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Abstract. This paper is concerned with the inverse problem of determining the time and

space dependent source term of diffusion equations with constant-order time-fractional deriv-

ative in (0, 2). We examine two different cases. In the first one, the source is the product

of a spatial term and a temporal term, and we prove that the term depending on the space

variable can be retrieved by observation over the time interval of the solution on an arbitrary

sub-boundary. Under some suitable assumptions we can also show the simultaneous recovery

of the spatial term and the temporal term. In the second case, we assume that the first term

of the product varies with one fixed space variable, while the second one is a function of all the

remaining space and time variables, and we show that they are uniquely determined by one

arbitrary lateral measurement of the solution. These source identification results boil down

to a weak unique continuation principle in the first case and a unique continuation principle

for Cauchy data in the second one, that are preliminarily established. Finally, numerical re-

construction of the spatial term in the first case is carried out through an iterative algorithm

based on the Tikhonov regularization method.
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1. Introduction

1.1. Settings. Let Ω be a bounded and connected open subset of Rd, d > 2, with C2 boundary

∂Ω. Given a := (ai,j)16i,j6d ∈ C1(Ω;Rd2), symmetric, i.e.,

ai,j(x) = aj,i(x), x ∈ Ω, i, j = 1, . . . , d,

and fulfilling the ellipticity condition

∃c > 0,

d∑
i,j=1

ai,j(x)ξiξj > c|ξ|2, x ∈ Ω, ξ = (ξ1, . . . , ξd) ∈ Rd, (1.1)

we introduce the formal differential operator

A0u(x) := −
d∑

i,j=1

∂xi
(
ai,j(x)∂xju(x)

)
, x := (x1, . . . , xd) ∈ Ω,

where ∂xi denotes the partial derivative with respect to xi, i = 1, . . . , d. We perturb A0 by a

potential function q ∈ Lκ(Ω), κ ∈ (d,+∞], that is lower bounded by some positive constant,

∃r ∈ (0,+∞), q(x) > r, x ∈ Ω, (1.2)

and define the operator Aq := A0 +q, where the notation q is understood as the multiplication

operator by the corresponding function.

Next, for T ∈ (0,+∞), α ∈ (0, 2) and ρ ∈ L∞(Ω) obeying

0 < ρ0 6 ρ(x) 6 ρM < +∞, x ∈ Ω, (1.3)

we consider the following initial boundary value problem (IBVP) with source term f ∈

L1(0, T ;L2(Ω)),
(ρ(x)∂αt +Aq)u(t, x) = f(t, x), (t, x) ∈ Q := (0, T )× Ω,

B?u(t, x) = 0, (t, x) ∈ Σ := (0, T )× ∂Ω,

∂kt u(0, x) = 0, x ∈ Ω, k = 0, . . . , Nα,

(1.4)

where

Nα :=

 0 if α ∈ (0, 1],

1 if α ∈ (1, 2),

and ∂αt denotes the fractional Caputo derivative of order α with respect to t, defined by

∂αt u(t, x) :=
1

Γ(Nα + 1− α)

∫ t

0
(t− s)Nα−α∂Nα+1

s u(s, x)ds, (t, x) ∈ Q, (1.5)

when α ∈ (0, 1) ∪ (1, 2), while ∂αt is the usual first order derivative ∂t when α = 1. In the

second line of (1.4), B? is either of the following two boundary operators:
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(a) B?u := u,

(b) B?u := ∂νau, where ∂νa stands for the normal derivative with respect to a = (ai,j)16i,j6d,

expressed by

∂νaw(x) :=
d∑

i,j=1

ai,j(x)∂xjw(x)νi(x), x ∈ ∂Ω,

and ν = (ν1, . . . , νd) is the outward unit normal vector to ∂Ω.

Otherwise stated, the IBVP (1.4) is endowed with the homogeneous Dirichlet (resp., Neumann)

boundary condition when B? is given by (a) (resp., (b)).

In the present paper we use the definition of a weak solution to Problem (1.4) which is

given by [23, 25, 37] in a more general framework by mean of the Laplace transform with

respect to the time variable (see [23, Definition 1.1]). Here and in the remaining part of this

paper, we use the notation v(t, ·) as shorthand for the function x 7→ v(t, x).

According to [25, Theorem 2.3], the weak solution to (1.4) exists and is unique within the

class L1(0, T ;L2(Ω)), and that it enjoys the Duhamel representation formula given in Section

2. We refer the reader to [23, 25, 22, 37] for the existence and the uniqueness issue of such a

solution to (1.4), as well as for its classical properties. We point out that for α = 1, the weak

solution to (1.4) coincides with the classical variational C1([0, T ];H−1(Ω)) ∩ C([0, T ];H1(Ω))-

solution to the corresponding parabolic equation.

In this paper we examine the inverse problem of determining the source term f appearing

in the first line of (1.4), from either internal or lateral measurement of the weak solution u to

(1.4). It turns out that this inverse problem is ill-posed in the sense that the above data do not

uniquely determine f , and we refer the interested reader to the Appendix where this issue is

discussed in greater detail. As a consequence, the inverse source problem under investigation

has to be reformulated. Different lines of research can be pursued. One possible direction is

the one of assuming that the unknown function f : Q → R depends on a restricted number

of parameters of (t, x) ∈ Q. Another direction is the one of considering source terms with

separated variables. In this paper, we follow the second direction, that is, we suppose that the

unknown source term belong to either of the two following sets.

The first class of source terms under consideration takes the form

f(t, x) = σ(t)g(x), (t, x) ∈ Q, (1.6)

and the corresponding inverse problem is as follows.
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Inverse Problem 1 (IP1): Determine the spatially dependent function g and/or the

temporal dependent function σ from knowledge of u|(0,T )×Ω′ , where u denotes the solution to

(1.4) associated with source term f given by (1.6), and Ω′ is an arbitrarily chosen non-empty

open subset of Ω.

In the same spirit, we also consider sources obtained by superposition of two source terms

in the form of (1.6), that is

f(t, x) := σ(t)g(x) + β(t)h(x), (t, x) ∈ Q, (1.7)

which suggests investigating the following inverse problem:

Inverse Problem 1’ (IP1’): Assuming that σ and β are known, retrieve the two spatially

dependent functions g and h from knowledge of u|(0,T )×Ω′ , where, u and Ω′ are the same as in

(IP1).

The second set of source terms is made of functions which do not dependent upon the

last component xd of the space variable x = (x1, . . . , xd−1, xd) ∈ Ω. More precisely, given

L ∈ (0,+∞) and an open bounded subset ω ⊂ Rd−1, we set Ω0 := ω× (−L,L) and we assume

that

Ω0 ⊂ Ω. (1.8)

We consider a source term f expressed by

f(t, x′, xd) :=

 g(t, x′)h(xd) if (t, x′, xd) ∈ Q0 := (0, T )× Ω0,

0 if (t, x′, xd) ∈ Q \Q0,
(1.9)

where x′ = (x1, . . . , xd−1) denotes the d−1 first components of x. We investigate the following

inverse problem.

Inverse Problem 2 (IP2): Given an arbitrary non-empty open subset γ of ∂Ω, determine

h and/or g by (u|(0,T )×γ , ∂νu|(0,T )×γ). Here u is the solution to (1.4) associated with f given

by (1.9) and ∂νu := ∇u · ν.

1.2. Motivations. Depending on whether α = 1 or α ∈ (0, 1) ∪ (1, 2), the system (1.4) mod-

els typical or anomalous diffusion phenomena appearing in several areas of applied sciences,

such as geophysics, environmental science and biology, see, e.g., [18, 34]. In this context,

sub-diffusive (resp., super-diffusive) processes are described by (1.4) with α ∈ (0, 1) (resp.,

α ∈ (1, 2)), and the kinetic equation (1.4) may be seen as a corresponding macroscopic model

to microscopic diffusion phenomena driven by continuous time random walk, see, e.g., [33].
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Thus, inverse problem (IP1) (resp., (IP2)) is to know whether time and space varying source

terms can be retrieved by internal (resp, lateral) data, in the presence of typical or anomalous

diffusion. For instance, such problems occur in the context of underground diffusion of con-

taminants, see [18, 34], and we point out that they can be adapted to the recovery of moving

sources as in [26].

1.3. A short review of inverse source problems. Inverse problems are generally nonlinear

in the sense that the unknown parameter of the problem depends in a nonlinear way on the

data, although the direct model is linear in u. For instance, this is the case for inverse

coefficients problems or inverse spectral problems, see, e.g., [13, 30]. However, this is no longer

true for inverse source problems as the dependence of the unknown source term is linear

with respect to the (internal or lateral) data. When this remarkable feature of inverse source

problems does not guarantee that they are easy to solve, it certainly does explain why they

have become increasingly popular among the mathematical community.

This is particularly true when typical diffusion is considered, i.e. when α = 1 in (1.4),

where the inverse problem of determining a time independent source term has been extensively

studied by several authors in [5, 6, 21, 41, 42], the list being non exhaustive, and also in

[12], which relies on the Bukhgeim-Klibanov method introduced in [3]. As for inverse time

independent source problems with α ∈ (0, 1) ∪ (1, 2), we refer the reader to [15], and to

[17, 18, 20, 22, 29, 36] for inverse coefficient problems for anomalous diffusion equations.

In all the above mentioned inverse source results, the source term was time-independent.

The stability issue in determining the temporal source term of time-fractional diffusion equa-

tions was examined in [9, 37], and in the same context, the time and space dependent factor

of suitable source terms is reconstructed in [24]. As for the determination of time dependent

sources in parabolic equations, we refer the reader to [1, 8, 14, 27], and to [2, 10, 11] for the

same problem with hyperbolic equations.

Let us now collect the main achievements of this article in the coming section.

1.4. Main results. We start by stating the following weak uniqueness result for the IBVP

(1.4) associated with (IP1).

Theorem 1.1. Let σ ∈ L1(0, T ) be supported in [0, T ) and assume that f is given by (1.6),

where g ∈ L2(Ω). Denote by u the weak solution to (1.4). Then, for all α ∈ (0, 2) and any
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non-empty open subset Ω′ ⊂ Ω, we have:

u|(0,T )×Ω′ = 0 =⇒ f = 0 in Q.

As a corollary, we have the following unique identification result which provides a positive

answer to (IP1).

Corollary 1.2. For j = 1, 2, let σj ∈ L1(0, T ) satisfy suppσj ⊂ [0, T ) and let gj ∈ L2(Ω).

Assume that either of the two following conditions is fulfilled

(i) σ1 = σ2 and is not identically zero in (0, T ),

(ii) g1 = g2 and is not identically zero in Ω,

and let uj denote the solution to (1.4) with f = fj, where

fj(t, x) := σj(t)gj(x), (t, x) ∈ Q.

Then, the following implication holds for any non-empty open subset Ω′ ⊂ Ω:

u1 = u2 in (0, T )× Ω′ =⇒ σ1 = σ2 in (0, T ) and g1 = g2 in Ω.

Actually, Corollary 1.2 remains valid upon removing the hypothesis on the support of

σj , j = 1, 2, which was inherited from Theorem 1.1, but this is at the expense of a greater

regularity assumption on these two functions. We refer the reader to Theorem 4.1 in Section

4 for the statement of the corresponding result.

We turn now to investigating (IP2). Prior to doing so we state the following uniqueness

result for extra Neumann or Dirichlet data.

