω)

+
(
‖S1(·)f‖

H
7
4 (Ω)

1R+

)
?
(
|g|1R+

)
(t), t ∈ R+,
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from (37), and hence

‖u‖
Lr(R+;H

7
4 (Ω))

≤ ‖S0(·)u0‖
Lr(R+;H

7
4 (Ω))

+ ‖S1(·)f‖
L1(R+;H

7
4 (Ω))

‖g‖Lr(R+)

≤ C
(
‖u0‖H2(Ω) + ‖g‖Lr(R+)‖f‖L2(Ω)

)
,

upon combining Young’s convolution inequality with (44) and (47). This completes the proof of Proposition
1.1.

References
[1] E.E. Adams and L.W. Gelhar, Field study of dispersion in a heterogeneous aquifer 2. Spatial moments analysis, Water

Resources Res. 28 (1992), 3293-3307. 1
[2] H. Ammari, E. Bretin, V. Jugnon, A. Wahab, Photoacoustic imaging for attenuating acoustic media, In Mathematical

modeling in biomedical imaging II (pp. 57-84). (2012) Springer, Berlin, Heidelberg. 4
[3] K. Ammari, M. Choulli, F. Triki, How to use observability inequalities to solve some inverse problems for evolution

equations? An unified approach. CSIAM Trans. Appl. Math.,1(2020), pp.207-239. 2, 4
[4] K. Ammari, F. Triki, On weak Observability for evolution systems with Skew-Adjoint generators. SIAM Journal on Math-

ematical Analysis, 52(2), 1884-1902. (2020). 4
[5] E. G. Bajlekova, Fractional evolution equations in Banach spaces, Eindhoven University of Technology, Eindhoven, 2001.

Dissertation, Technische Universiteit Eindhoven, Eindhoven, 2001. 3
[6] G. Bao, P. Li, J. Lin and F. Triki, Inverse scattering problems with multi-frequencies, Inverse Problems, 31 (9) (2015).
[7] E. Bazhlekova, Strict Lp solutions for fractional evolution equations, volume 5, pages 427-436. 2002. Dedicated to the

60th anniversary of Prof. Francesco Mainardi.
[8] J.-P. Bouchaud and A. Georges, Anomalous diffusion in disordered media: Statistical mechanisms, models and physical

applications, Physics Reports, 195 (1990), 127-293. 2
[9] A. Bukhgeim and M. Klibanov, Global uniqueness of a class of multidimensional inverse problem, Sov. Math.-Dokl., 24

(1981), 244-247. 3
[10] J. Carcione, F. Sanchez-Sesma, F. Luzón, J. Perez Gavilán, Theory and simulation of time-fractional fluid diffusion

in porous media, Journal of Physics A: Mathematical and Theoretical 46 (2013), 345501. 1
[11] X. Cheng, Z. Li, Uniqueness and stability for inverse source problem for fractional diffusion-wave equations, preprint,

arXiv:2112.03481.
[12] M. Choulli, M. Yamamoto, Some stability estimates in determining sources and coefficients, J. Inverse Ill-Posed Probl.,

14 (4) (2006), 355-373. 1
[13] S. D. Eidelman and A. N. Kochubei, Cauchy problem for fractional diffusion equations, J. Differential Equations, 199,

(2004) 211-255. 2
2

[14] K. Fujishiro and Y. Kian, Determination of time dependent factors of coefficients in fractional diffusion equations,
Math. Control Related Fields, 6 (2016), 251-269. 2

[15] C. Ghanmi, S. Mani-Aouadi, F. Triki, Identification of a boundary influx condition in a one-phase Stefan problem.
Applicable Analysis (2021): 1-23.

[16] X. Huang and A. Kawamoto, Inverse problems for a half-order time-fractional diffusion equation in arbitrary dimension
by Carleman estimates, Inverse Probl. Imaging, 16 (2022), 39-67.

[17] O. Yu. Imanuvilov and M. Yamamoto, Lipschitz stability in inverse parabolic problems by the Carleman estimate, Inverse
Problems, 14 (1998), 1229-1245. 2

[18] V. Isakov, , Inverse Source Problems. , No. 34. Amer. Math. Soc., 1990. 9
[19] D. Jiang, Z. Li, Y. Liu, M. Yamamoto, Weak unique continuation property and a related inverse source problem for

time-fractional diffusion-advection equations, Inverse Problems, 33 (2017), 055013. 2
2

[20] B. Jin, Y. Kian, Z. Zhou, Reconstruction of a space-time dependent source in subdiffusion models via a perturbation
approach, SIAM J. Math. Anal., 53 (2021), 4445-4473.

