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Abstract. This paper deals with mathematical problems related to
space-dependent anomalous di↵usion processes. Namely, we investigate
di↵usion equations with time-fractional derivatives of space-dependent
variable order. We establish that variable order time-fractional Cauchy
problems admit a unique weak solution and prove that the space-
dependent variable order coe�cient is uniquely determined by the knowl-
edge of a suitable time-sequence of partial Dirichlet-to-Neumann maps.

1. Introduction

1.1. Statement of the problem

Let ⌦ be a bounded domain of Rd, d > 2, with Lipschitz continuous boundary
@⌦, and let (ai,j)16i,j6d 2 L1(⌦;Rd2

) be symmetric, i.e., fulfill ai,j = aj,i
a.e. in ⌦, for i, j = 1, . . . , d, and satisfy the ellipticity condition

9c > 0,
dX

i,j=1

ai,j(x)⇠i⇠j > c|⇠|2, x 2 ⌦, ⇠ = (⇠
1

, . . . , ⇠d) 2 Rd. (1.1)

For  2 (d,+1] and q 2 L(⌦), such that

q(x) � 0, x 2 ⌦, (1.2)

we introduce the formal di↵erential operators

A0u(x) = �
dX

i,j=1

@

xi

�
a

i,j

(x)@
xju(x)

�
and A

q

u(x) := A0u(x) + q(x)u(x), x 2 ⌦,

where we set @xi =
@
@xi

, i = 1, . . . , d.

Given T 2 (0,+1] and two functions ↵ 2 L1(⌦) and ⇢ 2 L1(⌦)
satisyfing

0 < ↵
0

6 ↵(x) 6 ↵M < 1 and 0 < ⇢
0

6 ⇢(x) 6 ⇢M < +1, x 2 ⌦, (1.3)
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we consider the initial-boundary value problem for a space-dependent variable
order (VO) fractional di↵usion equation
8
<

:

(⇢(x)@↵(x)t +Aq)u(t, x) = f(t, x), (t, x) 2 Q := (0, T )⇥ ⌦,
u(t, x) = 0, (t, x) 2 ⌃ := (0, T )⇥ @⌦,
u(0, x) = u

0

(x), x 2 ⌦.
(1.4)

Here and below, @↵(x)t denotes the Caputo fractional derivative of order ↵(x)
with respect to t, defined by

@
↵(x)
t u(t, x) :=

1

�(1� ↵(x))

Z t

0

(t� s)�↵(x)@su(s, x)ds, (t, x) 2 Q,

where � is the Gamma function.
In this paper, we pursue two goals. The first one is to establish the well-

posedness of the initial-boundary value problem (1.4) for a suitable source
term f and initial value u

0

(actually, in what follows we rather focus on
the existence and uniqueness issues of a weak solution to (1.4), than on its
stability properties with respect to the data, but for the sake of shortness, we
may refer by a slight abuse of language to Theorem 1.1 as a well-posedness
result). The second one is to analyse the uniqueness in an inverse problem of
determining simultaneously the fractional order ↵ and two coe�cients ⇢ and
q of the di↵usion equation in (1.4) by partial Cauchy data.

1.2. Physical motivations

Anomalous di↵usion in complex media is a rapidly growing field of academic
research with multiple engineering applications in geophysics, environmen-
tal science and biology. The di↵usion properties of homogeneous media are
currently modeled, see e.g., [1, 6], by constant order (CO) time-fractional
di↵usion processes where in (1.4) the mapping x 7! ↵(x) is maintained con-
stant over ⌦. However, in complex media, the presence of heterogeneous re-
gions displays space inhomogeneous variations and the CO fractional dy-
namic models are not robust for long times, see [11]. In this background the
VO time-fractional model is more relevant for describing the space-dependent
anomalous di↵usion process, see e.g., [47]. As a matter of fact, several VO
di↵usion models have been successfully applied to numerous areas of applied
sciences and engineering, such as chemistry [10], rheology [45], biology [13],
hydrogeology [4] and physics [46, 51].

Notice that the VO time-fractional kinetic equation is usually a corre-
sponding macroscopic model to continuous time random walk (CTRW) driven
stochastic di↵usion processes with space-dependent di↵usion coe�cient. We
refer to [37, 40] for a rigorous derivation of the fractional heat equation from
a CTRW scheme with space-dependent di↵usion coe�cient.

1.3. A short review of the mathematical literature of time-fractional di↵usion
equations

The mathematical study of ordinary and partial di↵erential equations with
fractional derivatives has attracted a lot of attention during the last decades.
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We refer to [25, 36, 38, 44] for a general introduction to fractional calculus and
to, e.g., [2, 15, 33] for a more specific focus on partial di↵erential equations
with time-fractional derivatives.

Autonomous CO fractional Cauchy problems, i.e. CO time-fractional
di↵usion equations associated with a time-independent elliptic part, have
been extensively studied in the mathematical literature, see e.g., [14, 24, 43].
In this framework, the solution is unique and analytic with respect to the
time variable, as it is expressed in terms of the Mittag-Le✏er functions. This
result is extended to the solution of Cauchy problems with almost sectorial
operators in [48]. Existence and uniqueness results for autonomous CO frac-
tional Cauchy systems, i.e. CO time-fractional di↵usion equations associated
with a time-dependent coe�cients, are derived in [27, 50], by mean of the
variational theory. In the particular case where the spatial domain ⌦ = Rd,
an integro-di↵erential approach of this problem can be found in [3].

As for distributed order (DO) time-fractional Cauchy problems, we refer
to [26, 29, 34] for the analysis of the well-posedness issue, and to [29, 31] for
the study of the asymptotic behavior of the solution. However, in contrast
with CO or DO time-fractional equations, there is, to the best of our knowl-
edge, no result available in the mathematical literature for VO time-fractional
di↵usion equations.

Quite similarly, there is only a small number of mathematical papers
dealing with inverse problems associated with time-fractional di↵usion pro-
cesses, which are listed below. In the one-dimensional case, [9] proves simul-
taneous determination of the constant fractional di↵erential order and the
time-independent di↵usion coe�cient by Dirichlet boundary measurements
of the solution. In dimension 2 or greater, [17] determines the constant frac-
tional order from measurements at one point of the solution over the entire
time span. In [12, 43], the time-varying factor in the source term or in the
zeroth order coe�cient is stably determined by pointwise observation of the
solution. For half-order fractional di↵usion equations, the zeroth order coef-
ficient is stably reconstructed in [8, 49], with the aid of a Carleman estimate.
In [42] the authors determine an unknown boundary condition in a time-
fractional Cauchy problem and in [35] they recover an unknown semilinear
term in a time-fractional reaction-di↵usion equation. We also mention that a
unique continuation result for CO time-fractional di↵usion equations can be
found in [7, 32].

As for multiple CO time-fractional systems, we refer to [28], claiming
unique determination of the number of time-fractional derivatives with the
corresponding di↵erential orders and several spatially varying coe�cients.
Finally, in [23], general space-dependent coe�cients defined on a Riemanian
manifold, along with the Riemanian metric, are simultaneously recovered by
the partial Dirichlet-to-Neumann map taken at one arbitrarily fixed time.

1.4. Main results

The first result of this paper is given for a Lipschitz continuous bounded
domain ⌦. It establishes the existence, the uniqueness and the regularity
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properties of the weak solution to the initial-boundary value problem (1.4)
in the sense of Definition 2.2 below.

As a preliminary we introduce the following notations, used throughout
the entire text. The interval (0, T ] (resp., [0, T ]) should be understood as
(0,+1) (resp., [0,+1)) for the case of T = +1. Next we define the contour
in C,

�(", ✓) := ��(", ✓) [ �0(", ✓) [ �+(", ✓), (1.5)

oriented in the counterclockwise direction, where for every (", ✓) 2 (0, 1) ⇥�
⇡
2

,⇡
�
,

�
0

(", ✓) := {"ei� ; � 2 [�✓, ✓]} and �±(", ✓) := {se±i✓; s 2 [",+1)}, (1.6)

and the two copies of the ± sign in the above identity must both be replaced
in the same way. Furthermore, we denote by Aq the self-adjoint realization in
L2(⌦) of the operatorAq with the homogeneous Dirichlet boundary condition
and for p 2 C \ R�, (Aq + ⇢(x)p↵(x))�1 is the resolvent operator of Aq +

⇢(x)p↵(x). Henceforth, the notation hti stands for (1 + t2)
1

2 .
Then the existence and uniqueness result of a weak solution to (1.4) is

as follows.