Theorem 1.3. Let ρ = 1 a.e. in Ω and set Aq = −∆. Assume (1.8) and suppose that Ω \Ω0

is connected. For ζ ∈
(

3
4 , 1
)

and r ∈
(

1
α(1−ζ) ,+∞

)
, let g ∈ Lr(0, T ;L2(ω)) be supported

in [0, T ) × ω and let h ∈ L2(−L,L). Then, for all α ∈ (0, 2) there exists a unique solution

u ∈ C([0, T ];H2ζ(Ω)) to the IBVP (1.4) with source term f defined by (1.9). Moreover, for

any non-empty subset γ of ∂Ω we have

B∗?u|(0,T )×γ = 0 =⇒ f = 0 in Q, (1.10)

where

B∗?u :=

 ∂νu if B?u = u,

u if B?u = ∂νu.
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The coming result, which is a byproduct of Theorem 1.3, likewise Corollary 1.2 follows

from Theorem 1.1, answers the question raised by (IP2).

Corollary 1.4. Let ρ, Aq, Ω0 and r be the same as in Theorem 1.3. For j = 1, 2, let

gj ∈ Lr(0, T ;L2(ω)) satisfy supp gj ⊂ [0, T ) × ω, let hj ∈ L2(−L,L). By uj we denote the

solution to (1.4) with source term fj, defined by (1.9) where (g, h) is replaced by (gj , hj).

Assume either of the two following conditions

(i) h1 = h2,

(ii) g1 = g2.

Then, for any non-empty relatively open subset γ of ∂Ω,

∂kνu1(t, x) = ∂kνu2(t, x), (t, x) ∈ (0, T )× γ, k = 0, 1,

yields g1 = g2 in (0, T )× ω and h1 = h2 in (−L,L).

In the same way as Corollary 1.2 is changed into Theorem 4.1, the uniqueness result of

Corollary 1.4 translates into the one of Theorem 4.2 for non-compactly supported sources in

the form of (1.9).

We also point out that the statement of Theorem 1.1 (resp., Theorem 1.3) can be adapted

to the framework of distributed order fractional diffusion equations, and we refer the reader

to Theorem 5.2 (resp., Theorem 5.3) in Section 5 for the corresponding result.

The derivation of a source identification result from a uniqueness result such as Theorem

1.1, is rather standard in the analysis of inverse source problems, see, e.g., [5, 6, 10, 15]. The

strategy used in these four articles to determine the spatial part of the source (1.6) under

the assumption that its temporal part σ is known, is to turn the non-homogeneous diffusion

equation under study into a homogeneous one by reducing the source information into the

initial data. This requires that σ(0) 6= 0 and σ ∈ C1([0, T ]). The condition σ(0) 6= 0 suggests

that the source should be switched on before the data are collected, which is quite unexpected

considering that only the spatial part g of the source is retrieved here. It turns out that this

extra condition σ(0) 6= 0 was removed in [10, Theorem 2] for an evolutionary equation over

the infinite time range (0,+∞). As far as we know, Theorem 1.1 is one of the few source

identification results available in the mathematical literature for a system evolving on a finite

time interval (0, T ). Furthermore, we emphasize that the second condition σ ∈ C1([0, T ])
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requested by [5, 6, 10, 15] is weakened to σ ∈ L1(0, T ) in Theorem 1.1 and Corollary 1.2. Here

we need a new approach since the L1-regularity is too weak for arguing as in [15].

In Theorem 1.1, either of the two terms σ or g appearing on the right hand side of (1.6), is

retrieved when the other one is known. This result is very similar to the ones of [5, 6, 10, 15].

On the other hand, Theorem 4.1 claims simultaneous identification of σ and g, but this is

at the expense of greater regularity on α and upon assuming partial knowledge of σ. More

precisely, it is requested that up to some fixed time t0 ∈ (0, T ), the function t 7→ σ(t) be known

and depend analytically on t. In this respect, Theorem 1.3 and Corollary 1.4 may be seen as

an alternative approach to Theorem 4.1 for recovering a source term depending on the time

variable and all the space variables excepting one.

A key ingredient in the derivation of Theorems 1.1 and 1.3 is the time analyticity of the

solution to (1.4), exhibited in Proposition 2.1. While this analyticity property is a classical

feature of the solution when α = 1, its derivation requires a careful treatment for α ∈ (0, 1) ∪

(1, 2) and is based on the representation formula [22, Theorem 1.1 and Remark 1] of the

solution to (1.4).

1.5. Outline. The two theorems and the two corollaries stated above are proved in Section

3. They rely on suitable analytic properties of the solution to (1.4), which are established

in Section 2. Section 4 contains two identification results for non-compactly supported time-

dependent source terms in the form of (1.6) or (1.9), which are similar to the ones stated

in Corollaries 1.2 and 1.4. In Section 5, we adapt the uniqueness results of Theorems 1.1

and 1.3 to the framework of distributed order diffusion equations. In Section 6 we build an

iterative method providing numerical reconstructions of the two-dimensional space-varying

part of unknown sources (1.6) when α ∈ (1, 2). Section 7 is devoted to the study of (IP1) with

α = 1. Finally, in the Appendix we discuss the obstruction to unique determination of the

source term in (1.4), from either internal or boundary data.

2. Direct problem: representation and time-analyticity of the solution

In this section we establish time-analytic properties of the weak solution u to (1.4). Their

derivation is based on an appropriate representation formula of u, that is borrowed from [22].

2.1. A representation formula. Assume (1.1): Let α ∈ (0, 2), let ρ ∈ L∞(Ω) fulfill (1.3),

and let q ∈ Lκ(Ω), with κ ∈ (d,+∞], satisfy (1.2). Let Aq be the self-adjoint operator in
9



L2(Ω), generated by the closed sesquilinear form

(u, v) 7→
d∑

i,j=1

(
ai,j(x)∂xiu(x)∂xjv(x) + q(x)u(x)v(x)

)
dx, u, v ∈ V,

where V := H1
0 (Ω) if Aq is endowed with a homogeneous Dirichlet boundary condition, while

V := H1(Ω) if the boundary condition attached to Aq is of Neumann type. Note that here

we restrict the space L2(Ω) to real valued functions. Otherwise stated, Aq is the (positive)

self-adjoint operator in L2(Ω), acting as Aq on its domain D(Aq), dense in L2(Ω). We denote

by A0 the operator Aq when q = 0 a.e. in Ω. In light of (1.1)-(1.2), D(Aq) is independent of

q (see, e.g., [22, Section 2.1]) and it is embedded in H2(Ω):

D(Aq) = D(A0) ⊂ H2(Ω). (2.1)

Next we introduce the operator Aq,ρ := ρ−1Aq, with domain

D(Aq,ρ) = D(Aq), (2.2)

which is positive and self-adjoint in the weighted-space L2
ρ(Ω) := L2(Ω; ρdx). Evidently, Aq,ρ

is self-adjoint in L2
ρ(Ω). For all p ∈ C \ R−, the operator Aq + ρpα, where Aq is defined in

Section 1.4, is boundedly invertible in L2(Ω), by virtue of [22, Proposition 2.1]. Moreover, in

view of [22, Eq. (2.4)-(2.5)], the following resolvent estimate∥∥(Aq + ρpα)−1
∥∥
B(L2(Ω))

6 C |p|−α , p ∈ C \ R−, (2.3)

holds with C = ρ−1
0 max

{
2, sin(α arctan((3ρM )−1ρ0))−1

}
. Here, (Aq + ρpα)−1 denotes the

resolvent operator of Aq + ρpα and B(L2(Ω)) is the space of linear bounded operators in

L2(Ω). These two results were established for α ∈ (0, 1) and for the form domain V = H1
0 (Ω)

in [22], but they extend to α ∈ [1, 2) and V = H1(Ω) in a straightforward way.

Next, for all f ∈ L1(0, T ;L2(Ω)), the weak solution u to (1.4) reads

u(t, ·) =

∫ t

0
S(t− s)f(s, ·)ds, t ∈ (0, T ), (2.4)

where we have set

S(t)h :=

∫
γ(ε,θ)

etp(Aq + ρpα)−1hdp, t ∈ (0,+∞), h ∈ L2(Ω). (2.5)

Here, ε is arbitrary in (0,+∞), θ can be any angle in
(
π
2 ,min

(
π, πα

))
and γ(ε, θ) is the following

modified Haenkel contour in C,

γ(ε, θ) := γ−(ε, θ) ∪ γ0(ε, θ) ∪ γ+(ε, θ), (2.6)
10



where

γ±(ε, θ) := {se±iθ : s ∈ [ε,+∞)} and γ0(ε, θ) := {εeiβ : β ∈ [−θ, θ]} (2.7)

are traversed in the positive sense. The Duhamel representation formula (2.4)-(2.5) is a di-

rect consequence of [22, Theorem 1.1 and Remark 1] and the density of L∞(0, T ;L2(Ω)) ∩

C((0, T ], L2(Ω)) in L1(0, T ;L2(Ω)). It is our main tool in the derivation of the time-analytic

properties of the weak solution u to the IBVP (1.4).

2.2. Time-analyticity. Let us now establish that the solution to (1.4) associated with suit-

able source term f , depends analytically on the time variable.

Proposition 2.1. Assume that f ∈ L1(0, T ;L2(Ω)) is supported in [0, T − 3ε?]×Ω, for some

fixed ε? ∈
(
0, T4

)
. Then, there exists θ? ∈

(
0,min

(
π
4 ,

π
2α −

π
4

))
, such that the weak solution u to

(1.4), given by (2.4)-(2.5), extends to an L2(Ω)-valued map still denoted by u, which is analytic

in Cθ?, where Cθ? := {T − ε? + τeiψ : τ ∈ (0,+∞), ψ ∈ (−θ?, θ?)}. Moreover, t 7→ u(t, ·) is

holomorphic in Cθ?, its Laplace transform p 7→ U(p) = L[u](p) : x 7→
∫ +∞

0 e−ptu(t, x)dt is well

defined for all p ∈ (0,+∞), and each U(p) is a solution to the following BVP (Aq + ρpα)U(p) =
∫ T

0 e−ptf(t, ·)dt, in Ω,

B?U(p) = 0, on ∂Ω.
(2.8)

We point out that the derivation of Proposition 2.1 is similar to the one of [19, Proposi-

tion 3.1], where fractional diffusion equations with non-homogeneous boundary condition are

considered. But, since the boundary condition is homogeneous here, we can simplify the proof

presented in [19] as follows.

Proof of Proposition 2.1. Remembering that the weak solution u to (1.4) is expressed by

(2.4)-(2.5) for some fixed (ε, θ) ∈ (0, 1)×
(
π
2 ,min

(
π, πα

))
, we pick θ? ∈

(
0, θ−π/22

)
, τ ∈ (0,+∞)

and ψ ∈ (−θ?, θ?), and we notice that z := T−ε?+τeiψ ∈ Cθ? . Then, for all p = re±iθ ∈ γ±(ε, θ)

and all s ∈ (0, T − 3ε?), it holds true that

R((z − s)p) = r (τ cos(ψ ± θ) + (T − ε? − s) cos θ) 6 2rε? cos(θ),

where the symbol R denotes the real part, which entails

R((z − s)p) 6 2ε? |p| cos θ, p ∈ γ±(ε, θ), z ∈ Cθ? , s ∈ (0, T − 3ε?). (2.9)

Hence, in light of (2.3) and (2.6)-(2.7), we see for every z ∈ Cθ? that the function

v(z, ·) :=

∫ T−3ε?