[21] B. Jin, B. Li, Z. Zhou, Discrete maximal regularity of time-stepping schemes for fractional evolution equations, Numer.
Math., 138 (2018), 101-131.

[22] B. Jin and W. Rundell, A tutorial on inverse problems for anomalous diffusion processes, Inverse problems, 31 (2015),
035003. 2

[23] B. Kaltenbacher and W. Rundell, On an inverse potential problem for a fractional reaction-diffusion equation, Inverse
Problems, 35 (2019), 065004. 2

[24] Y. Kian, Equivalence of definitions of solutions for some class of fractional diffusion equations, preprint, arXiv:2111.06168.
2, 4

[25] Y. Kian, Y. Liu, M. Yamamoto, Uniqueness of Inverse Source Problems for General Evolution Equations, preprint,
arXiv:2105.11987. 3



INVERSE SOURCE PROBLEM 13

[26] Y. Kian, Z. Li, Y. Liu, M. Yamamoto, The uniqueness of inverse problems for a fractional equation with a single
measurement, Math. Ann., 380, 2021, 1465-1495. 1, 2

[27] Y. Kian, D. Sambou and É. Soccorsi, Logarithmic stability inequality in an inverse source problem for the heat equation
on a waveguide, Appl. Anal., 99 (2020), 2210-2228. 2

[28] Y. Kian, É. Soccorsi, Q. Xue, M. Yamamoto, Identification of time-varying source term in time-fractional diffusion
equations, Communication in Mathematical Sciences, 20 (2022), 53-84. 4

[29] Y. Kian and M. Yamamoto, Reconstruction and stable recovery of source terms and coefficients appearing in diffusion
equations, Inverse Problems, 35, 2019, 115006. 2, 4

[30] Y. Kian and M. Yamamoto, Well-posedness for weak and strong solutions of non-homogeneous initial boundary value
problems for fractional diffusion equations, Fract. Calc. Appl. Anal., 24, 2021, 168-201. 5
2

[31] Y. Liu, Z. Li, M. Yamamoto, Inverse problems of determining sources of the fractional partial differential equations,
Handbook of fractional calculus with applications, Volume 2 (2019), De Gruyter & Co, p. 411-430. 2
2, 4

[32] R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phyics
Reports, 339 (2000) 1-77. 2, 10

[33] R. Nevanlinna, Analytic Functions. Springer Berlin Heidelberg, (translated from german by B. Eckmann), 1970. 2
[34] I. Podlubny, Fractional differential equations, Academic Press, San Diego, 1999. 1
[35] K. Ren, F. Triki, A Global stability estimate for the photo-acoustic inverse problem in layered media. European Journal

of Applied Mathematics, 30(3), 505-528. (2019). 9
[36] W. Rundell, and Z. Zhang, On the Identification of Source Term in the Heat Equation from Sparse Data, SIAM J.

Math. Anal., 52 (2020), 1526-1548. 1, 10
[37] K. Sakamoto, and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and

applications to some inverse problems, Journal of Mathematical Analysis and Applications, 382 (2011), 426-447. 4
[38] O. Scherzer, and S. Cong, Reconstruction formulas for photoacoustic imaging in attenuating media. Inverse Problems

34.1 (2017): 015006. 2
[39] F. Triki, and C-H Tsou, Inverse inclusion problem: A stable method to determine disks. Journal of Differential Equations

269.4 (2020): 3259-3281.
[40] L. Weis, Operator-valued Fourier multiplier theorems and maximal Lp-regularity, Math. Ann., 319 (2001), 735-758.
[41] X. Xu, J. Cheng and M. Yamamoto, Carleman estimate for fractional diffusion equation with half order and application,

Appl. Anal., 90 (2011), 1355-1371.
[42] E. Zuazua, Controllability and observability of partial differential equations: some results and open problems. Handbook

of differential equations: evolutionary equations. Vol. 3. North-Holland, 2007. 527-621. 2, 10
4

Y.Kian, Aix-Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France
E-mail address: yavar.kian@univ-amu.fr

É. Soccorsi, Aix-Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France
E-mail address: eric.soccorsi@univ-amu.fr

F. Triki, Laboratoire Jean Kuntzmann, UMR CNRS 5224, Université Grenoble-Alpes, 700 Avenue Centrale,
38401 Saint-Martin-d’Hères, France

E-mail address: faouzi.triki@univ-grenoble-alpes.fr


	1. Introduction and main results
	1.1. Settings
	1.2. A brief review of the existing literature
	1.3. The direct problem
	1.4. Inverse problems
	1.5. Outline

	2. Proof of Theorems ?? and ??
	2.1. Preliminaries
	2.2. Proof of Theorem ??
	2.3. Proof of Theorem ??
	2.4. Unique continuation

	Appendix A. The direct problem
	References