Theorem 1.1. Suppose that (1.1) and (1.2) are fulfilled. Let u
0

2 L2(⌦).
We assume that f 2 L1(0, T ;L2(⌦)) \ C((0, T ], L2(⌦)) in the case of T <
+1, and f 2 C((0,+1), L2(⌦)) satisfies hti�⇣f 2 L1(R

+

;L2(⌦)) with some
⇣ 2 R

+

in the case of T = +1. Then there exists a unique weak solution
u 2 C((0, T ];L2(⌦)) to (1.4), which is expressed by

u(t) = u(t, ·) = S
0

(t)u
0

+

Z t

0

S
1

(t� ⌧)f(⌧)d⌧ + S
2

f(t), t 2 (0, T ], (1.7)

where we set

S
0

(t) :=
1

2i⇡

Z

�(",✓)

etp(Aq + ⇢(x)p↵(x))�1⇢(x)p↵(x)�1 dp,

S
1

(t) :=
1

2i⇡

Z

�(",✓)

etp(Aq + ⇢(x)p↵(x))�1 dp

and

S
2

 :=
1

2i⇡

Z

�(",✓)

p�1(Aq + ⇢(x)p↵(x))�1 dp

for all  2 L2(⌦), the three above integrals being independent of the choice
of " 2 (0, 1) and ✓ 2

�
⇡
2

,⇡
�
.

Moreover, if f = 0, then the mapping u : (0, T ) �! L2(⌦) is analytic
in (0, T ).

Remark 1. If x 7! ↵(x) is constant in ⌦ then it is not hard to see that
the operator S

2

is identically zero. Therefore, (1.7) reduces to the classical
Duhamel formula

u(t) = S
0

(t)u
0

+

Z t

0

S
1

(t� ⌧)f(⌧)d⌧, t 2 (0, T ], (1.8)
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which is consistent with the representation formula of the solution presented
in [43, Theorems 2.1-2.2]. Moreover, it can be checked that (1.8) remains
valid for all ↵

0

2
�
0, 1

2

�
, provided we have ↵M 2 (↵

0

, 2↵
0

).

The second result deals with the inverse problem of determining the
unknown functions ↵, ⇢, q of the time fractional di↵usion equation in (1.4)
by partial boundary data of the solution. More precisely, we assume that @⌦
is C1,1 and

ai,j(x) = �i,j , x 2 ⌦, i, j = 1, . . . , d, (1.9)

where �i,j is equal to 1 whenever i = j, and to 0 otherwise. Then we fix
k 2 N \ {1}, where N := {1, 2, . . .}, and consider the following system
8
<

:

(⇢(x)@↵(x)t +Aq)u(t, x) = 0, (t, x) 2 (0,+1)⇥ ⌦,
u(t, x) = tkg(x), (t, x) 2 (0,+1)⇥ @⌦,
u(0, x) = 0, x 2 ⌦,

(1.10)

with suitable g. Given two non empty subsets S
in

and S
out

of @⌦, we introduce
the following boundary operator

N↵,⇢,q(t) : Hin

3 g 7! @⌫ug(t, ·)|S
out

, t 2 (0,+1), (1.11)

where H
in

:= {g 2 H3/2(@⌦); supp g ⇢ S
in

}. Here by ug we denote a unique
solution in C([0,+1);H2(⌦)) to (1.10), whose existence is guaranteed by
Proposition 3.1 stated below, ⌫ is the outward normal unit vector to @⌦, and
@⌫ug(t, x) := rug(t, x) · ⌫(x) for (t, x) 2 (0,+1)⇥ @⌦.

We discuss the uniqueness in the inverse problem of determining the co-
e�cients (↵, ⇢, q) from the knowledge of the boundary operators
{N↵,⇢,q(tn); n 2 N} associated with a time sequence tn, n 2 N fulfilling

the set {tn; n 2 N} has an accumulation point in (0,+1). (1.12)

Moreover we assume that ⌦, S
in

and S
out

satisfy the following conditions.

(i) Case: d = 2.
It is required that @⌦ is composed of a finite number of smooth closed
contours. In this case, we choose S

in

= S
out

:= �, where � is any arbi-
trary non-empty relatively open subset of @⌦, and the set of admissible
unknown functions reads

E
2

:=
�
(↵, ⇢, q); ↵ 2 W 1,r(⌦) and ⇢ 2 W 1,r(⌦) fulfill (1.3) and

q 2 W 1,r(⌦;R
+

) with r 2 (2,+1)
 
.

(ii) Case: d > 3.
We choose x

0

2 Rd outside the convex hull of ⌦. Then we assume that

{x 2 @⌦; (x� x
0

) · ⌫ > 0} ⇢ S
in

and {x 2 @⌦; (x� x
0

) · ⌫ 6 0} ⇢ S
out

.

Furthermore we define the set of admissible unknown functions by

E
d

:= {(↵, ⇢, q); ↵ 2 L

1(⌦) and ⇢ 2 L

1(⌦) fulfill (1.3) and q 2 L

1(⌦;R+)} .

The uniqueness result for our inverse coe�cients problem is as follows.
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Theorem 1.2. Let tn, n 2 N fulfill (1.12) and assume that either (i) or (ii)
is satisfied. If

N↵
1

,⇢
1

,q
1

(tn) = N↵
2

,⇢
2

,q
2

(tn), n 2 N, (↵j , ⇢j , qj) 2 Ed, j = 1, 2, (1.13)

then we have (↵
1

, ⇢
1

, q
1

) = (↵
2

, ⇢
2

, q
2

).

We stress out that the statement of Theorem 1.2 remains valid upon
replacing the polynomial time-varying part t 7! tk of the boundary condition
in (1.10) by any function t 7! h(t) that is analytic in (0,+1), and whose
Laplace transform, defined for all p 2 C

+

:= {z 2 C; Rz > 0} by H(p) :=R
+1
0

e�pth(t) dt, admits a holomorphic extension to C \R�, still denoted by
H, fulfilling the following condition:

9C > 0, 9" > 0, |H(z)|  C |z|�(2+")
, z 2 C \ R�.

This can be checked from the proof of Theorem 1.2, displayed in Section 3.2.

1.5. Comments and outline

As was already mentioned above, the present paper is, to our best knowledge,
the first mathematical work dealing with existence and uniqueness results of
a weak solution to time-fractional Cauchy systems of space-dependent order.
Such a weak solution is defined by Definition 2.2, which was inspired by [24,
Definition 1.1]. In the particular case where the mapping x 7! ↵(x) is constant
in ⌦, it turns out that these two definitions are equivalent (see also Remark 1).
Moreover, it can be checked that Definition 2.2 is equivalent to [48, Definition
4.1]. Nevertheless, we believe that the formulation of Definition 2.2, arising
from the Laplace decomposition of (1.4), is more natural than the one of [48,
Definition 4.1], which is based on an abstract integral equation. Finally, we
point out that Definition 2.2 applies without change to DO time-fractional
di↵usion equations (see [29, Definition 1.1]).

In Theorem 1.1 we prove existence and uniqueness of the weak solution
to (1.4), by applying the Brownwich-Mellin formula to the Laplace transform
of the expected solution. This step requires that the non self-adjoint operators
⇢�1Aq + p↵, for p 2 C \ R�, be boundedly invertible in L2(⌦; ⇢dx) and that
their resolvent operator be appropriately estimated as in Proposition 2.1.
This technical estimation is the main di↵erence with the analysis carried
out for CO or DO time-fractional Cauchy systems in e.g., [29, 43]. Indeed,
CO (resp., DO) time-fractional di↵usion equations with time-independent
elliptic operator ⇢�1Aq decompose into a family of CO (resp. DO) time-
fractional ordinary di↵erential equations, obtained by projection onto the
eigenspaces of ⇢�1Aq, which are explicitly solvable in terms of the Mittag-
Le✏er functions (resp., suitable special functions associated with the density
function appearing in the DO), see e.g., [43, Theorems 2.1 and 2.2] (resp.,
[29, Proposition 2.1]). Obviously, this is no longer true when x 7! ↵(x) is
non-constant, which makes the analysis of the well-posedness of VO time-
fractional Cauchy problems technically more challenging than the one of CO
or DO time-fractional Cauchy systems.
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The method carried out in this paper for the analysis of the forward
problem under investigation, is powerful enough to show that the weak solu-
tion is analytic with respect to the time variable, which is a cornerstone in
the derivation of unique identification result stated in Theorem 1.2. This is
all the more remarkable given that the strategy developed in [50] for build-
ing variational solutions to CO time-fractional di↵usion equations does not
seem to work for VO time-fractional Cauchy problems, and that the integro-
di↵erential approach implemented in [3] is not applicable to time-fractional
Cauchy problems with a general elliptic operator defined on a bounded do-
main, such as ⇢�1Aq.

Notice from (1.7) that the weak solution to (1.4) is not represented by
the classical Duhamel formula, as the right hand side of (1.7) is the super-
position of three terms. The two first terms are the usual expressions arising
from the initial state u

0

and the forcing term f , and they are similar the
ones appearing in the representation of the weak solution to CO or DO time-
fractional Cauchy systems, see [43, Theorems 2.1 and 2.2] and [29, Proposition
2.1]. In the case of VO time-fractional Cauchy problems, there is an additional
term (denoted by S

2

f in (1.7)) appearing in the representation formula of
the weak solution. As already noted in Remark 1, this additional term is uni-
formly zero when x 7! ↵(x) is constant in ⌦. Moreover, we can also prove that
the operator S

2

vanishes for all fractional orders ↵ : ⌦ ! [↵
0

,↵M ] ⇢ (0, 1)
such that ↵

0

2
�
0, 1

2

�
and ↵M 2 (↵

0

, 2↵
0

). This suggests that the occurence
of a non-vanishing operator S

2

in (1.7) is tied to a su�ciently large mag-
nitude of variation of ↵, indicating that the non-standard Duhamel formula
(1.7) is an e↵ect of the x-dependency of the fractional order.