0

∫
γ(ε,θ)

e(z−s)p(Aq + ρpα)−1f(s, ·)dp ds, (2.10)
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is well-defined in Ω. Further, since f(t, ·) = 0 for all t ∈ (T − 3ε?, T ), we infer from this and

(2.4)-(2.5) that

v(t, ·) =

∫ T−3ε?

0
S(t− s)f(s, ·)ds =

∫ t

0
S(t− s)f(s, ·)ds = u(t, ·), t ∈ (T − 3ε?, T ).

Therefore, putting v := u on (0, T − ε?) × Ω, we obtain that u = v|Q. Moreover, by [22,

Theorem 1.1 and Remark 1], the Laplace transform V (p) =
∫ +∞

0 e−ptv(t, ·)dt of v, is solution

to the BVP  (Aq + ρpα)V (p) =
∫ T

0 e−ptf(t, ·)dt, in Ω,

B?V (p) = 0, on ∂Ω.
(2.11)

It remains to show that z 7→ v(z, ·) is a holomorphic L2(Ω)-valued function in Cθ? . To do

that, we refer to (2.6) and (2.10), and we decompose v into the sum v0 + v+ + v−, where

vj(z, ·) :=

∫ T−3ε?

0

∫
γj(ε,θ)

e(z−s)p(Aq + ρpα)−1f(s, ·)dp ds, j = 0,+,−.

Since z 7→ v0(z, ·) is obviously holomorphic in Cθ? , we are thus left with the task of proving that

this is also the case for z 7→ v±(z, ·). This can be done upon noticing that the L2(Ω)-valued

function

z 7→ e(z−s)p(Aq + ρpα)−1f(s, ·), p ∈ γ±(ε, θ), s ∈ (0, T − 3ε?),

is holomorphic in Cθ? , that the two following estimates,∥∥∥∂kz e(z−s)p(Aq + ρpα)−1f(s, ·)
∥∥∥
L2(Ω)

6 C(1 + |p|) |p|−α e2ε?|p| cos θ ‖f(s, ·)‖L2(Ω) , z ∈ Cθ?

hold for k = 0, 1 and some constant C that is independent of p and s, by virtue of (2.3) and

(2.9), and that the function (r, s) 7→ (1 + r)r−αe2ε?r cos θ ‖f(s, ·)‖L2(Ω) belongs to L1((ε,+∞)×

(0, T − 3ε?)). �

Remark 1. Since F (p) ∈ L2(Ω) for all p ∈ (0,+∞), then, in accordance with Section 2.1, we

may reformulate the claim of Proposition 2.1 that U(p) solves (2.8), as

U(p) = (Aq + ρpα)−1F (p). (2.12)

Since the multiplication operator by ρ is invertible in B(L2(Ω)), according to (1.3), then Aq,ρ+

pα is boundedly invertible in L2
ρ(Ω) for each p ∈ (0,+∞), and (2.12) may thus be equivalently

rewritten as

U(p) = (Aq,ρ + pα)−1ρ−1F (p).

Armed with Proposition 2.1, we turn now to proving the main results of this article.
12



3. Proofs of the main results

In this section we prove Theorems 1.1 and 1.3, and Corollary 1.2, but we omit the deriva-

tion of Corollary 1.4 from Theorem 1.3, which follows the same path as the one of Corollary

1.2 from Theorem 1.1.

3.1. Proof of Theorem 1.1. We split the proof into 4 steps. In the first one, we establish

a family of resolvent identities for the Laplace transform of the solution to (1.4), indexed by

the Laplace variable p ∈ (0,+∞). The second step is to express these identities in terms of

the spectral decomposition of the operator Aq,ρ, introduced in Section 1.4. The third step,

based on a weak unique continuation principle for second order elliptic equations, provides the

desired result, while Step 4 contains the proof of a technical claim, used in Step 3.

Step 1: A p-indexed family of resolvent identities. As suppσ ⊂ [0, T ) by assumption, we pick

ε∗ ∈ (0, T/4) such that suppσ ⊂ [0, T−3ε∗]. Then, with reference to Proposition 2.1, we extend

the weak solution to (1.4) into a L2(Ω)-valued function z 7→ u(z, ·), defined in (0, T − ε∗]∪Cθ?
for some θ? ∈

(
0,min

(
π
4 ,

π
2 −

π
2α

))
, which is holomorphic in Cθ? . Evidently, the L2(Ω′)-valued

function z 7→ u(z, ·)|Ω′ is holomorphic in Cθ? as well. Bearing in mind that u|Q′ = 0, where we

have set Q′ := (0, T )× Ω′, and that (0, T ) ∩ Cθ? = [T − ε∗, T ), we get that

u(z, x) = 0, (z, x) ∈ ((0, T ) ∪ Cθ?)× Ω′,

from the unique continuation principle for holomorphic functions. In particular, this entails

that u(t, x) = 0 for all (t, x) ∈ (0 +∞)×Ω′ and consequently that the Laplace transform U(p)

of u with respect to t, vanishes a.e. in Ω′ for every p ∈ (0,+∞). Putting this together with

the second statement of Proposition 2.1, we obtain that each U(p), p ∈ (0,+∞), is solution to
(Aq + ρpα)U(p) = σ̂(p)g, in Ω,

B?U(p) = 0, on ∂Ω,

U(p) = 0, in Ω′,

(3.1)

where we have set σ̂(p) :=
∫ T

0 e−ptσ(t)dt. Since f ∈ L2(Ω), then, in accordance with Remark

1, (3.1) may be equivalently reformulated , as U(p) = σ̂(p)(Aq,ρ + pα)−1ρ−1g in L2
ρ(Ω),

U(p) = 0 in L2
ρ(Ω

′).
(3.2)
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Step 2: Spectral representation. Since the injection V ↪→ L2(Ω) is compact, the resolvent of

the operator Aq,ρ, defined in Section 1.4, is compact in L2
ρ(Ω). Let {λn : n ∈ N} be the

increasing sequence of the eigenvalues of Aq,ρ. For each n ∈ N, we denote by mn ∈ N the

algebraic multiplicity of the eigenvalue λn and we introduce a family {ϕn,k : k = 1, . . . ,mn}

of eigenfunctions of Aq,ρ, which satisfy

Aq,ρϕn,k = λnϕn,k,

and form an orthonormal basis in L2
ρ(Ω) of the eigenspace of Aq,ρ associated with λn (i.e. the

kernel of Aq,ρ−λnI, where the notation I stands for the identity operator of L2
ρ(Ω)). The first

line in (3.2) then yields for all p ∈ (0,+∞), that the following equality

U(p) = σ̂(p)

(
+∞∑
n=1

∑mn
k=1 gn,kϕn,k
λn + pα

)
,

holds in L2
ρ(Ω) with gn,k := 〈ρ−1g, ϕn,k〉L2

ρ(Ω). From this, the second line of (3.2) and the

continuity of the projection from L2
ρ(Ω) into L2

ρ(Ω
′), it then follows that

σ̂(p)

(
+∞∑
n=1

∑mn
k=1 gn,kϕn,k(x)

λn + pα

)
= 0, x ∈ Ω′, p ∈ (0,+∞). (3.3)

Step 3: End of the proof. Since p 7→ σ̂(p) is holomorphic in C+ := {z ∈ C : Rz > 0}, then

either of the two following conditions is true:

(a) For all p ∈ C+ we have σ̂(p) = 0;

(b) There exists an open interval I ⊂ (0,+∞), such that σ̂(p) 6= 0 for each p ∈ I.

The first case is easily treated as we get that σ = 0 a.e. in (0, T ) from (a) and the

injectivity of the Laplace transform, which entails the desired result. In the second case, we

combine (b) with (3.3) and obtain that

+∞∑
n=1

∑mn
k=1 gn,kϕn,k(x)

λn + pα
= 0, x ∈ Ω′, p ∈ I. (3.4)

Let us introduce the following L2
ρ(Ω

′)-valued function,

R(z) :=
+∞∑
n=1

∑mn
k=1 gn,kϕn,k
λn + z

, z ∈ C \ {−λn : n ∈ N}, (3.5)

meromorphic in C \ {−λn : n ∈ N} with simple poles {−λn : n ∈ N}. Evidently, (3.4) can be

equivalently rewritten as

R(pα) =
+∞∑
n=1

∑mn
k=1 gn,kϕn,k
λn + pα

= 0, p ∈ I,
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the above identity being understood in L2
ρ(Ω

′). Therefore, we necessarily have R(z) = 0 for

all z ∈ C \ {−λn : n ∈ N}, and consequently it holds true for all n ∈ N that

mn∑
k=1

gn,kϕn,k(x) = 0, x ∈ Ω′. (3.6)

Assume for a while that for each n ∈ N, the eigenfunctions ϕn,k, k = 1, . . . ,mn, are linearly

independent in L2
ρ(Ω

′), the proof of this claim being postponed to Step 4, below. Then, we

infer from (3.6) that gn,k = 0 for all n ∈ N and all k = 1, . . . ,mn. Therefore, we find that

g =
+∞∑
n=1

mn∑
k=1

gn,kϕn,k = 0

in L2
ρ(Ω), which proves the desired result.

Step 4: The ϕn,k, k = 1, . . . ,mn, are linearly independent in L2
ρ(Ω

′). For n ∈ N fixed, we

consider mn complex numbers αk, for k = 1, . . . ,mn, such that

mn∑
k=1

αkϕn,k(x) = 0, x ∈ Ω′, (3.7)

and we put ϕ :=
∑mn

k=1 αkϕn,k. Since each ϕn,k lies in D(Aq,ρ), the domain of the operator

Aq,ρ, then the same is true for ϕ, i.e.

ϕ ∈ D(Aq,ρ) = D(Aq), (3.8)

according to (2.1), and we have Aq,ρϕ = λnϕ in L2
ρ(Ω). This and (3.7) translate into the fact

that  (Aq − λnρ)ϕ = 0, in Ω,

ϕ = 0, in Ω′.

Moreover, as we have ϕ ∈ H2(Ω) from (2.1)-(2.2) and (3.8), the weak unique continuation

principle for second order elliptic partial differential equations (see, e.g., [38, Theorem 1]) then

yields that ϕ = 0 a.e. in Ω, i.e.

ϕ(x) =

mn∑
k=1

αkϕn,k(x) = 0, x ∈ Ω.

Bearing in mind that {ϕn,k : k = 1, . . . ,mn} is orthonormal in L2
ρ(Ω), we deduce from the

above line that αk = 0 for all k = 1, . . . ,mn, which establishes that the ϕn,k, k = 1, . . . ,mn,

are linearly independent in L2
ρ(Ω

′).

Having completed the proof of Theorem 1.1, we turn now to showing Corollary 1.2.
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3.2. Proof of Corollary 1.2. In light of (1.4), u := u1 − u2 is a weak solution is solution to


(ρ(x)∂αt +Aq)u(t, x) = f(t, x), (t, x) ∈ Q,

B?u(t, x) = 0, (t, x) ∈ Σ,

∂kt u(0, ·) = 0, in Ω, k = 0, . . . , Nα,

(3.9)

with f(t, x) = σ1(t)g1(x)− σ2(t)g2(x) for a.e. (t, x) ∈ Q.

In the first (resp., second) case (i) (resp., (ii)), we have f(t, x) = σ1(t)(g1 − g2)(x) where

σ1 ∈ L1(0, T ) is supported in [0, T ) and g1 − g2 ∈ L2(Ω) (resp., f(t, x) = (σ1 − σ2)(t)g1(x)

where σ1−σ2 ∈ L1(0, T ) is supported in [0, T ) and g1 ∈ L2(Ω)). Since u = 0 in Q′, then, under

Condition (i), an application of Theorem 1.1 yields σ1(t)(g1 − g2)(x) = 0 for a.e. (t, x) ∈ Q

and hence g1 = g2 in Ω. Similarly, under Condition (ii), we obtain that (σ1 − σ2)(t)g1(x) = 0

for a.e. (t, x) ∈ Q and consequently that σ1 = σ2 in (0, T ). The proof of Corollary 1.4 is thus

complete.

3.3. Proof of Theorem 1.3. We split the proof into three steps. The first one is to prove

existence of a C([0, T ];H2ζ(Ω))-solution to the IBVP (1.4) with ρ = 1 a.e. in Ω and Aq = −∆.

Then show the transformation of our inverse problem into inverse problems for a family of

elliptic equations. Using this transformation we complete the proof of the theorem.

Step 1: Improved space-regularity result. We start by establishing that the weak-solution to

(1.4) associated with ρ = 1, q = 0 and source term f ∈ Lr(0, T ;L2(Ω)), lies in C([0, T ];H2ζ(Ω)).

As a preamble, we set A := A0, where we recall that A0 is the self-adjoint realization of

the (opposite of) the Laplace operator in L2(Ω), endowed with either Dirichlet or Neumann

boundary condition. Otherwise stated, A is the self-adjoint operator in L2(Ω), acting as −∆

on its domain D(A) = H2(Ω)∩H1
0 (Ω) when the boundary operator B? appearing in (1.4) reads

B?u = u, while it is D(A) = H2(Ω) when B?u = ∂νau. We denote by (λn)n∈N the sequence of

eigenvalues of A, arranged in non-decreasing order and repeated with the multiplicity, and we

introduce an orthonormal basis (ϕn)n ∈N in L2(Ω) of eigenfunctions of A, obeying Aϕn = λnϕn

for all n ∈ N.

Since the operator A is nonnegative, we recall from the functional calculus, that

(A+ 1)sh =

+∞∑
n=1

(1 + λn)s〈h, ϕn〉L2(Ω)ϕn, h ∈ D((1 +A)s), s ∈ [0,+∞),
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where D((1 + A)s) =
{
h ∈ L2(Ω) :

∑+∞
n=1

∣∣〈h, ϕn〉L2(Ω)

∣∣2 (1 + λn)2s <∞
}

. For further refer-

ence, we set

‖h‖D((A+1)s) :=

(
+∞∑
n=1

(1 + λn)2s
∣∣〈h, ϕn〉L2(Ω)

∣∣2) 1
2

, h ∈ D((A+ 1)s).

As f ∈ Lr(0, T ;L2(Ω)) with r > 1
α , then the weak solution u to (1.4) reads

u(t, ·) =
∞∑
n=1

un(t)ϕn, t ∈ (0, T ), (3.10)

where un(t) :=
∫ t

0 (t−s)α−1Eα,α(−λn(t−s)α)〈f(s, ·), ϕn〉L2(Ω)ds and Eα,β is the Mittag-Leffler

function:

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
, z ∈ C, α ∈ (0,+∞), β ∈ R.

We refer the reader to [37, Theorem 2.4], [23, Theorem 1.1] or [9, Lemma 3.3] for the derivation

of the representation formula (3.10) of u. Next, we recall from [35, Theorem 1.6] that

|Eα,α(−λntα)| 6 C t−αζ + 1

(1 + λn)ζ
, t ∈ (0, T ), n ∈ N, ζ ∈ [0, 1),

for some positive constant C which is independent of n and t. Thus, for all n ∈ N we have∣∣∣tα−1(1 + λn)ζEα,α(−λntα)
∣∣∣ 6 Ctα(1−ζ)−1, t ∈ (0, T ), ζ ∈ [0, 1),

and consequently t 7→ tα−1(1 + λn)ζEα,α(−λntα) ∈ Lr′(0, T ), ζ ∈ [0, 1), where r′ is the real

number conjugated to r, i.e. r′ is such that 1
r′ = 1− 1

r > 1−α(1−ζ). Therefore, for all ζ ∈ [0, 1),

using that s 7→ 〈f(s, ·), ϕn〉L2(Ω) ∈ Lr(0, T ), we obtain that t 7→ (1 +λn)ζun(t) ∈ C([0, T ]), and

the following estimate∥∥∥∥∥
m∑
k=n

uk(t)ϕk

∥∥∥∥∥
D((1+A)ζ)

6
∫ t

0
(t− s)α−1

(
m∑
k=n

(1 + λn)2ζEα,α(−λn(t− s)α)2
∣∣〈f(s, ·), ϕn〉L2(Ω)

∣∣2) 1
2

ds

6 C

∫ t

0
(t− s)α(1−ζ)−1

(
m∑
k=n

∣∣〈f(s, ·), ϕn〉L2(Ω)

∣∣2) 1
2

ds

6 C

(∫ T

0
s(α(1−ζ)−1)r′ds

) 1
r′
∫ T

0

(
m∑
k=n

∣∣〈f(s, ·), ϕn〉L2(Ω)

∣∣2) r
2

ds

 1
r

, (3.11)

which is true for all t ∈ [0, T ] and for all natural numbers m and n with n 6 m.

On the other hand, since limn,m→+∞

(∫ T
0

(∑m
k=n

∣∣〈f(s, ·), ϕn〉L2(Ω)

∣∣2) r2 ds) 1
r

= 0 as we

have f ∈ Lr(0, T ;L2(Ω)) by assumption, we derive from (3.11) that (
∑n

k=1 ukϕk)n∈N is a

Cauchy sequence in C([0, T ];D((A+ 1)ζ)), ζ ∈ [0, 1). Therefore, for all ζ ∈ [0, 1), we have u ∈
17



C([0, T ], D((A + 1)ζ))) by (3.10) and consequently u ∈ C([0, T ], H2ζ(Ω)) from the embedding

D((A+ 1)ζ)) ⊂ H2ζ(Ω).

Having established the first claim of Theorem 1.3, we turn now to proving (1.10).

Put Ω0 := ω × (−L,L) and pick an open subset Ω? ⊂ Rd with C2 boundary, fulfilling all

the following conditions simultaneously:

(a) Ω ⊂ Ω?, (b) ∂Ω\∂Ω? ⊂ γ, (c) Ω′ := Ω? \Ω is not empty, (d) Ω? \Ω0 is connected. (3.12)

Notice that such a subset Ω? exists in Rd as Ω \ Ω0 is connected and ∂Ω is C2. We split the

proof into two steps.

Step 2: Elliptic BVPs indexed by p. Setting f(t, x) := 0 and u(t, x) := 0 for a.e. (t, x) ∈ Q′,

we infer from (3.12)(b) and the assumption u|(0,T )×γ = ∂νu|(0,T )×γ = 0, that
(∂αt −∆)u(t, x) = f(t, x), (t, x) ∈ (0, T )× Ω?,

u = 0, (t, x) ∈ (0, T )× ∂Ω?,

∂kt u(0, ·) = 0, in Ω?, k = 0, . . . , Nα.

(3.13)

We have r > 2 as α(1 − ζ) < 1
2 , whence f ∈ L1(0, T ;L2(Ω?)). Moreover, f being supported

in [0, T )×Ω?, hence in [0, T − 3ε?]×Ω? for some fixed ε? ∈
(
0, T3

)
, we extend t 7→ u(t, ·) to a

L2(Ω?)-valued function in (0,+∞) which is analytic in (T − ε?,+∞), by invoking Proposition

2.1 where Ω is replaced by Ω?. Bearing in mind that u vanishes in Q′, by assumption, we find

that

u(t, x) = 0, (t, x) ∈ (0,+∞)× Ω′. (3.14)

Moreover, in light of Proposition 2.1, we get for all p ∈ (0,+∞) that the Laplace transform

U(p) =
∫ +∞

0 e−ptu(t)dt of u, is solution to the following BVP (−∆ + pα)U(p) =
∫ T

0 e−ptf(t, ·)dt, in Ω?,

U(p) = 0, on ∂Ω?,
(3.15)

where ν? is the outward unit normal vector to ∂Ω?. Since F (p) ∈ L2(Ω?) for each p ∈ (0,+∞)

and since ∂Ω? is C2, then U(p) ∈ H2(Ω?) by elliptic regularity.

Next, as f is supported in [0, T ] × Ω0, we have F (p) = 0 in Ω? \ Ω0 for all p ∈ (0,+∞),

and consequently  (−∆ + pα)U(p) = 0, in Ω? \ Ω0,

U(p) = 0, on Ω′,
(3.16)
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by (3.14)-(3.15). Since Ω? \Ω0 is connected and Ω′ ⊂ Ω? \Ω0, and since U(p) ∈ H2(Ω? \Ω0),

then the weak unique continuation principle for elliptic equations to (3.16) yields that U(p) = 0

in Ω? \ Ω0. Thus, taking into account that Ω0 ⊂ Ω? and that U(p) ∈ H2(Ω?), we have

U(p) = ∂ν0U(p) = 0 in ∂Ω0,

where ν0 denotes the outward unit normal vector to Ω0. From this and the first line of (3.15),

it then follows that (−∆ + pα)U(p, x) = G(p, x′)h(xd), x = (x′, xd) ∈ Ω0,

U(p) = ∂ν0U(p) = 0, on ∂Ω0,
(3.17)

where G(p, ·) :=
∫ +∞

0 e−ptg(t, ·)dt.

Step 3: Fourier transform. For all (k, θ) ∈ R × Sd−2, where Sd−2 is the unit sphere of Rd−1,

we notice that

(−∆ + pα)e−ikθ·x
′
eω(p,k)xd = (k2 − ω(p, k)2 + pα)e−ikθ·x

′
eω(p,k)xd = 0, p ∈ (0,+∞),

where ω(p, k) :=
(
pα + k2

) 1
2 . This and (3.17) yield∫

Ω0

G(p, x′)h(xd)e
−ikθ·x′eω(p,k)xddx′dxd =

∫
Ω0

(−∆ + pα)U(p, x)e−ikθ·x
′
eω(p,k)xddx′dxd = 0,

upon integrating by parts, and hence we get that(∫
ω
G(p, x′)e−ikθ·x

′
dx′
)(∫ L

−L
h(xd)e

ω(p,k)xddxd

)
= 0

from Fubini’s theorem. Putting G(p, ·) = 0 in Rd−1 \ω and h = 0 in R \ (−L,L), we thus find

that (∫
Rn−1

G(p, x′)e−ikθ·x
′
dx′
)(∫

R
h(xd)e

ω(p,k)xddxd

)
= 0, θ ∈ Sd−2, k ∈ R. (3.18)

Next, h ∈ L1(R) being compactly supported and not identically zero in R, its Fourier transform

z 7→
∫
R h(xd)e

zxddxd is holomorphic and not identically zero in C. Therefore, there exists a

non empty interval (a, b) ⊂ (0,+∞), with a < b, such that we have∫
R
h(xd)e

ω(p,k)xddxd 6= 0, k ∈ (a, b).