The paper is organized as follows. In Section 2, we discuss the well-
posedness of the initial-boundary value problem (1.4). More precisely, the
weak solution to the VO time-fractional di↵usion equation appearing in (1.4),
is defined in Section 2.2, and Section 2.3 proves Theorem 1.1, which is by
means of a technical resolvent estimate of the elliptic part of the di↵usion
equation given in Section 2.1. The proof of the statement of Remark 1 can
be found in Section 2.4. The analysis of the inverse problem of identifying
the three unknown functions ↵, ⇢ and q in the first line of (1.4) by partial
boundary data is carried out in Section 3. That is, the partial boundary
operators (1.11) are rigorously defined in Section 3.1, and Section 3.2 provides
the proof of Theorem 1.2.
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2. Analysis of the forward problem

2.1. Elliptic operator: self-adjointness and resolvent estimate

Let A
0

be the operator generated by the quadratic form

a
0

(u) :=
dX

i,j=1

Z

⌦

ai,j(x)@xiu(x)@xju(x)dx, u 2 H1

0

(⌦).

Since there exists a constant c̃
0

> 0 such that

a
0

(u) > c
0

kruk2L2

(⌦)

d > c̃
0

kuk2H1

(⌦)

, u 2 H1

0

(⌦), (2.1)

by (1.1) and the Poincaré inequality, the operator A
0

is self-adjoint in L2(⌦)
and acts as A

0

on its dense domain D(A
0

) in L2(⌦), that is, A
0

u = A
0

u for
all u 2 D(A

0

).
Put r := 2/(� 2) and notice from the Hölder inequality that

kqukL2

(⌦)

6 kqkL(⌦)

kukLr
(⌦)

, u 2 Lr(⌦). (2.2)

Furthermore we have H1(⌦) = W 1,2(⌦) ⇢ W r
0

,r(⌦) with r
0

:= 1 �
d/ 2 (0, 1) by the Sobolev embedding theorem (e.g., [16, Theorem 1.4.4.1]),
and the embedding is continuous:

9c > 0, kukW r
0

,r
(⌦)

6 ckukH1

(⌦)

, u 2 H1(⌦). (2.3)

Therefore, by (2.2)-(2.3), we have kqukL2

(⌦)

6 ckqkL(⌦)

kukH1

(⌦)

for every
u 2 H1(⌦), and so it follows from (2.1) that

kquk2
L

2(⌦) 6
c

2kqk2
L

(⌦)

c̃

2
0

hA0u, ui
L

2(⌦)

6
c

2kqk2
L

(⌦)

2c̃20

�
"kA0uk2

L

2(⌦) + "

�1kuk2
L

2(⌦)

�
, u 2 D(A0), " 2 (0,+1).

Thus, taking " > 0 so small that "c2kqk2L(⌦)

< 2c̃2
0

, we see that the multiplier

by q in L2(⌦) is A
0

-bounded with relative bound zero. As a consequence,
Aq := A

0

+ q is self-adjoint in L2(⌦) with domain D(Aq) = D(A
0

) by the
Kato-Rellich theorem (see e.g., [21, Theorem V.4.3], [39, Theorem X.12]).
Moreover Aq acts as Aq on D(Aq) = D(A

0

).
In this article, we suppose (1.2) in such a way that Aq > c̃

0

in the opera-
tor sense, where c̃

0

is the constant appearing in (2.1). This hypothesis is quite
convenient for proving Proposition 2.1 below stated, which is essential for the
proof of Theorem 1.1 and Proposition 3.1, but it could be removed at the
price of greater unessential technical di�culties. Nevertheless, for simplicity,
we shall not go further into this direction.

In what follows B(X,Y ) denotes the Banach space of all the bounded
linear operators from a Banach space X to another Banach space Y , and we
set B(X) := B(X,X).

Proposition 2.1. For all p 2 C \ R�, the operator Aq + ⇢(x)p↵(x) is bound-

edly invertible in L2(⌦) and (Aq + ⇢(x)p↵(x))�1 maps L2(⌦) into D(A
0

).
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Moreover, we have
���(Aq + ⇢(x)r↵(x)ei�↵(x))�1

���
B(L2

(⌦))

6 C(r,�) max
j=0,M

r�↵j , r 2 (0,+1), � 2 (�⇡,⇡) (2.4)

with

C(r,�) :=

⇢
2⇢�1

0

, if |�| 6 ✓⇤(r),
⇢�1

0

c⇤(�), otherwise,
(2.5)

and

✓⇤(r) := ↵�1

M min
�=±1

arctan

✓
⇢
0

3⇢M
r�(↵M�↵

0

)

◆
, c⇤(�) := max

j=0,M
| sin(↵j�)|�1.

(2.6)
Furthermore the mapping p 7! (Aq + ⇢(x)p↵(x))�1 is bounded holomorphic in
C \ R� as operator with values in B(L2(⌦)).

Proof. 1) Let us first establish (2.4). We shall do it only for r 2 [1,+1),
because the corresponding estimate for r 2 (0, 1) can be derived in the same
way. We examine the two cases |�| 2 (✓⇤(r),⇡) and |�| 2 (0, ✓⇤(r)] separately.

a) We start by assuming that � 2 (0,�⇤(r)), the case of � 2 (�⇡,��⇤(r))
being similarly treated. For p = rei� , let Bq,p be the self-adjoint part of the
operator Aq + ⇢(x)p↵(x), i.e.,

Bq,p := Aq + ⇢(x)r↵(x) cos(�↵(x)). (2.7)

Since the multiplication operator by ⇢(x)r↵(x) cos(�↵(x)) is bounded (by
⇢Mr↵M ) in L2(⌦), the Kato-Rellich theorem ensures us that Bq,p is self-
adjoint in L2(⌦), with domain D(Bq,p) = D(Aq) = D(A

0

).
Next we define the multiplication operator U� in L2(⌦) by U�f(x) =

u�(x)f(x) for all f 2 L2(⌦), where

u�(x) :=
⇣
⇢(x)r↵(x) sin(�↵(x))

⌘
1/2

, x 2 ⌦. (2.8)

Evidently iU2

� is the skew-adjoint part of the operator Aq + ⇢(x)p↵(x), so we
have

Aq + ⇢(x)p↵(x) = Bq,p + iU2

� , (2.9)

in virtue of (2.7). Further, putting m� := minj=0,M sin(↵j�), we get that

0 < ⇢
1/2
0

m
1/2
� r↵0

/2 6 u�(x) 6 ⇢
1/2
M r↵M/2, x 2 ⌦.

Therefore the self-adjoint operator U� is bounded and boundedly invertible
in L2(⌦), with

kU�1

� kB(L2

(⌦))

6 ⇢
�1/2
0

m
�1/2
� r�↵0

/2. (2.10)

Moreover, since U�1

� , self-adjoint and bounded in L2(⌦), has a closed image
and finite dimensional (actually, trivial) kernel, then [18, Corollary 2] entails
that the linear operator U�1

� Bq,pU
�1

� , endowed with domainD(U�1

� Bq,pU
�1

� )
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:= U�D(A
0

), is self-adjoint1 in L2(⌦). Its spectrum �(U�1

� Bq,pU
�1

� ) is thus

real, i.e. �(U�1

� Bq,pU
�1

� ) ⇢ R, so the operator U�1

� Bq,pU
�1

� + i is invertible

in L2(⌦) and we have

k(U�1

� Bq,pU
�1

� + i)�1kB(L2

(⌦))

6 dist
⇣
�i,�(U�1

� Bq,pU
�1

� )
⌘�1

6 1, (2.11)

by [21, Section V.3.5, Eq. (3.16)]. Now, recalling (2.9), we get that Aq +

⇢(x)p↵(x) = U�

⇣
U�1

� Bq,pU
�1

� + i
⌘
U� , hence Aq + ⇢(x)p↵(x) is invertible in

L2(⌦), with

(Aq + ⇢(x)p↵(x))�1 = U�1

� (U�1

� Bq,pU
�1

� + i)�1U�1

� .