This and (3.18) yield
∫
Rd−1 G(p, x′)e−ikθ·x

′
dx′ = 0 for all θ ∈ Sd−2 and k ∈ (a, b). Otherwise

stated, the partial Fourier transform of x′ 7→ G(p, x′) vanishes in the concentric ring Ca,b :=

{y ∈ Rd−1 : a < |y| < b}, where |y| denotes the Euclidian norm of y ∈ Rd−1, i.e.∫
Rd−1

G(p, x′)e−iξ·x
′
dx′ = 0, ξ ∈ Ca,b. (3.19)
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Next, since x′ 7→ G(p, x′) is supported in the compact subset ω, then the function ξ 7→∫
Rd−1 G(p, x′)e−iξ·x

′
dx′ is real-analytic in Rd−1, so we infer from (3.19) that

∫
Rd−1 G(p, x′)e−iξ·x

′
dx′ =

0 for all ξ ∈ Rd−1. Therefore, we have G(p, ·) = 0 in Rd−1, by the injectivity of the partial

Fourier transform with respect to x′, and since this equality holds for all p ∈ (0,+∞), we

obtain that g = 0 in (0, T )× ω, from the injectivity of the Laplace transform with respect to

t. This completes the proof of Theorem 1.3.

4. Other results

This section contains an alternative approach to the analysis of the inverse problems (IP1)

and (IP2), presented in Section 3. Here, unlike Corollaries 1.2 and 1.4, we no longer assume

that the time-varying part of the unknown source term is compactly supported in (0, T ].

The result that we have in mind for (IP1) can be stated as follows.

Theorem 4.1. For j = 1, 2, let gj ∈ L2(Ω) and let σj ∈ L1(0, T ) fulfill

σ1(t) = σ2(t) = σ(t), t ∈ (0, t0),

where t0 ∈ (0, T ) and σ is a non-zero holomorphic function in the complex half-strip Sδ :=

{x + iy : x ∈ (−δ,+∞), y ∈ (−δ, δ)} of fixed width δ ∈ (0,+∞). Assume moreover that σ

grows no faster than polynomials, i.e. that

|σ(t)| 6 C(1 + t)N , t ∈ (0,+∞), (4.1)

for some positive constant C and some natural number N , which are both independent of t,

and that g1 is not identically zero in Ω. Then, for all non-empty open subset Ω′ of Ω, we have:

u1 = u2 in (0, T )× Ω′ =⇒ σ1 = σ2 in (0, T ) and g1 = g2 in Ω. (4.2)

Proof of Theorem 4.1. With reference to (3.9), we consider the following IBVP
(ρ(x)∂αt +Aq)w(t, x) = σ(t)(g1(x)− g2(x)), (t, x) ∈ (0,+∞)× Ω,

B?w(t, x) = 0, (t, x) ∈ (0,+∞)× ∂Ω,

∂kt w(0, x) = 0, x ∈ Ω, k = 0, . . . , Nα,

(4.3)

for α ∈ (0, 2). With reference to Section 2.1, (4.3) admits a unique solution w ∈ C([0,+∞), L2(Ω)),

which is expressed by (2.4)-(2.5). Moreover, due to (4.1), we get upon arguing as in the deriva-

tion of [29, Theorem 1.4] that the L2(Ω)-valued function t 7→ w(t, ·) is analytic in (0,+∞).
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On the other hand, from the uniqueness of the solution to (3.9) with T = t0 and f(t, x) =

σ(t)(g1(x) − g2(x)), we get that w(t, x) = u(t, x) for a.e. (t, x) ∈ (0, t0) × Ω. Since u = 0 in

Q′, by assumption, the analyticity of t 7→ w(t, ·) in (0,+∞) then yields

w(t, x) = 0, (t, x) ∈ (0,+∞)× Ω′. (4.4)

Thus, taking the Laplace transform with respect to t ∈ (0,+∞) in (4.3) and in (4.4), we obtain

in the same way as in the derivation of (3.2) in Section 3.1, that for every p ∈ (0,+∞), W (p) = σ̂(p)(Aq,ρ + pα)−1ρ−1(g1 − g2) in L2
ρ(Ω),

W (p) = 0 in L2
ρ(Ω

′),

where W (p) :=
∫ +∞

0 e−tpw(t, ·)dt and σ̂(p) :=
∫ +∞

0 e−tpσ(t)dt are the Laplace transforms of w

and σ, respectively. Notice from (4.1) that σ̂(p) is well-defined for each p ∈ (0,+∞).

Now, by mimicking the last three steps of the derivation of Theorem 1.1, we obtain that

g1 = g2 in Ω. Therefore, condition (ii) of Corollary 1.2 is fulfilled and we deduce from Corollary

1.2 that (4.2) holds true. This terminates the proof of Theorem 4.1.

Analogously, we obtain the following result for (IP2) upon arguing is in the proof of

Theorem 4.1.

Theorem 4.2. For j = 1, 2, let hj ∈ L2(−L,L) and let gj ∈ L1(0, T ;L2(ω)) fulfill

g1(t, x′) = g2(t, x′) = g(t, x′), (t, x′) ∈ (0, t0)× ω, (4.5)

for some t0 ∈ (0, T ), where t 7→ h(t, ·) is a non-zero holomorphic L2(ω)-valued function in the

complex half-strip Sδ introduced in Theorem 4.1, which grows no faster than polynomials:

∃C > 0, ∃N ∈ N, ‖g(t, ·)‖L2(ω) 6 C(1 + t)N , t ∈ (0,+∞).

Assume moreover that h1 is not identically zero in Ω. Then, we have g1 = g2 in (0, T ) × ω

and h1 = h2 in (−L,L), whenever the two following conditions

∂kνu1(t, x) = ∂kνu2(t, x), (t, x) ∈ (0, T )× γ, k = 0, 1,

are satisfied for some non-empty open subset γ of ∂Ω.
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5. Distributed order diffusion equations

In this section we adapt the analysis carried out in the preceding sections to the framework

of distributed order fractional diffusion equations. More precisely, we consider the IBVP
(ρ(x)D(µ)

t +Aq)u(t, x) = f(t, x), (t, x) ∈ Q,

B?u(t, x) = 0, (t, x) ∈ Σ,

u(0, x) = 0, x ∈ Ω.

(5.1)

where D(µ)
t denotes the distributed order fractional derivative

D(µ)
t h(t) :=

∫ 1

0
µ(α)∂αt h(t)dα,

induced by a non-negative weight function µ ∈ L∞(0, 1), obeying the following condition:

∃α0 ∈ (0, 1), ∃δ ∈ (0, α0), ∀α ∈ (α0 − δ, α0), µ(α) ≥ µ(α0)

2
> 0. (5.2)

We aim to recover the source term f expressed by one of the two prescribed forms (1.6)

or (1.9), from either internal or lateral data. But, prior to doing this, we examine the direct

problem associated with the IBVP (5.1) and we show that it admits a unique solution whenever

f ∈ L1(0, T ;L2(Ω)).

5.1. The direct problem. Here and in the remaining part of this section, ρ and Aq are

the same as in Section 1.1, and ∂αt is the Caputo derivative of order α defined by (1.5). Let

f ∈ L1(0, T ;L2(Ω)). We stick with the definition [29, Definition 1.1] of a weak solution to (5.1),

that is to say that u is a weak solution to (5.1) if we have u = v|Q for some v ∈ S ′(R+, L
2(Ω))

whose Laplace transform V verifies the following BVP for all p ∈ (0,+∞), (Aq + ρpϑ(p))V (p) =
∫ T

0 e−ptf(t, ·) in Ω,

B?V (p) = 0 on ∂Ω,
(5.3)

where ϑ(p) :=
∫ 1

0 p
α−1µ(α)dα.

We recall from [29, Theorems 1.1 and 1.2] that under the more restrictive assump-

tion f ∈ L∞(0, T ;L2(Ω)), the IBVP (5.1) admits a unique solution u ∈ C([0, T ], L2(Ω)) ∩

L1(0, T ;H2ζ(Ω)) for every ζ ∈ (0, 1). Moreover, by [29, Proposition 2.1], u enjoys the follow-

ing representation formula

u(t, ·) =

∫ t

0
Sµ(t− s)f(s, ·)ds, t ∈ (0, T ), (5.4)

22



where

Sµ(t)ψ :=
1

2iπ

+∞∑
n=1

mn∑
k=1

(∫
γ(ε,θ)

ept

ϑ(p) + λn
dp

)
〈ρ−1ψ,ϕn,k〉L2

ρ(Ω)ϕn,k, ψ ∈ L2(Ω). (5.5)

In (5.5), the pair (ε, θ) is arbitrary in (0,+∞) ×
(
π
2 , π

)
, the contour γ(ε, θ) is given by (2.6)-

(2.7), and the λn, mn and ϕn,k are the same as in the proof of Theorem 1.1.

Let us now extend (5.4)-(5.5) to the case of source terms f ∈ L1(0, T ;L2(Ω)).

Proposition 5.1. Assume (5.2) and let f ∈ L1(0, T ;L2(Ω)). Then, for every ζ ∈ (0, 1), there

exists a unique weak solution u ∈ L1(0, T ;H2ζ(Ω)) to (5.1), which is expressed by (5.4)-(5.5).

Proof. Let (fn)n∈N ∈ C∞0 (0, T ;L2(Ω))N be an approximating sequence of f in L1(0, T ;L2(Ω)),

i.e. such that

lim
n→∞

‖fn − f‖L1(0,T ;L2(Ω)) = 0. (5.6)

Next, with reference to (5.4), we introduce for all n ∈ N

vn(t, ·) :=

∫ t

0
Sµ(t− s)1(0,T )(s)fn(s, ·)ds, t ∈ [0,+∞),

in S ′(R+, L
2(Ω)), where Sµ is given by (5.5) and 1(0,T ) denotes the characteristic function of

the interval (0, T ).

As fn ∈ L∞(0, T ;L2(Ω)) for all n ∈ N, the Laplace transform Vn of vn, verifies

(Aq,ρ + pϑ(p))Vn(p) =

∫ T

0
e−ptfn(t, ·)dt, p ∈ (0,+∞), (5.7)

according to [29, Proposition 2.1]. Moreover, we have

lim sup
n→∞

∥∥∥∥∫ T

0
e−ptfn(t, ·)dt−

∫ T

0
e−ptf(t, ·)dt

∥∥∥∥
L2(Ω)

6 lim sup
n→∞

‖fn − f‖L1(0,T ;L2(Ω)) = 0, p ∈ (0,+∞),

(5.8)

from (5.6).

The next step of the proof is to establish for all p ∈ (0,+∞) that the Laplace transform

V (p) of the L2(Ω)-valued tempered distribution in [0,+∞),

t 7→ v(t, ·) :=

∫ t

0
Sµ(t− s)1(0,T )(s)f(s, ·)ds (5.9)

is well-defined in L2(Ω) and verifies

lim sup
n→∞

‖Vn(p)− V (p)‖L2(Ω) = 0. (5.10)
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To this purpose, we recall the following estimate from [29, Lemma 2.2],

1

|ϑ(p) + λn|
6 C max(|p|−α0+δ , |p|−α0), p ∈ C \ (−∞, 0], n ∈ N, (5.11)

where the positive constant C is independent of n and p. Indeed, for all t ∈ (0,+∞) and all

ψ ∈ L2(Ω), we infer from (5.11) upon taking ε = t−1 in (2.7) that∥∥∥∥∥
+∞∑
n=1

mn∑
k=1

(∫
γ0(ε,θ)

ept

ϑ(p) + λn
dp

)
〈ρ−1ψ,ϕn,k〉L2

ρ(Ω)ϕn,k

∥∥∥∥∥
L2(Ω)

6 C max(tα0−δ−1, tα0−1)

∣∣∣∣∫ θ

−θ
ecosβdβ

∣∣∣∣2 ‖ψ‖L2(Ω)

and ∥∥∥∥∥
+∞∑
n=1

mn∑
k=1

(∫
γ±(ε,θ)

ept

ϑ(p) + λn
dp

)
〈ρ−1ψ,ϕn,k〉L2

ρ(Ω)ϕn,k

∥∥∥∥∥
L2(Ω)

6 C

∣∣∣∣∫ +∞

t−1

max(r−α0+δ, r−α0)etr cos θdr

∣∣∣∣ ‖ψ‖L2(Ω)

6 Ct−1

∣∣∣∣∫ +∞

1
max((t−1r)−α0+δ, (t−1r)−α0)er cos θdr

∣∣∣∣ ‖ψ‖L2(Ω)

6 C max(tα0−δ−1, tα0−1)

∣∣∣∣∫ +∞

1
er cos θdr

∣∣∣∣ ‖ψ‖L2(Ω) .