As a consequence, (Aq+⇢(x)p↵(x))�1 maps L2(⌦) into U�1

� D(U�1

� Bq,pU
�1

� ) =
D(A

0

) and we infer from (2.10)-(2.11) that

k(Aq + ⇢(x)p↵(x))�1kB(L2

(⌦))

6 k(U�1

� Bq,pU
�1

� + i)�1kB(L2

(⌦))

kU�1

� k2B(L2

(⌦))

6 ⇢�1

0

m�1

� r�↵0 ,

which is the claim of (2.4) for |�| 2 (✓⇤(r),⇡).
b) Let us now address the case of |�|  ✓⇤(r). Since r 2 [1,+1)

by assumption, it holds true that ↵M✓⇤(r) = arctan(⇢
0

⇢�1

M r�(↵M�↵
0

)/3) 2
(0,⇡/6). Therefore we have simultaneously cos(↵M✓⇤(r))/3 = ⇢�1

0

⇢Mr↵M�↵
0

⇥ sin(↵M✓⇤(r)) and 2 cos(↵M✓⇤(r))/3 > 1/
p
3 > 1/2, whence

cos(↵M✓⇤(r)) >
1

2
+ ⇢�1

0

⇢Mr↵M�↵
0 sin(↵M✓⇤(r)). (2.12)

Next, as ↵(x)|�| 6 ↵M✓⇤(r) < ⇡/2, we have cos(↵(x)�) > cos(↵M✓⇤(r))
> 0. From this, (1.1)-(1.2) and (2.10), we get that Bq,p > ⇢

0

r↵0 cos(↵M✓⇤(r))
in the operator sense. Therefore Bq,p is boundedly invertible in L2(⌦) and

kB�1

q,pkB(L2

(⌦))

6 ⇢�1

0

r�↵0

cos(↵M✓⇤(r))
. (2.13)

Similarly, since | sin(↵(x)�)| 6 sin(↵M✓⇤(r)), we infer from (2.8) that

kU�kB(L2

(⌦))

6 ⇢
1/2
M r↵M/2 sin(↵M✓⇤(r))

1/2,

where we recall that U� is the multiplication operator in L2(⌦) by the func-
tion u� defined in (2.8). This and (2.13) yield

kB�1

q,pU
2

�kB(L2

(⌦))

6 kB�1

q,pkB(L2

(⌦))

kU�k2B(L2

(⌦))

6 ⇢�1

0

⇢Mr↵M�↵
0 tan(↵M✓⇤(r)) < 1.

1This can be directly deduced from the self-adjointness of the operators U±1
�

and B
q,p

, and

from the boundedness of U±1
�

, in L2(⌦). But, in order to avoid the inadequate expense

of the size of this article, we rather establish this claim by invoking a stronger result
established by S. S. Holland in [18].
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Furthermore, bearing in mind that Aq+⇢(x)p↵(x) = Bq,p(I+iB�1

q,pU
2

�), where

I denotes the identity operator in L2(⌦), we find that Aq + ⇢(x)p↵(x) is
invertible in L2(⌦), with

k(A
q

+ ⇢(x)p↵(x))�1kB(L2(⌦)) 6
kB�1

q,p

kB(L2(⌦))

1� kB�1
q,p

U

2
�

kB(L2(⌦))

6 ⇢

�1
0 r

�↵

0

cos(↵
M

✓⇤(r))� ⇢

�1
0 ⇢

M

r

↵M�↵

0 sin(↵
M

✓⇤(r))
.

From this and (2.12) it then follows that k(Aq + ⇢(x)p↵(x))�1kB(L2

(⌦))

<

2⇢�1

0

r�↵0 , which entails (2.4) when |�|  ✓⇤(r).

2) We turn now to proving that p 7! (Aq + ⇢(x)p↵(x))�1 is bounded
holomorphic in C \ R�. To this purpose, we introduce the closed sequilinear
form

aq,p(u) := a
0

(u) +

Z

⌦

(q(x) + ⇢(x)p↵(x))|u(x)|2dx, u 2 H1

0

(⌦),

which is associated with the operator Aq + ⇢(x)p↵(x) in L2(⌦). In light of
(1.2) and (2.1), we have

Raq,p(u) >
✓
c̃
0

� ⇢M max
j=0,M

|p|↵j

◆
kuk2L2

(⌦)

and

Iaq,p(u) 6
✓
⇢M max

j=0,M
|p|↵j

◆
kuk2L2

(⌦)

for all u 2 H1

0

(⌦), involving that aq,p is sectorial for every p 2 C \ R�. Here
and henceforth R and I mean the real part and the imaginary part of a
complex number under consideration, respectively.

Moreover, since p 7! aq,p(u) is holomorphic in C\R�, {aq,p; p 2 C\R�}
is an analytic family of sesquilinear forms of type (a) in the sense of Kato
(see [21, Section VII.4.2]). Thus [21, Theorem VII.4.2] yields that {Aq +
⇢(x)p↵(x); p 2 C \ R�} is an analytic family of operators. Therefore p 7!
(Aq + ⇢(x)p↵(x))�1 is holomorphic in C \R�, by [21, Theorem VII.1.3]. And
the proof of Proposition 2.1 is complete. ⇤

We point out that ✓⇤(r) behaves likes min�=±1

r�(↵M�↵
0

) as r becomes
either su�ciently small or su�ciently large (that is, like r�(↵M�↵

0

) as r ! 0,
and like r(↵M�↵

0

) as r ! +1). Indeed, bearing in mind that arctanu =
R u

0

dv
1+v2

for all u 2 [0,+1), we see that arctanu 2
h

u
1+u2

, u
i
, and so we infer

from (2.6) that

⇢

0

3⇢M
min

�=±1 r
�(↵M�↵

0

)

1 +
⇢

2

0

9⇢2M
min

�=±1 r
2�(↵M�↵

0

)
6 ↵

M

✓⇤(r) 6 ⇢0

3⇢
M

min
�=±1

r

�(↵M�↵

0

)
, r 2 (0,+1).
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Since min�=±1

r�(↵M�↵
0

) 2 (0, 1], the denominator of the left-hand side of

the above inequality is majorized by 1 + ⇢2
0

9⇢2M
6 10

9

, so that we have

3⇢
0

10⇢M
min
�=±1

r�(↵M�↵
0

) 6 ↵M✓⇤(r) 6
⇢
0

3⇢M
min
�=±1

r�(↵M�↵
0

), r 2 (0,+1).

Therefore it follows readily from (2.5)-(2.6) and the inequality sinu > u
2

for
all u 2 [0, 1] that

C(r,�) 6 ⇢

�1
0

✓
sin

✓
3↵0⇢0

10↵
M

⇢

M

min
�=±1

r

�(↵M�↵

0

)

◆◆�1

6 20↵
M

⇢

M

3↵0⇢
2
0

max
�=±1

r

�(↵M�↵

0

)
,

when r is su�ciently close to either 0 or +1. As a consequence, there exists
a constant C > 0, which is independent of r and � such that we have

C(r,�) 6 C max
�=±1

r�(↵M�↵
0

), r 2 (0,+1), � 2 (�⇡,⇡). (2.14)

2.2. Weak solution

Let S 0(R;L2(⌦)) be the space dual to S(R;L2(⌦)). We denote by
S 0(R

+

;L2(⌦)) := {v 2 S 0(R;L2(⌦)); supp v ⇢ [0,+1) ⇥ ⌦} the set of dis-
tributions in S 0(R;L2(⌦)) supported in [0,+1) ⇥ ⌦. Otherwise stated, v 2
S 0(R;L2(⌦)) lies in S 0(R

+

;L2(⌦)) if and only if hv,'iS0
(R;L2

(⌦)),S(R;L2

(⌦))

= 0

whenever ' 2 S(R;L2(⌦)) vanishes in R
+

⇥ ⌦. As a consequence, for a.e.
x 2 ⌦, we have

hv(·, x),'iS0
(R),S(R) = hv(·, x), iS0

(R),S(R), ', 2 S(R), (2.15)

provided ' =  in R
+

. Furthermore we say that ' 2 S(R
+

) if ' is the
restriction to R

+

of a function '̃ 2 S(R). Then we set

x 7! hv(·, x),'iS0
(R

+

),S(R
+

)

:= x 7! hv(·, x), '̃iS0
(R),S(R), v 2 S 0(R

+

;L2(⌦)).
(2.16)

Notice from (2.15) that '̃ may be any function in S(R) such that '̃(t) = '(t)
for all t 2 R

+

.
For p 2 C

+

, we put

ep(t) := exp(�pt), t 2 R
+

.

Evidently, ep 2 S(R
+

). For v 2 S 0(R
+

;L2(⌦)), we define the Laplace trans-
form L[v] in t of v by

L[v](p) := x 7! hv(·, x), epiS0
(R

+

),S(R
+

)

, p 2 C
+

,

and notice that p 7! L[v](p) 2 C1(C
+

;L2(⌦)). Having seen this, we define
the weak solution to (1.4) as follows.

Definition 2.2. Let u
0

2 L2(⌦). For T < +1, we assume that
f 2 L1(0, T ;L2(⌦)) and, for T = +1, we assume that there exists m 2 N
such that (1 + t)�mf 2 L1(R

+

;L2(⌦)). We say that u is a weak solution to
(1.4) if u is the restriction to Q of a distribution v 2 S 0(R

+

;L2(⌦)) and the
Laplace transform V := L[v] verifies

V (p) =
⇣
Aq + ⇢(x)p↵(x)

⌘�1

⇣
F (p) + ⇢(x)p↵(x)�1u

0

⌘
, p 2 (0,+1). (2.17)



Variable Order Fractional Di↵usion 13

Here F (p) := L[f(t, ·)1
(0,T )

(t)](p) =
R T

0

e�ptf(t, ·)dt, where 1I denotes the
characteristic function of a set I ⇢ R.

Remark 2. Notice from (2.17) and Proposition 2.1 that V (p) 2 D(Aq) =
D(A

0

) ⇢ H1

0

(⌦) for all p 2 (0,+1), which entails that V (p) = 0 on @⌦.
Actually it is clear that (2.17) can be equivalently replaced by the condition

⇢
(Aq + ⇢(x)p↵(x))V (p) = F (p) + ⇢(x)p↵(x)�1u

0

, in ⌦,
V (p) = 0, on @⌦

for all p 2 (0,+1).

Remark 3. For all h 2 C1(R+) such that

"
0

:= inf

⇢
" 2 (0,+1); e�"t

dkh(t)

dtk
2 L1(R+), k = 0, 1

�
2 R

+

,

we know from [38, Eq. (2.140)] that

L[@↵(x)h](p) = p↵(x)H(p)� p↵(x)�1h(0), p 2 ("
0

,+1),

where H(p) := L[h](p) =
R
+1
0

e�pth(t)dt. Therefore, in the particular case
where the mapping x 7! ↵(x) is constant, we infer from [43, Theorems 2.1
and 2.2] that the initial-boundary value problem (1.4) admits a unique weak
solution to (1.4) in the sense of Definition 2.2, provided u

0

and f are su�-
ciently smooth.

2.3. Proof of Theorem 1.1

Since the first line of (1.4) is a linear PDE, we may invoke the superposition
principle and divide the proof into two independent parts: In the first one,
which is concerned with S

0

, we assume that f = 0, while in the second one,
dealing with the operators S

1

and S
2

, we take u
0

= 0 in (1.4).

2.3.1. Case f = 0. The construction of S
0

is rather lengthy and consists of
a succession of three lemmas. Prior to starting the proof we put

W (p) := p�2(Aq + ⇢(x)p↵(x))�1⇢(x)p↵(x)�1u
0

, p 2 C \ R�,

and then state the first lemma as follows.

Lemma 2.3. The function

w(t) :=
1

2i⇡

Z
1+i1

1�i1
etpW (p)dp,

is well defined for all t 2 R. Moerover it satisfies:

L[w](p) = W (p), p 2 {z 2 C; Rz 2 (1,+1)}. (2.18)

Proof. For µ 2 [1,+1), we infer from (2.4) that

kW (µ+ i⌘)kL2

(⌦)

6 C(r,�)⇢M |µ+ i⌘|�3+↵M�↵
0 , ⌘ 2 R, (2.19)
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where C(r,�) is given by (2.5)-(2.6) with r = |µ + i⌘| 2 [1,+1) and � =
arg(µ + i⌘) 2

�
�⇡

2

, ⇡
2

�
. According to (2.14), there exists a constant C =

C(↵
0

,↵M , ⇢
0

, ⇢M ) such that

C(r,�) 6 C|µ+ i⌘|↵M�↵
0 , µ 2 [1,+1), ⌘ 2 R.

Thus (2.19) yields

kW (µ+ i⌘)kL2

(⌦)

6 Ch⌘i�3+2(↵M�↵
0

), µ 2 [1,+1), ⌘ 2 R, (2.20)

upon substituting C for ⇢MC. As a consequence, we have for each k = 1, 2,

Ck := sup
µ2[1,+1)

kW (µ+ i·)kLk
(R;L2

(⌦))

= sup
µ2[1,+1)

✓Z

R
kW (µ+ i⌘)kkL2

(⌦)

d⌘

◆ 1

k

< 1, (2.21)

and hence

!(t) :=
1

2i⇡

Z i1

�i1
etpW (p+ 1)dp =

1

2⇡

Z
+1

�1
eit⌘W (1 + i⌘)d⌘ (2.22)

is well defined for all t 2 R. Moreover the mapping p 7! etpW (p + 1) is
holomorphic in C \ (�1,�1] by Proposition 2.1, and so we infer from the
Cauchy formula that

!(t) =
1

2i⇡

Z s+i1

s�i1
etpW (p+ 1)dp, s 2 (0,+1). (2.23)

Indeed, for all R 2 (1,+1) and s 2 (0,+1), we have

Z s+iR

s�iR

etpW (p+ 1)dp�
Z iR

�iR

etpW (p+ 1)dp

=
X

�=±1

�

Z s

0

et(µ+i�R)W (µ+ 1 + i�R)dµ (2.24)

from the Cauchy formula, and
����
Z s

0

et(µ+i�R)W (µ+ 1 + i�R)dµ

����
L2

(⌦)

6 Csmax(1, est)hRi�3+2(↵M�↵
0

), � = ±1,

by (2.20). Hence (2.23) follows by letting R to +1 in (2.24). Next, in view
of (2.23), we obtain that

k!(t)kL2

(⌦)

=
1

2⇡

����
Z

R
et(s+i⌘)W (s+ 1 + i⌘)d⌘

����
L2

(⌦)

6 est

2⇡
sup

µ2[1,+1)

kW (µ+ i·)kL1

(R;L2

(⌦))



Variable Order Fractional Di↵usion 15

for all t 2 R and s 2 (0,+1), and consequently that

k!(t)kL2

(⌦)

6 C
1

2⇡
ets (2.25)

according to (2.21). Now, letting s to +1 on the right-hand side of (2.25),
we have !(t) = 0, t 2 (�1, 0). Similarly, by letting s to 0 in (2.25), we
find that k!(t)kL2

(⌦)

6 C
1

2⇡ for all t 2 [0,+1). Therefore, we have ! 2
L1(R;L2(⌦)) \ S 0(R

+

;L2(⌦)), and since p 7! W (p + 1) is holomorphic in
C

+

, we infer from (2.21) with k = 2, (2.22), Theorem 19.2 and the following
remark in [41] that L[!](p) = W (p+1) for all p 2 C

+

. As a consequence, the
function

w(t) = et!(t) =
1

2i⇡

Z i1

�i1
et(p+1)W (p+1)dp =

1

2i⇡

Z
1+i1

1�i1
etpW (p)dp, t 2 R

verifies L[w](p) = L[!](p � 1) = W (p) for all p 2 {z 2 C; Rz 2 (1,+1)}.
This establishes (2.18) and terminates the proof of Lemma 2.3. ⇤

Further we deduce from (2.4)–(2.6) that

kW (1 + i⌘)kL2

(⌦)

6 ⇢�1

0

max
⇣
2, c⇤

⇣⇡
4

⌘⌘
h⌘i�3+↵M�↵

0 , ⌘ 2 R \ (�1, 1),

and from (2.21) with k = 1 that the mapping ⌘ 7! (1 + i⌘)W (1 + i⌘) 2
L1(R;L2(⌦)). Therefore we have

y(t) := @tw(t) =
1

2i⇡

Z
1+i1

1�i1
etppW (p)dp, t 2 R (2.26)

by the very definition of w in Lemma 2.3, and

L[y](p) = pL[w](p) = pW (p), p 2 {z 2 C; Rz 2 (1,+1)} (2.27)

from (2.18). Let us now collect several useful properties of y in the following:

Lemma 2.4. For any " 2 (0, 1) and ✓ 2
�
⇡
2

,⇡
�
, it holds true that

y(t) =
1

2i⇡

Z

�(",✓)

etppW (p)dp, t 2 R
+

, (2.28)

where �(", ✓) is defined by (1.5)-(1.6). As a consequence we have
y 2 S 0(R

+

;L2(⌦)).

Proof. The proof of (2.28) boils down to (2.26) and the analyticity of the
mapping p 7! etppW (p) in C \R�, arising from Proposition 2.1. This can be
seen by applying the Cauchy formula upon taking advantage of the fact that

lim
⌘!+1

Z
1±i⌘

⌘((tan ✓)�1±i)

etppW (p)dp = 0, t 2 R
+
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in L2(⌦). Indeed, for any su�ciently large ⌘ 2 (1,+1) and all t 2 R
+

,
(2.4)–(2.6) yield

�����

Z
1±i⌘

⌘((tan ✓)�1±i)

etppW (p)dp

�����
L2

(⌦)

=

�����

Z
1

⌘(tan ✓)�1

et(µ±i⌘)(µ± i⌘)W (µ± i⌘)dµ

�����
L2

(⌦)

6 Cet(1� ⌘(tan ✓)�1)⌘�2+↵M�↵
0ku

0

kL2

(⌦)

for some positive constant C depending only on ✓, ↵
0

, ↵M , ⇢
0

and ⇢M .
We turn now to showing that y 2 S 0(R

+

;L2(⌦)). We proceed by es-
timating the right-hand side of (2.28). First, by performing the change of
variable p = "ei� with � 2 (�✓, ✓) in the integral

R
�
0

(",✓)
etppW (p)dp, we

derive from (2.4) and (2.14) that
�����

Z

�
0

(",✓)

etppW (p)dp

�����
L2

(⌦)

6 ⇢M

 Z ✓

�✓
C(",�)et" cos �d�

!
"�(1+↵M�↵

0

)ku
0

kL2

(⌦)

6 Cet""�(1+2(↵M�↵
0

))ku
0

kL2

(⌦)

, t 2 R
+

. (2.29)

Next, (2.5)-(2.6) yield the existence of a positive constant C✓ depending only
on ↵

0

, ↵M , ⇢
0

, ⇢M , and ✓, such that the estimate C(r, ✓) 6 C✓ holds uniformly
in r 2 (0,+1). Then it follows from (2.4) that

�����

Z

�±(",✓)

etppW (p)dp

�����
L2

(⌦)