Putting these two estimates together with (2.6) and (5.5), we obtain that

‖Sµ(t)‖B(L2(Ω)) 6 C max(tα0−δ−1, tα0−1), t ∈ (0,+∞), (5.12)

for some constant C that is independent of t. Thus, it holds true for all p ∈ (0,+∞) that

t 7→ yp(t) := e−pt ‖Sµ(t)‖B(L2(Ω)) ∈ L
1(0,+∞).

Moreover, setting f̃p(t) := 1(0,T )(t)e
−pt ‖f(t, ·)‖L2(Ω) for a.e. t ∈ (0,+∞), we obtain for each

p ∈ (0,+∞) that

e−pt
∥∥∥∥∫ t

0
Sµ(t− s)1(0,T )(s)f(s, ·)ds

∥∥∥∥
L2(Ω)

6
∫ t

0
e−p(t−s) ‖Sµ(t− s)‖B(L2(Ω)) 1(0,T )(s)e

−ps ‖f(s, ·)‖L2(Ω) ds

6 (yp ∗ f̃p)(t),
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where the symbol ∗ denotes the convolution in (0,+∞). Therefore, we find for every fixed

p ∈ (0,+∞) that ∫ +∞

0
e−pt

∥∥∥∥∫ t

0
Sµ(t− s)1(0,T )(s)f(s, ·)ds

∥∥∥∥
L2(Ω)

dt

is upper bounded by
∥∥∥yp ∗ f̃p∥∥∥

L1(0,+∞)
, and hence by ‖yp‖L1(0,+∞)

∥∥∥f̃p∥∥∥
L1(0,+∞)

, which we

combine with (5.12) to yield∫ +∞

0
e−pt

∥∥∥∥∫ t

0
Sµ(t− s)1(0,T )(s)f(s, ·)ds

∥∥∥∥
L2(Ω)

dt 6 C max(pδ−α0 , p−α0) ‖f‖L1(0,T ;L2(Ω)) ,

(5.13)

for some positive constant C that is independent of p. As a consequence, V (p) is well-defined

in L2(Ω) and satisfies

‖V (p)‖L2(Ω) 6 C max(pδ−α0 , p−α0) ‖f‖L1(0,T ;L2(Ω)) , p ∈ (0,+∞).

Arguing as before with f − fn instead of f , we obtain

‖V (p)− Vn(p)‖L2(Ω) 6 C max(pδ−α0 , p−α0) ‖f − fn‖L1(0,T ;L2(Ω)) , p ∈ (0,+∞), n ∈ N.

Using this along with (5.6) we get (5.10).

With reference to (5.3) we are left with the task of proving that V (p) lies in D(Aq,ρ), the

domain of the operator Aq,ρ, and verifies

(Aq,ρ + pϑ(p))V (p) = F (p), p ∈ (0,+∞). (5.14)

To do that, we recall from the very definition of the function ϑ that pϑ(p) > 0 for all p ∈

(0,+∞), and hence that the operator Aq,ρ + pϑ(p) is lower bounded by λ1 > 0 in L2
ρ(Ω),

according to (1.1)-(1.3). Thus, Aq,ρ + pϑ(p) is boundedly invertible in L2
ρ(Ω) and we have∥∥(Aq,ρ + pϑ(p))−1

∥∥
B(L2

ρ(Ω))
6 λ−1

1 for all p ∈ (0,+∞). Therefore, since Vn(p) = (Aq,ρ +

pϑ(p))−1Fn(p) for all n ∈ N and all p ∈ (0 +∞), from (5.7), we have∥∥(Aq,ρ + pϑ(p))−1F (p)− Vn(p)
∥∥
L2
ρ(Ω)

6
∥∥(Aq,ρ + pϑ(p))−1

∥∥
B(L2(Ω)

‖F (p)− Fn(p)‖L2
ρ(Ω)

6 ρ
1
2
Mλ1 ‖F (p)− Fn(p)‖L2(Ω) .

In light of (5.8), this implies that

lim
n→+∞

∥∥(Aq,ρ + pϑ(p))−1F (p)− Vn(p)
∥∥
L2(Ω)

= 0, p ∈ (0,+∞).

From this, (5.10) and the uniqueness of the limit in L2(Ω), it then follows that V (p) =

(Aq,ρ + pϑ(p))−1F (p), which is (5.14).
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Therefore, u = v|Q, where v is defined by (5.9), is a weak solution to (5.1). Now, in

accordance with [29, Section 1.4], we can finish the proof in the same way as in the one of [29,

Theorem 1.2]. �

Remark 2. The representation formula (5.4)-(5.5) of the solution to (5.1) was obtained by

replacing S by Sµ in (2.4)-(2.5). Therefore, if f ∈ L1(0, T ;L2(Ω)) is supported in [0, T−3ε?]×Ω

for some ε? ∈
(
0, T4

)
, then by substituting Sµ for S in the derivation of Proposition 2.1, we

see that the weak solution u to (5.1) extends to an L2(Ω)-valued map which is analytic in

Cθ?. Here, θ? can be any angle in
(
0,min

(
π
4 ,

π
2α −

π
4

))
and Cθ? is defined in Proposition 2.1.

Moreover, the extended function t 7→ u(t, ·) is holomorphic in Cθ? and its Laplace transform

U(p) is a solution to (5.3) for all p ∈ (0,+∞).

5.2. Uniqueness result. First we extend the result of Theorem 1.1 to the case of distributed

orders.

Theorem 5.2. Let f be defined by (1.6), where σ ∈ L1(0, T ) is supported in [0, T ) and

g ∈ L2(Ω). Assume (5.2) and denote by u the weak-solution to (5.1). Then, for any non-

empty open subset Ω′ ⊂ Ω, we have the implication:

u = 0 in (0, T )× Ω′ =⇒ f = 0 in Ω.

Proof. With reference to Remark 2, we follow the same lines as in the derivation of (3.3) and

get that

σ̂(p)

(
+∞∑
n=1

∑mn
k=1 gn,kϕn,k(x

′)

λn + ϑ(p)

)
= 0, x ∈ Ω′, p ∈ (0,+∞), (5.15)

where we used the notations introduced in Section 2.1. If σ̂ is identically zero, then we have

σ = 0 in (0, T ) by injectivity of the Laplace transform. Otherwise, we may assume that

σ̂(p) 6= 0 for all p ∈ I, where I is a non-empty subinterval of (0,+∞). In light of (5.15), this

yields
+∞∑
n=1

∑mn
k=1 gn,kϕn,k(x

′)

λn + ϑ(p)
= 0, x ∈ Ω′, p ∈ I,

and consequently

R(ϑ(p)) = 0, p ∈ I, (5.16)

in the L2
ρ(Ω

′)-sense, where the function R is defined by (3.5). Next, bearing in mind that

ϑ′(p) =
∫ 1

0 αp
α−1µ(α)dα, we infer from (5.2) that

ϑ′(p) >
∫ α0

α0−δ
αpα−1µ(α)dα >

δ(α0 − δ)µ(α0)

2
min
p∈I

(pα0−1, pα0−δ−1) > 0, p ∈ I.
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From this, (5.16) and the fact that R is a meromorphic function in C \ {λn, n ∈ N}, it then

follows that
mn∑
k=1

gn,kϕn,k(x
′) = 0, x′ ∈ Ω′, n ∈ N.

Therefore, we have gn,k = 0 for all k = 0, . . . ,mn and all n ∈ N and consequently g =∑+∞
n=1

∑mn
k=1 gn,kϕn,k = 0 in L2

ρ(Ω). �

The second uniqueness result that we establish, corresponds to Theorem 1.3.

Theorem 5.3. Let T , Ω, ω, L, ρ and Aq be the same as in Theorem 1.3. Denote by u the

solution to (5.1) where f is defined by (1.9) with σ ∈ L1(0, T ;L2(ω)) and g ∈ L2(−L,L).

Assume moreover that f is supported in [0, T ) × ω. Then, for any non-empty open subset

γ ⊂ ∂Ω, we have

u = ∂νu = 0 on (0, T )× γ =⇒ f = 0 in (0, T )× Ω.

Proof. Let the function u be extended as in Remark 2. Since its Laplace transform U(p),

p ∈ (0,∞), is solution to the BVP (−∆ + ϑ(p))U(p, ·) = F (p, ·), in Ω,

B∗U(p) = 0, on ∂Ω,

where F (p) ∈ L2(Ω), then we have U(p) ∈ H2(Ω) by the elliptic regularity theorem. Therefore,

taking into account that

(−∆ + ϑ(p))e−ikθ·x
′
e(k2+ϑ(p))1/2xd =

(
k2 − (k2 + ϑ(p)) + ϑ(p)

)
e−ikθ·x

′
e(k2+ϑ(p))1/2xd = 0,

for any k ∈ R and any θ ∈ Sd−2, and that (−∆ + ϑ(p))U(p, x) = σ̂(p, x′)g(xd), x = (x′, xd) ∈ Ω0,

U(p, x) = ∂ν0U(p, x) = 0, x ∈ ∂Ω0,
(5.17)

for all p ∈ (0,+∞), we find upon multiplying the first line in (5.17) by e(k2+ϑ(p))1/2xd and

integrating by parts in Ω0, that:∫
Ω0

σ̂(p, x′)h(xd)g(xd)e
−ikθ·x′e(k2+ϑ(p))1/2xddx′dxd = 0.

By the Fubini theorem, the above equality immediately leads to(∫
ω
σ̂(p, x′)e−ikθ·x

′
dx′
)(∫ L

−L
g(xd)e

(k2+ϑ(p))1/2xddxd

)
= 0,

for all p ∈ (0,+∞), all k ∈ R and all θ ∈ Sd−2, so the result follows from this upon arguing in

the same way as in the proof of Theorem 1.3. �
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6. Numerical reconstruction

In this section we numerically solve the inverse problem (IP1) for α ∈ (1, 2) by mean of

an iterative scheme based on the Tikhonov regularization method. In view of Theorem 1.1, we

seek numerical reconstruction of the two-dimensional spatial part g of the source term (1.6)

appearing in (1.4).

6.1. Iterative method. We aim at building an efficient iterative scheme for numerical re-

construction of the spatial term g of the source, from knowledge of the temporal term σ and

internal measurements for all times in a subregion Ω′. A reconstruction algorithm was pro-

posed in [15] and [16], for α ∈ (0, 1) and α = 2, respectively, that we shall adapt to the case

α ∈ (1, 2). In accordance with Theorem 1.1, we choose a time-varying part of the unknown

source with compact support, instead of the non-compactly supported one which is considered

in [15].