6 ⇢MC✓

✓Z
1

"

r�(2+↵M�↵
0

)dr +

Z
+1

1

r�(2�(↵M�↵
0

))dr

◆
ku

0

kL2

(⌦)

6 ⇢MC✓
1 + ↵M � ↵

0

✓
"�(1+↵M�↵

0

) +
2

1� (↵M � ↵
0

)

◆
ku

0

kL2

(⌦)

. (2.30)

Now, taking " = t�1 2 (0, 1) in (2.29)-(2.30), we deduce from (1.5) and (2.28)
that

ky(t)kL2

(⌦)

6 Ct1+2(↵M�↵
0

)ku
0

kL2

(⌦)

, t 2 (1,+1) (2.31)

for some positive constant C depending only on ✓, ↵j and ⇢j for j = 0,M .
Similarly, by choosing " = 1/2 in (2.29)-(2.30), we find that ky(t)kL2

(⌦)

6
Cku

0

kL2

(⌦)

for all t 2 [0, 1], where C 2 (0,+1) is independent of t. Therefore
we have t 7! hti�3y(t) 2 L1(R;L2(⌦)), and consequently y 2 S 0(R

+

;L2(⌦)).
⇤

Both functions p 7! L[y](p) and p 7! pW (p) are holomorphic in C
+

,
and (2.18) entails that L[y](p) = pW (p) for all p 2 C

+

, by the unique con-
tinuation. As a consequence, v := @ty 2 S 0(R

+

;L2(⌦)) satisfies L[v](p) =
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p2W (p) = (Aq + ⇢(x)p↵(x))�1⇢(x)p↵(x)�1u
0

for every p 2 C
+

, which shows
that u := v|Q is a weak solution to (1.4) associated with f = 0. Moreover,
since u is unique, as can be seen from Definition 2.2, we are left with the task
of establishing (1.7) in the case where f = 0:

Lemma 2.5. For all t 2 (0, T ], we have:

u(t) =
1

2i⇡

Z

�(",✓)

etp(Aq + ⇢(x)p↵(x))�1⇢(x)p↵(x)�1u
0

dp.

Proof. This equality follows from Proposition 2.1 and the identity u = @ty
in (C1

0

)0(0, T ;L2(⌦)). Indeed, for all p 2 �(", ✓), the mapping t 7! etppW (p)
is continuously di↵erentiable in (0, T ), and (2.4)–(2.6) yield the existence of
a constant C = C(↵

0

,↵M , ⇢
0

, ⇢M , ✓) 2 (0,+1) such that we have

ketpp2W (p)kL2

(⌦)

6 Cetr cos ✓ max
�=±1

r�1+�(↵M�↵
0

)ku
0

kL2

(⌦)

, p = re±i✓, r 2 (",+1).

Moreover, by cos ✓ 2 (�1, 0), we see that r 7! etr cos ✓max�=±1

r�1+�(↵M�↵
0

)

2 L1(",+1) for each t 2 (0, T ], and so the integral
R
�(",✓)

etpp2W (p)dp is
well-defined. Therefore we obtain the claim of Lemma 2.5 by this and u 2
C((0, T ];L2(⌦)). ⇤

Finally, combining Lemma 2.5 with arguments similar to Lemma 3.2
below (see Subsection 3.2), we deduce that u : (0, T ) ! L2(⌦) is analytic.

2.3.2. Case u
0

= 0. As we aim for building S
1

and S
2

, we turn now to
establishing (1.7) in the case where u

0

= 0. To this purpose, we introduce
the following family of operators acting in L2(⌦),

fW (p) := p�2(Aq + ⇢(x)p↵(x))�1, p 2 C \ R�.

For any µ 2 [1,+1) and ⌘ 2 R, it follows from (2.4) and (2.14) that���fW (µ+ i⌘)
���
B(L2

(⌦))

is majorized by h⌘i�2+↵M�2↵
0 up to some multiplicative

constant that is independent of ⌘ and µ. Therefore we have

sup
µ2[1,+1)

Z

R

���fW (µ+ i⌘)
���
k

B(L2

(⌦))

d⌘ < 1, k = 1, 2.

Thus, by arguing exactly in the same way as in the first part of the proof, we
see that

S
1

(t) :=
1

2i⇡

Z
1+i1

1�i1
etppfW (p)dp, t 2 R (2.32)

lies in S 0(R
+

;B(L2(⌦))),

t 7! hti�↵MS
1

(t) 2 L1(R;B(L2(⌦))) (2.33)

and

L[S
1

 ](p) = pfW (p) , p 2 C
+

,  2 L2(⌦). (2.34)
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By f̃ we denote the extension of a function f by 0 on (R⇥⌦) \ ((0, T )⇥⌦).
We recall that there exists ⇣ 2 R

+

such that

hti�⇣ f̃ 2 L1(R;L2(⌦)), (2.35)

and consider the convolution of S
1

with f̃ , that is,

(S
1

⇤ f̃)(t, x) =
Z t

0

S
1

(t� s)f(s, x)1
(0,T )

(s)ds, (t, x) 2 R⇥ ⌦.

Evidently, (S
1

⇤ f̃)(t) = 0 for all t 2 R�, and we infer from (2.33) and (2.35)
that
���(S

1

⇤ f̃)(t)
���
L2

(⌦)

6
��hti�↵MS

1

��
L1

(R
+

;B(L2

(⌦)))

��hti�⇣f
��
L1

(R
+

;L2

(⌦))

hti1+↵M+⇣ , t 2 R
+

.

(2.36)

Therefore t 7! hti�(1+↵M+⇣)(S
1

⇤ f̃)(t) 2 L1(R;L2(⌦)), and consequently
S
1

⇤ f̃ 2 S 0(R
+

;L2(⌦)). Moreover, again by (2.33) and (2.35), we see that

inf{" 2 R
+

; e�"tS
1

2 L1(R;B(L2(⌦)))}
= inf{" 2 R

+

; e�"tf̃ 2 L1(R;L2(⌦))} = 0,

which entails

L[S
1

⇤ f̃ ](p) = L[S
1

](p)L[f̃ ](p) = L[S
1

](p)F (p), p 2 C
+

,

with L[S
1

](p) =
R
+1
0

S
1

(t)e�ptdt and L[f̃ ](p) =
R
+1
0

f̃(t)e�ptdt. Thus, set-

ting ṽ := @t(S1

⇤ f̃) 2 S 0(R
+

;L2(⌦)), we derive from (2.34) that

L[ṽ](p) = pL[S
1

⇤ f̃ ](p) = pL[S
1

](p)F (p) = (Aq + ⇢(x)p↵(x))�1F (p), p 2 C
+

.

The last step of the proof is to establish the following:

Lemma 2.6. We have:

ṽ(t) =

Z t

0

S
1

(t� ⌧)f̃(⌧)d⌧ + S
2

f̃(t), t 2 [0, T ]. (2.37)

Proof. The proof of (2.37) can be done with the aid of (2.32), yielding

(S
1

⇤ f̃)(t) = 1

2i⇡

Z t

0

Z
1+i1

1�i1
e(t�s)pp�1(Aq + ⇢(x)p↵(x))�1f̃(s)dpds, t 2 R

+

.

Indeed, we notice with a slight adaptation of the reasoning used in the deriva-
tion of (2.28) that the integral

R
1+i1
1�i1 e(t�s)pp�1(Aq + ⇢(x)p↵(x))�1f(s)dp

can be replaced on the right-hand side of the above identity by
R
�(",✓)

e(t�s)p

p�1(Aq + ⇢(x)p↵(x))�1f̃(s)dp associated with any " 2 (0, 1) and ✓ 2
�
⇡
2

,⇡
�
.

Therefore we have

(S
1

⇤ f̃)(t) = 1

2i⇡

Z t

0

Z

�(",✓)

e(t�s)pp�1(Aq + ⇢(x)p↵(x))�1f̃(s)dp ds.
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Hence, by (2.4), (2.14) and (2.35), we infer from the Fubini theorem that

(S
1

⇤ f̃)(t) = 1

2i⇡

Z

�(",✓)

gq(t, p)dp, t 2 R
+

with

gq(t, p) :=

Z t

0

e(t�s)pp�1(Aq + ⇢(x)p↵(x))�1f̃(s)ds, p 2 �(", ✓). (2.38)

Therefore, for all t 2 R
+

and all p 2 �(", ✓), we have

@tgq(t, p) =

Z t

0

e(t�s)p(Aq+⇢(x)p
↵(x))�1f̃(s)ds+p�1(Aq+⇢(x)p

↵(x))�1f̃(t),

and consequently

k@tgq(t, p)kL2

(⌦)

6
���(Aq + ⇢(x)p↵(x))�1

���
B(L2

(⌦))

✓Z t

0

esRpds+ |p|�1

◆���f̃
���
L1

(0,t+1;L2

(⌦))

.

From this and (2.4)–(2.6), it follows that

k@tgq(t, p)kL2

(⌦)

6 ⇢�1

0

max (2, c⇤(✓)) (1 + | cos ✓|�1)|p|�(1+↵
0

)

���f̃
���
L1

(0,t+1;L2

(⌦))

.

As a consequence, the mapping p 7! @tgq(t, p) 2 L1(�(", ✓);L2(⌦)) for any
fixed t 2 R

+

and we have ṽ(t) = @t[S1

⇤ f̃ ](t) = 1

2i⇡

R
�(",✓)

@tgq(t, p)dp, or

equivalently 2i⇡ṽ(t) equals
Z

�(",✓)

✓Z
t

0

e

(t�s)p(A
q

+ ⇢(x)p↵(x))�1
f̃(s)ds+ p

�1(A
q

+ ⇢(x)p↵(x))�1
f̃(t)

◆
dp

in virtue of (2.38). Now, applying the Fubini theorem to the right-hand side
of the above identity, we obtain (2.37). ⇤

In view of Lemma 2.6, the restriction to Q of the function expressed
by the right-hand side of (2.37), is a weak solution to (1.4) associated with
u
0

= 0. Evidently such a function lies in C([0, T ];L2(⌦)). Moreover it is
unique from Definition 2.2.

2.4. Proof of Remark 1

We use the notations of Section 2.3. For " 2 (0, 1), ✓ 2
�
⇡
2

,⇡
�
and R 2

[1,+1), we introduce �R(", ✓) := {z 2 �(", ✓); |z| 2 [0, R]} and put CR(✓) :=
{z 2 C; z = Rei� , � 2 [�✓, ✓]}. In light of Proposition 2.1, the Cauchy
formula yields

Z

�R(",✓)[CR(✓)�
p�1(Aq + ⇢(x)p↵(x))�1 dp = 0,  2 L2(⌦),
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where the notation CR(✓)� stands for the counterclockwise oriented path
CR(✓). Thus, by letting R to +1 in the above identity, we obtain

S
2

 = lim
R!+1

Z

CR(✓)

p�1(Aq + ⇢(x)p↵(x))�1 dp,  2 L2(⌦) (2.39)

from the definition of S
2

. Furthermore, for any R 2 [1,+1), from (2.4) and
(2.14), we have

�����

Z

CR(✓)

p�1(Aq + ⇢(x)p↵(x))�1 dp

�����
B(L2

(⌦))

6 CR↵M�2↵
0 , (2.40)

where C is a positive constant which is independent of R. Since ↵M � 2↵
0

is negative by the assumption, we have S
2

 = 0 for any  2 L2(⌦) directly
from (2.39)-(2.40). Finally (1.8) follows readily from this and (1.7).

3. Analysis of the inverse problem

In this section, we suppose that @⌦ is C1,1 and (1.9) holds, that is, A
0

= ��
and

D(A
0

) = H1

0

(⌦) \H2(⌦).

We recall for further use that the norm in H2(⌦) is equivalent to the norm
in D(A

0

) or in D(Aq).
First we prove that the boundary operatorN↵,⇢,q(t) expressed by (1.11),

is well-defined for all t 2 (0, T ].

3.1. Definition of the boundary operator

By (1.11) and the continuity of the trace operator ' 7! @⌫' from H2(⌦)
into L2(@⌦), it su�ces to prove the following well-posedness for the initial-
boundary value problem (1.10).

Proposition 3.1. Let ↵, ⇢ and q be the same as in Theorem 1.1. Then, for all
g 2 H3/2(@⌦), there exists a unique weak solution in C([0,+1);H2(⌦)) to
(1.10).

Proof. Let G 2 H2(⌦) satisfy G = g on @⌦. Then we notice that u = ug is
a solution to (1.10) if and only if the function v(t, x) := u(t, x)� tkG(x) is a
solution to the system
8
<

:

(⇢(x)@↵(x)t +Aq)v(t, x) = f(t, x), (t, x) 2 (0,+1)⇥ ⌦,
v(t, x) = 0, (t, x) 2 (0,+1)⇥ @⌦,
v(0, x) = 0, x 2 ⌦,

(3.1)

where f(t, x) := �
⇣
⇢(x)@↵(x)t tk + tkAq

⌘
G(x).

Furthermore, since f 2 C((0,+1);L2(⌦)) and (1 + t)�k�1f 2
L1(0,+1;L2(⌦)), the initial-boundary value problem (3.1) admits a unique
weak solution v 2 C((0,+1);L2(⌦)) according to Theorem 1.1. Let us now
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prove that v 2 C([0,+1);H2(⌦)). For this purpose, we infer from the basic

identity L[tk](p) :=
R
+1
0

tke�ptdt = k!
pk+1

that

F (p, x) := L[f(·, x)](p) = � k!

pk+1

⇣
Aq + ⇢(x)p↵(x)

⌘
G(x), (p, x) 2 C

+

⇥ ⌦.

Next, upon extending the expression of the right-hand side of the above
equality to all p 2 C \ R�, we obtain from the first equation of (3.1) that
V := L[v] reads

V (p, x) = � k!
p

k+1
(A

q

+ ⇢(x)p↵(x))�1
⇣
A

q

+ ⇢(x)p↵(x)
⌘
G(x), (p, x) 2 (C \R�)⇥⌦.

(3.2)

Therefore, arguing in the same way as in the proof of Theorem 1.1, we obtain
for any fixed " 2 (0, 1) and ✓ 2 (⇡/2,⇡) that

v(t, x) =
1

2i⇡

Z

�(",✓)

etpV (p, x)dp, (t, x) 2 [0,+1)⇥ ⌦. (3.3)

On the other hand, (3.2) and Proposition 2.1 yield that V (p, ·) 2 D(Aq) for
all p 2 C \ R� with

AqV (p, x) =
k!

pk+1

⇣
⇢(x)p↵(x)(Aq + ⇢(x)p↵(x))�1 � I

⌘

⇥
⇣
⇢(x)p↵(x) +Aq

⌘
G(x), x 2 ⌦. (3.4)

Here the symbol I stands for the identity operator in L2(⌦). Applying (2.4)-
(2.5), we deduce from (3.4) that

��AqV (re±i✓)
��
L2

(⌦)

6 Cr�(k+1) max(r2↵M�↵
0 , r2↵0

�↵M )

6 C"�3(↵M�↵
0

)r2↵M�↵
0

�k�1

6 C"�3(↵M�↵
0

)r1�k�↵
0 , r 2 [",+1) (3.5)

with some positive constant C = C(✓,M, kgkH3/2
(@⌦)

, kqkL1
(⌦)

,↵
0

,↵M ,

⇢
0

, ⇢M ) which is independent of ". Therefore we have r 7! AqV (re±i✓, ·) 2
L1(",+1;L2(⌦)) and hence r 7! V (re±i✓, ·) 2 L1(",+1;D(Aq)). From this
and (3.3), it follows that v(t, ·) 2 D(Aq) for all t 2 [0,+1) with

Aqv(t, ·) =
1

2i⇡

Z

�(",✓)

etpAqV (p)dp, (3.6)

proving that Aqv 2 C([0,+1);L2(⌦)). As a consequence, we have v 2
C([0,+1);D(Aq)) and the desired result follows immediately from this and
the identity D(Aq) = H1

0

(⌦) \H2(⌦). ⇤

3.2. Proof of Theorem 1.2

The proof of Theorem 1.2 is by means of the analytic properties of the map-
ping t 7! N↵,⇢,q(t), defined by (1.11), that are preliminarily established in
the coming subsection.
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3.2.1. On the analyticity of the boundary operator. We first introduce the
following notations. Let X be a Hilbert space, and let O be either a subinter-
val of R or an open subset of C. We denote by A(O;X) the space of X-valued
functions that are analytic in O.

Lemma 3.2. Let g 2 H3/2(@⌦) and let u be the solution in C([0,+1);H2(⌦))
to (1.10) associated with g, whose existence is guaranteed by Proposition 3.1.
Then the mapping t 7! @⌫u(t, ·)|@⌦ lies in A((0,+1);L2(@⌦)).

Proof. By the definitions and the notations used in the proof of Proposi-
tion 3.1, the solution u to (1.10) reads u(t, x) = tkG(x) + v(t, x) for a.e.
(t, x) 2 (0,+1) ⇥ ⌦, where v 2 C([0,+1);H2(⌦)) is a solution to (3.1).
Since G 2 H2(⌦), it is apparent that t 7! tk@⌫G|@⌦ 2 A((0,+1);L2(@⌦)).
Therefore we are left with the task of showing that t 7! @⌫v(t, ·)|@⌦ 2
A((0,+1);L2(@⌦)). Since D(Aq) = H1

0

(⌦) \ H2(⌦) and the trace map
w 7! @⌫w|@⌦ is continuous from H2(⌦) into L2(@⌦), it is su�cient to prove
that t 7! v(t, ·) 2 A((0,+1);D(Aq)).

For this purpose, we fix ✓
1

2 (0, ✓�⇡/2)\(0,⇡�✓), put O := {⌧ei ; ⌧ 2
(0,+1),  2 (�✓

1

, ✓
1

)}, and we extend v into a function of A(O;D(Aq)).
This can be done with the help of (3.5)-(3.6) by noticing

|ezp| = |e⌧rei(±✓+ ) | = e⌧r cos(±✓+ )

for all z = ⌧ei 2 O and p = re±i✓ with r 2 [",+1).