We recall that the fractional Caputo derivative of order α ∈ (1, 2) is defined by

∂αt u(t, x) :=
1

Γ(2− α)

∫ t

0
(t− s)1−α∂2

su(s, x)ds, (s, x) ∈ Q,

and that the backward fractional Caputo derivative reads

∂αt u(t, x) :=
1

Γ(2− α)

∫ T

t
(s− t)1−α∂2

su(s, x)ds, (s, x) ∈ Q.

For the homogeneous Neumann boundary condition, the forward problem under examination

reads 
(∂αt +Aq)u(t, x) = g(x)σ(t), (t, x) ∈ Q,

∂νau(t, x) = 0, (t, x) ∈ Σ,

u(0, x) = ∂tu(0, x) = 0, x ∈ Ω.

(6.1)

Let us introduce the backward Riemann-Liouville fractional derivative of order α as

∂α∗t u(t, x) :=
1

Γ(2− α)
∂2
t

∫ T

t
(s− t)1−αu(s, x)ds, (s, x) ∈ Q.

Then, the weak formulation of the system (6.1) is given by∫
Q

 d∑
i,j=1

ai,j∂xiu∂xjw + quw + u∂α∗t w

 dxdt =

∫
Q
gσwdxdt

for any test function w ∈ Hα(0, T ;L2(Ω))
⋂
L2(0, T ;H1(Ω)) satisfying J0w = J1w = 0 in Ω,

where we have set

J0u(t, x) = lim
t→T

1

Γ(2− α)

∫ T

t
(s− t)1−αu(s, x)ds,
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J1u(t, x) = lim
t→T

1

Γ(2− α)
∂t

∫ T

t
(s− t)1−αu(s, x)ds.

Assume that we have noise contaminated measurement uδ ∈ W 1,1(0, T ;L2(Ω)) in a sub-

region Ω′ ⊂ Ω and over the interval (0, T ), such that ‖uδ − u(gtrue)‖L2(Ω′) 6 δ, where gtrue is

the true data, u(gtrue) is the solution to (6.1) associated with f(t, x) = σ(t)gtrue(x), and δ is

the noise level. Then, the numerical reconstruction of the source term gtrue can be formulated

as a least squares problem with Tikhonov regularization:

min
g∈L2(Ω)

Φ(g), Φ(g) := ‖u(g)− uδ‖2L2((0,T )×Ω′) + ρ‖g‖2L2(Ω). (6.2)

Traditional iterative methods solving the least squares problem (6.2) require the computation

of the Fréchet derivative Φ′(g) of the object function Φ(g). For an arbitrary direction h ∈

L2(Ω), Φ′(g)h is given by

Φ′(g)h = 2

∫ T

0

∫
Ω′

(u(g)− uδ)(u′(g)h)dxdt+ 2ρ

∫
Ω
ghdx

= 2

∫ T

0

∫
Ω′

(u(g)− uδ)u(h)dxdt+ 2ρ

∫
Ω
ghdx (6.3)

because of the linear dependence of u(g) on g.

Next, we consider the adjoint system
(∂α∗t +Aq)z = χΩ′(u(g)− uδ), in Q,

∂νaz = 0, on Σ,

J0z = J1z = 0, in Ω,

(6.4)

where χΩ′ is the characteristic function of Ω′. Then, the first term of the equation (6.3) is

equal to ∫ T

0

∫
Ω′

(u(g)− uδ)u(h)dxdt =

∫
Q
χΩ′(u(g)− uδ)u(h)dxdt

=

∫
Q

(∂α∗t +Aq)z(t, x)u(h)dxdt

=

∫
Q
hσz(g)dxdt,

which implies

Φ′(g)h = 2

∫
Ω

(∫ T

0
σz(g)dt+ ρg

)
hdx.

Therefore, the minimizer g of (6.2) verifies

ρg = −
∫ T

0
σz(g)dt. (6.5)
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Thus, by adding Mg on both sides of (6.5), we obtain the following iterative reconstruction

algorithm, which is borrowed from [7, 15]:

gk+1 =
M

M + ρ
gk −

1

M + ρ

∫ T

0
σz(gk)dt, k = 0, 1, 2, . . .

The iteration stops when the condition

‖gk+1 − gk‖L2(Ω) < ε‖gk‖L2(Ω)

is fulfilled, where ε is the a priori fixed precision parameter.

In order to avoid dealing with the non-local final condition in the third line of (6.4)

and with the backward Riemann-Liouville fractional derivative ∂α∗t appearing in the master

equation of (6.4), whose numerical treatment is a delicate matter, we rather solve the following

problem with a backward Caputo fractional derivative:
(∂αt +Aq)z = χΩ′(u(g)− uδ), in Q,

∂νaz = 0, on Σ,

z(T, ·) = ∂tz(T, ·) = 0, in Ω.

(6.6)

From a theoretical viewpoint, this choice is justified by the:

Lemma 6.1. The system (6.6) is equivalent to (6.4).

Proof. Let us first prove that the weak solution to (6.6) solves (6.4). We start by showing

that the homogeneous final condition z(T, ·) = ∂tz(T, ·) = 0 of (6.6), implies J0z = J1z = 0

in Ω. To this purpose, we preliminarily establish that the weak solution z to (6.6), lies in

C1([0, T ];L2(Ω)). Indeed, putting w(t, ·) = z(T − t, ·), we get that

∂αt z(T − t, ·) = ∂αt w(t, ·), t ∈ (0, T ),

and hence 
(∂αt +Aq)w(t, ·) = χΩ′(u(g)− uδ)(T − t, ·), in Q,

∂νaw(t, x) = 0, on Σ,

w(0, x) = ∂tw(0, x) = 0, in Ω.

Notice that χΩ′(u(g)−uδ) ∈W 1,1(0, T ;L2(Ω)) by [23, Theorem 1.1], whence w ∈W 2,r(0, T ;L2(Ω))

for all r ∈ (1, (2 − α)−1), from [25, Theorem 2.7.]. Therefore, we have z ∈ W 2,r(0, T ;L2(Ω))

and hence z ∈ C1([0, T ];L2(Ω)) by the Sobolev embedding theorem. As a consequence we have

z ∈ L∞(0, T ;L2(Ω)), so we get for all t ∈ (0, T ) that∥∥∥∥ 1

Γ(2− α)

∫ T

t
(s− t)1−αz(s, ·)ds

∥∥∥∥
L2(Ω)

6
‖z‖L∞(0,T ;L2(Ω))

Γ(2− α)

∫ T

t
(s− t)1−αds
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6
‖z‖L∞(0,T ;L2(Ω))

Γ(2− α)

∫ T−t

0
s1−αds.

From this it then follows that

|J0z‖L2(Ω) 6 lim sup
t→T

∥∥∥∥ 1

Γ(2− α)

∫ T

t
(s− t)1−αz(s, ·)ds

∥∥∥∥
L2(Ω)

6
‖z‖L∞(0,T ;L2(Ω))

Γ(2− α)
lim
t→T

∫ T−t

0
s1−αds = 0. (6.7)

Similarly, z ∈ C1([0, T ];L2(Ω)) and z(T, ·) = 0 yield

∂t

∫ T

t
(s− t)1−αz(s, ·)ds = ∂t

(∫ T−t

0
s1−αz(s+ t, ·)ds

)
=

∫ T−t

0
s1−α∂sz(t+ s, ·)ds+ z(T, ·)(T − t)1−α

=

∫ T

t
(s− t)1−α∂sz(s, ·)ds, (6.8)

which entails

J1z =
1

Γ(2− α)
lim
t→T

∫ T

t
(s− t)1−α∂sz(s, ·)ds,

so we get J1z = 0 by arguing as in the derivation of (6.7).

It remains to prove that z satisfies the first line of (6.4). Since z is a solution to (6.6),

this amounts to showing that ∂α∗t z = ∂αt z. We proceed in the same way as in the derivation

of (6.8), that is we take into account that z(T, ·) = ∂tz(T, ·) = 0 and z ∈W 2,r(0, T ;L2(Ω)) for

all r ∈ (1, (2− α)−1), to write

∂α∗t z = ∂2
t

∫ T

t
(s− t)1−αz(s, ·)ds

= ∂2
t

(∫ T−t

0
s1−αz(s+ t, ·)ds

)
= ∂t

(∫ T−t

0
s1−α∂sz(s+ t, ·)ds+ z(T, ·)(T − t)1−α

)
=

∫ T−t

0
s1−α∂2

sz(t+ s, ·)ds+ ∂tz(T, ·)(T − t)1−α

=

∫ T

t
(s− t)1−α∂2

sz(s, ·)ds = ∂αt z.

Summing up, we have established that weak solution to (6.6) is a solution to (6.4). But,

since the solution to (6.4) is unique, this means that the two systems (6.4) and (6.6) are

equivalent. �
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Remark 3. It is easy to see that the statement Lemma 6.1 remains valid for α ∈ (0, 1) and

σ ∈W 1,1(0, T ).

6.2. Numerical computations. This section provides several numerical computations of

gtrue by the iterative scheme introduced in Section 6.1, in the particular case where

Ω = (0, 1)× (0, 1), T = 1, Aqu = −0.1∆u+ u,

and

σ(t) =
1√
2πs

e−
(t−0.4)2

2s2 , s = 0.12, g0(x1, x2) = 2.

Notice that σ ≈ 0 near the boundary. From numerical point of view, σ is compactly sup-

ported. To obtain the noisy observation uδ, we solve the forward problem numerically and

add uniformly distributed random noise to the solution, i.e.,

uδ(t, x) =
(
1 + δrand(−1, 1)

)
u(gtrue)(t, x).

Here rand(−1, 1) is a uniformly distributed number in [−1, 1] and δ is the noise level. For

parameters in the iterative method, we fix ρ = 10−5 and M = 4. To evaluate the performance

of the reconstruction, we compute the relative error Res := ‖gk − gtrue‖L2(Ω)/‖gtrue‖L2(Ω).

Example 6.1. In this example we compare reconstructed results for g(x1, x2) with different

α. We choose the noise level δ = 2%, the stopping criterion ε = δ/50 and the observation

subregion Ω′ = Ω \ (0.1, 0.9)2. We choose two pairs of fractional orders α = 1.2 and α = 1.8,

and two true source terms

gtrue(x1, x2) = x1 + x2 + 1 and gtrue(x1, x2) = cos(πx1) cos(πx2) + 2.

Figure 1 demonstrates results with iteration steps K and relative errors Res. Reconstruc-

tion with α = 1.2 takes fewer steps and the result is more accurate than α = 1.8.

Example 6.2. In this example we fix α = 1.5, δ = 10%, ε = 10−3 and

gtrue = cos(πx1) cos(πx2) + 2.

We study the effect of observation regions to reconstructed g(x1, x2) by choosing six different

observation regions:

Ω′ = Ω \ (0.2, 0.8)2, Ω′ = Ω \ (0.05, 0.95)2,

Ω′ = Ω \ [0, 0.8)2, Ω′ = Ω \ [0, 0.95)2,

Ω′ = Ω \ [0, 1]× [0, 0.8), Ω′ = Ω \ [0, 1]× [0, 0.95).
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(a) gtrue = x1 + x2 + 1
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(d) gtrue = cos(πx1) cos(πx2) + 2
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(f) α = 1.8

Figure 1. True solutions (left), reconstructions for α = 1.2 (middle) and recon-

structions for α = 1.8 (right). Figure (1b) corresponds to K = 91, Res = 2.71%;

Figure (1c) corresponds to K = 139, Res = 5.77%; Figure (1e) corresponds to

K = 113, Res = 3.65%; Figure (1f) corresponds to K = 166, Res = 7.07%.