Indeed, since we have ✓ +  2 (✓ � ✓
1

, ✓ + ✓
1

) ⇢ (⇡/2,⇡) and
�✓+ 2 (�✓� ✓

1

,�✓+ ✓
1

) ⇢ (�⇡,�⇡/2), it holds true that cos(±✓+ ) 6
cos(✓ � ✓

1

) and

|ezp| 6 e|z|r cos(✓�✓
1

), z 2 O, p = re±i✓, r 2 [",+1). (3.7)

Furthermore, since cos(✓ � ✓
1

) 2 (�1, 0), it follows from (3.5) and (3.7) that

W : z 7! 1

2i⇡

Z

�(",✓)

ezpAqV (p)dp

is well defined in O. Moreover, for any compact subset K ⇢ O in C, we infer
from (3.5) that
���ez(re

±i✓
)AqV (re±i✓)

���
L2

(⌦)

6 C"�3(↵M�↵
0

)e�r cos(✓�✓
1

)r1�k�↵
0 , z 2 K, r 2 [",+1),

where � := inf{|z|; z 2 K} > 0 and C is the constant in (3.5). Next, as z 7!
ezpAqV (p) 2 A(O;L2(⌦)) for all p 2 {re±i✓; r 2 [",+1)}, this implies that
W 2 A(O;L2(⌦)). Furthermore, since W(t) = Aqv(t, ·) for all t 2 (0,+1),
we obtain by (3.5) that

t 7! Aqv(t, ·) 2 A((0,+1);L2(⌦)). (3.8)

Finally, arguing in the same way as above, we deduce from (3.3) that t 7!
v(t, ·) 2 A((0,+1);L2(⌦)). This and (3.8) yield that t 7! v(t, ·) 2 A((0,+1);
D(Aq)), which proves the result. ⇤
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In terms of Lemma 3.2, we can complete the proof of Theorem 1.2.

3.2.2. Completion of the proof. For j = 1, 2, we denote by uj the weak
solution to the initial-boundary value problem (1.10) associated with g 2 H

in

,
(↵, ⇢, q) = (↵j , ⇢j , qj), and T = +1. The proof is divided into three steps.
The first one is to establish that

@⌫u1

(t, ·)|S
out

= @⌫u2

(t, ·)|S
out

, t 2 (0,+1), (3.9)

and the second one is to derive from (3.9) that the functions Uj := L[uj ],
j = 1, 2, verify

@⌫U1

(p, ·)|S
out

= @⌫U2

(p, ·)|S
out

, p 2 (0,+1). (3.10)

The third step corresponds to the end of the proof, which is by means of the
existing results for the Calderón problem with partial Cauchy data.
Step 1. Put h(t, x) := @⌫u1

(t, x)� @⌫u2

(t, x) for (t, x) 2 (0,+1)⇥ S
out

. We
recall from Lemma 3.2 that h 2 A((0,+1);L2(S

out

)), and from (1.13) that

h(tn) = 0, n 2 N.
Therefore, by (1.12), the set of the zeros of the analytic function h has accu-
mulation point in (0,+1), so that h identically vanishes, and (3.9) follows.
Step 2. For j = 1, 2, let vj denote the solution to (3.1) where (↵j , ⇢j , qj) is
substituted into (↵, ⇢, q) such that

uj(t, x) = tkG(x) + vj(t, x), (t, x) 2 Q. (3.11)

Furthermore, putting Vj := Lvj , we deduce from (3.2) and (3.5) that
�����

Z

�±(",✓)

etpAqjVj(p)dp

�����
L2

(⌦)

6 C"�3(↵M�↵
0

)

Z
+1

"

r1�k�↵
0dr

6 C

k + ↵
0

� 2
"2�k�↵

0

�3(↵M�↵
0

), (3.12)

where the constant C is the same as in (3.5). Similarly, by Lemma 2.1, we
infer from (2.14) and (3.4) that

�����

Z

�
0

(",✓)

etpAqjVj(p)dp

�����
L2

(⌦)

6 C"�(k+↵M )

 Z ✓

�✓
et" cos �C�d�

!

6 Cet""�(k+2↵M�↵
0

), (3.13)

where another constant C > 0 is independent of ". Thus, for all t 2 (1,+1),

by taking " = t�1 in (3.12)-(3.13) we see that
���
R
�(",✓)

etpAqjVj(p)dp
���
L2

(⌦)

is

upper bounded by tk+2↵
0

�↵M up to some positive constant Cj , which is inde-
pendent of t. In light of (3.6), this entails that kvj(t, ·)kH2

(⌦)

6 Cjt
k+2↵

0

�↵M

for every t 2 (1,+1). Therefore, by (3.11) we have

kuj(t, ·)kH2

(⌦)

6 Cjt
k+2↵

0 , t 2 (1,+1).

Moreover, since vj 2 L1(0, 1;H2(⌦)) in virtue of Lemma 3.2, and hence
uj 2 L1(0, 1;H2(⌦)) by (3.11), we obtain that t 7! e�ptuj(t, ·) 2 L1(0,+1;
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H2(⌦)) for all p 2 C
+

. This and the continuity of the trace map v 7! @⌫v|@⌦
from H2(⌦) into L2(@⌦), yield that

L[@⌫uj ](p) = @⌫Uj(p), j = 1, 2, p 2 C
+

.

Now (3.10) follows from this and (3.9).
Step 3. We can complete the proof by [20, Theorem 7] (see also [19]) when
d = 2 and [22, Theorem 1.2] when d > 3.

Theorem 3.3. Assume that @⌦ is smooth and that ⌦ is connected. For

V 2 V := {q 2 L1(⌦); 0 lies in the resolvent set of Aq},

let ⇤V be the partial Dirichlet-to-Neumann map H
in

3 ' 7! @⌫w|S
out

, where
w is the solution to

⇢
��w + V (x)w = 0, x 2 ⌦,

w(x) = '(x), x 2 @⌦.
(3.14)

For j = 1, 2, pick Vj in V \W 1,r(⌦) with r 2 (2,+1), if d = 2, and in V if
d > 3. Then

⇤V
1

= ⇤V
2

yields V
1

= V
2

. (3.15)

It is clear for all p 2 (0,+1) that Ũj(p) := pk+1

k! Uj(p), j = 1, 2, is a
solution to (3.14) associated with V = qj+⇢jp↵j and ' = g. As a consequence,
we have

⇤q
1

+⇢
1

p↵1

g = ⇤q
2

+⇢
2

p↵2

g, p 2 (0,+1)

by (3.10), and since g is arbitrary in H
in

, this immediately entails that

⇤q
1

+⇢
1

p↵1

= ⇤q
2

+⇢
2

p↵2

, p 2 (0,+1). (3.16)

Moreover, from the definition of Ed, for every p 2 (0,+1), we have qj +
⇢jp

↵j 2 W 1,r(⌦) with r 2 (2,+1) if d = 2, and qj +⇢jp↵j 2 L1(⌦) if d > 3.
Therefore, applying (3.15) with Vj = qj + ⇢jp

↵j , we infer from (3.16) that

q
1

+ ⇢
1

p↵1 = q
2

+ ⇢
2

p↵2 , p 2 (0,+1). (3.17)

Letting p to zero in (3.17), we see that q
1

= q
2

. Thus, taking p = 1 in (3.17),
we obtain that ⇢

1

= ⇢
2

. Finally, applying (3.17) with p = e, we find that
e↵1 = e↵2 , which yields that ↵

1

= ↵
2

.
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[13] Glöckle, W. G., and Nonnenmacher, T. F.: A fractional calculus approach to
self-similar protein dynamics. Biophys. J. 68, 46–53 (1995).

[14] Gorenflo, R., Luchko, Y., and Yamamoto, M.: Time-fractional di↵usion equa-
tion in the fractional Sobolev spaces. Fractional Calculus and Applied Analysis
18, 799–820 (2015).

[15] Gorenflo, R., and Mainardi, F.: Fractional di↵usion processes: probability distri-

butions and continuous time random walk. In: Rangarajan G, Ding M, editors.
Processes with long range correlations. Vol. 621, Lecture Notes in Physics.
Berlin: Springer; 2003, 148–166.

[16] Grisvard, P.: Elliptic problems in nonsmooth domains. Pitman, London, 1985.

[17] Hatano, Y., Nakagawa, J., Wang, S., and Yamamoto, M.: Determination of
order in fractional di↵usion equation. J. Math-for-Ind. 5A, 51–57 (2013).



26 Y. Kian, E. Soccorsi and M. Yamamoto

[18] Holland, S. S.: On the adjoint of the product of operators. J. Func. Anal. 3,
337–344 (1969).

[19] Imanuvilov, O., and Yamamoto, M.: Inverse boundary value problem for
Schrödinger equation in two dimensions. SIAM J. Math. Anal. 44, 1333–1339
(2012).

[20] Imanuvilov, O., and Yamamoto, M.: Uniqueness for inverse boundary value
problems by Dirichlet-to-Neumann map on subboundaries. Milan Journal of
Mathematics 81, 187–258 (2013).

[21] Kato, T.: Perturbation theory for linear operators. Classics in Mathematics,
Springer Verlag, Berlin, 1980.
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