Ω′ K Res

Ω \ (0.2, 0.8)2 73 3.95%

Ω \ (0.05, 0.95)2 92 9.09%

Ω \ [0, 0.8)2 72 13.54%

Ω \ [0, 0.95)2 73 17.49%

Ω \ [0, 1]× [0, 0.8) 63 18.42%

Ω \ [0, 1]× [0, 0.95) 40 22.09%

Table 1. Number of steps and relative errors for different regions of observation.

Figure (2) shows reconstructed results with different observation regions and Table (1)

lists the number of steps and relative errors. With the increasing of the observation region, the

reconstructed result becomes more accurate. If we are lack of observation near some boundaries,

it is hard to obtain a good reconstruction near those boundaries.
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(a) Ω′ = Ω \ (0.2, 0.8)2
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(c) Ω′ = Ω \ [0, 1]× [0, 0.8)

0.5

1

1

1.5

1

2

2.5

0.8
0.5

3

0.6

3.5

0.4

0.2
0 0

(d) Ω′ = Ω \ (0.05, 0.95)2
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(e) Ω′ = Ω \ [0, 0.95)2
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(f) Ω′ = Ω \ [0, 1]× [0, 0.95)

Figure 2. Effect of observation regions to reconstructed results.

Example 6.3. In this example, we study two extreme cases, α = 1.01 and α = 1.99, and

compare them with α = 0.99 [15] and α = 2 [16], respectively. We choose

δ = 4%, gtrue = cos(πx1) cos(πx2) + 2,

ε = δ
200 for α ≈ 1 and ε = δ

1500 for α ≈ 2.

We obtain Res = 4.14%,K = 162 for α = 0.99 and Res = 3.50%,K = 143 for α = 1.01.

Although we choose a smaller threshold ε, we still have Res = 5.93%,K = 601 for α = 1.99

and Res = 6.81%,K = 531 for α = 2. We can see that in these two extreme cases, α = 1.01

and α = 1.99, our results are compatible with cases α = 0.99 and α = 2, respectively.

We have less accurate results for α ≈ 2 than for α ≈ 1 even if we use a much smaller stop-

ping threshold, which can also been seen from Figure 3. This is because of the small stopping

time and the finite wave speed, i.e., our observation stops before the full source propagating

onto the boundary. By augmenting T from 1 to 4, the result can be improved dramatically

as demonstrated in the last line of Figure 3 with Res = 0.10%,K = 73 for α = 1.99 and

Res = 0.20%,K = 70 for α = 2. It seems that the wave propagation seems to filter out the

random noise, which results in a surprisingly small error compared to the noise level.
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(c) α = 1.99, T = 1
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(e) α = 1.99, T = 4
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(f) α = 2, T = 4

Figure 3. Comparison of reconstructed results for α ≈ 1 and for α ≈ 2.

7. Analysis of inverse problem (IP1’)

The study of inverse source problems carried out in the preceding sections was concerned

with unknown source terms in either of the two forms (1.6) or (1.9). However, this analysis

does not apply to source terms in the form of (1.7) and we shall see in the case α = 1 that f is

not uniquely determined by partial observation of the solution to (1.4). This is not surprising

given the obstruction to identification of general time-dependent source terms by partial data,

exhibited in the Appendix, but it turns out that it can be further described for source terms

in the form of (1.7).

7.1. Statement of the results. Set α = 1. Given a suitable internal boundary observation

of the solution to (1.4), we aim to characterize all source terms f(x, t) = σ(t)g(x) + β(t)h(x)

in the form of (1.7) generating exactly the same data. To this purpose, assuming that the
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function β does not change signs and that it is not-identically zero in (0, T ), we introduce the

operator
∫ T

0 β(t)eAq,ρtdt, where we recall that Aq,ρ is defined in Section 2.1. It is boundedly

invertible in L2
ρ(Ω) and we denote its inverse by

(∫ T
0 β(t)eAq,ρtdt

)−1
. Then, by the operatorial

calculus, the following operator

Hq,ρ := −
(∫ T

0
β(t)eAq,ρtdt

)−1(∫ T

0
σ(t)eAq,ρtdt

)
,

is self-adjoint in L2
ρ(Ω).

Theorem 7.1. Let σ ∈ L2(0, T ) and β ∈ L1(0, T ) be supported in [0, T ). Assume further

that β is not-identically zero and does not change sign in (0, T ). Given g and h in L2(Ω), we

denote by u the solution to (1.4) associated with α = 1 and source term f expressed by (1.7).

Then, for an arbitrarily chosen non-empty open subset Ω′ ⊂ Ω, we have the implication:

u|(0,T )×Ω′ = 0 =⇒ h = ρHq,ρρ
−1g in Ω. (7.1)

Although Theorem 7.1 is interesting in its own right, the main benefit of the above

statement is the following characterization of the set of source terms expressed by (1.6). We

recall for ` ∈ N, that H`
0(0, T ) denotes the closure of C∞0 (0, T ) in the H`(0, T )-norm topology.

Corollary 7.2. For ` ∈ N fixed, assume that β ∈ H`
0(0, T ) \ {0} is supported in [0, T ) and

does not change sign in (0, T ). Suppose moreover that ρ(x) = 1 for a.e. x ∈ Ω. For g and h in

L2(Ω), let ug denote the weak-solution to (1.4) associated with f(t, x) = d`β
dt`

(t)g(x), and let uh

be the weak-solution to (1.4) with source term f(t, x) = −β(t)h(x). Then, for any non-empty

open subset Ω′ ⊂ Ω, we have:

ug = uh in (0, T )× Ω′ =⇒ h = (−1)`+1A`q g in Ω. (7.2)

Moreover, if β ∈ H1
0 (0, T ), then we have

g = h = 0 in Ω′. (7.3)

7.2. Proofs of Theorem 7.1 and Corollary 7.2.

Proof of Theorem 7.1. We argue as in the derivation of (3.2) to obtain that the Laplace

transform U(p), p ∈ (0,+∞), of the solution u to to (1.4) with source term f , given by (1.7),

solves  U(p) = σ̂(p)(Aq,ρ + p)−1ρ−1g + β̂(p)(Aq,ρ + p)−1ρ−1h in L2
ρ(Ω),

U(p) = 0 in L2
ρ(Ω

′).
(7.4)
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Here we use the notations of the proof of Theorem 1.1 and we set σ̂(p) :=
∫ T

0 e−ptσ(t)dt

and β̂(p) :=
∫ T

0 e−ptβ(t)dt for p ∈ C. From the spectral representation of the operator Aq,ρ,

introduced in Section 2.1, we infer from (7.4) that the identity

σ̂(p)
+∞∑
n=1

∑mn
k=1 gn,kϕn,k
λn + p

+ β̂(p)

+∞∑
n=1

∑mn
k=1 hn,kϕn,k
λn + p

= 0, (7.5)

holds in L2
ρ(Ω

′) for every p ∈ (0,+∞), where gn,k := 〈ρ−1g, ϕn,k〉L2
ρ(Ω) and hn,k := 〈ρ−1h, ϕn,k〉L2

ρ(Ω).

Moreover, since p 7→ σ̂(p)
∑+∞

n=1

∑mn
k=1 gn,kϕn,k
λn+p and p 7→ β̂(p)

∑+∞
n=1

∑mn
k=1 hn,kϕn,k
λn+p can be mero-

morphically continued to C \ {−λn : n ∈ N}, we extend (7.5) meromorphically in C \ {−λn :

n ∈ N}. Therefore, for each N ∈ N, multiplying (7.5) by λN + p and sending p to −λN , we

obtain
mN∑
k=1

(
σ̂(−λN )gN,k + β̂(−λN )hN,k

)
ϕN,k = 0

in L2
ρ(Ω

′). Since the function β is not identically zero and does not change sign in (0, T ), we

have β̂(−λN ) 6= 0, so the above line can be reformulated as

mN∑
k=1

(
hN,k +

σ̂(−λN )

β̂(−λN )
gN,k

)
ϕN,k = 0,

the equality being understood in the L2
ρ(Ω

′)-sense. Next, since the family {ϕN,k : k =

1, . . . ,mN} is linearly independent in L2
ρ(Ω

′), by virtue of Step 4 in Section 3.1, we necessarily

have
σ̂(−λN )

β̂(−λN )
gN,k = −hN,k, k = 1, . . . ,mN . (7.6)

Now, since (7.6) is valid for allN ∈ N, it follows from the Parseval identity
∑+∞

n=1

∑mn
k=1 |hn,k|

2 =∥∥ρ−1h
∥∥2

L2
ρ(Ω)

for h ∈ L2(Ω), that ∣∣∣∣∣ σ̂(−λn)

β̂(−λn)

∣∣∣∣∣
2

|gn,k|2 <∞.

Therefore, the operatorial calculus yields that g lies in the domain of the operator of Hq,ρ and

fulfills (7.1). �

Proof of Corollary 7.2. We set σ := d`β
dt`

. Since u := ug −uh is a solution to the IBVP (1.4)

with source term f in the form of (1.7), then we have h = Hq,1g by Theorem 7.1. Hence

−β̂(−λn)−1 d̂
`β

dt`
(−λn)〈g, ϕn,k〉L2(Ω) = 〈h, ϕn,k〉L2(Ω), n ∈ N, k = 1, . . . ,mn. (7.7)

Moreover, we have d̂`β
dt`

(p) = p`β̂(p) for each p ∈ R, by β ∈ H`
0(0, T ), whence (7.7) implies

(−1)`+1λ`n〈g, ϕn,k〉L2(Ω) = 〈h, ϕn,k〉L2(Ω), n ∈ N, k = 1, . . . ,mn.
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This entails that g ∈ D(A`q) verifies (7.2).

In the particular case where ` = 1, we have h = −Aqg, hence u is a solution to the IBVP

(1.4) with α = 1 and f(t, x) = (∂t − Aq)β(t)g(x) for a.e. (t, x) ∈ Q. Since (t, x) 7→ β(t)g(x)

is a weak-solution to the exact same problem, then u(t, x) = β(t)g(x) in Q, by the uniqueness

of the solution to (1.4). Thus (7.3) follows directly from this. �

8. Appendix: A natural obstruction to identifiability

In this appendix we characterize the obstruction to the unique determination of time-

dependent source terms f in (1.4), from either internal or lateral measurement of the weak

solution u to (1.4).

Let Ω′ satisfy Ω′ ⊂ Ω. Pick u0 ∈ C∞0 ((0, T )× (Ω \ Ω′)) \ {0} and set

ũ0(t, x) :=

 u0(t, x) if (t, x) ∈ (0, T )× (Ω \ Ω′),

0 if (t, x) ∈ (0, T )× Ω′.

We consider the IBVP (1.4) with source term f0 := ρ∂αt ũ0 − Aqũ0. Evidently, ũ0 is a weak

solution to (1.4), hence u = ũ0 from the uniqueness of the solution to (1.4) with f = f0.

Moreover, since ũ0 is not identically zero in Q, then the same is true for f0 (otherwise ũ0

would be zero everywhere by uniqueness of the solution to (1.4), which in contradiction with

the definition of u0). Thus, we have u|(0,T )×Ω′ = 0, despite of the fact that f0 is not identically

zero in Q.

This establishes that the recovery of the unknown source term f by partial knowledge

of u, is completely hopeless, or, otherwise stated, that full knowledge of the solution u to

(1.4) (i.e. measurement of u performed on the entire time-space cylinder Q) is needed for

determining f ∈ L1(0, T ;L2(Ω)).
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