
Hölder stable determination of a quantum scalar potential in
unbounded cylindrical domains

1Yavar Kian, 2Quang Sang Phan, 3Eric Soccorsi

Abstract

We consider the inverse problem of determining the time independent scalar potential of the
dynamic Schrödinger equation in an infinite cylindrical domain from one boundary Neumann ob-
servation of the solution. We prove Hölder stability by choosing the Dirichlet boundary condition
suitably.
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1 Statement of the problem and results

We continue our analysis of the inverse problem of determining the scalar potential q : Ω → R in an
unbounded quantum cylindrical domain Ω = ω × R, where ω is a connected bounded open subset of
Rn−1, n ≥ 2, with no less than C2-boundary ∂ω, from partial Neumann data. This may be equivalently
reformulated as to whether the electrostatic disorder occurring in Ω, modelling an idealized straight
carbon nanotube, can be retrieved from the partial boundary observation of the quantum wave propa-
gating in Ω. We refer to [7, Section 1.2] for the discussion on the physical motivations and the relevance
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of this model. Namely we seek stability in the identification of q from partial Neumann measurement
of the solution u to the following initial boundary value problem −iu

′ −∆u+ qu = 0, in Q := (0, T )× Ω
u(0, x) = u0(x), x ∈ Ω
u(t, x) = g(t, x), (t, x) ∈ Σ := (0, T )× Γ.

(1.1)

Here T > 0 is fixed, Γ := ∂ω×R and the ∂
∂t is denoted by ′. Since Γ is unbounded we make the boundary

condition in the last line of (1.1) more explicit. Writing x := (x′, xn) with x′ := (x1, . . . , xn−1) ∈ ω for
every x ∈ Ω we extend the mapping

C∞0 ((0, T )× R; H2(ω)) −→ L2((0, T )× R;H3/2(∂ω)))

v 7→ [(t, xn) ∈ (0, T )× R 7→ v(t, ·, xn)|∂ω],

to a bounded operator from L2((0,T)× R; H2(ω)) into L2((0,T)× R; H3/2(∂ω)), denoted by γ0. Then
for every u ∈ C0([0, T ]; H2(Ω)) the above mentioned boundary condition reads γ0u = g.

Throughout the entire paper we choose

g := γ0G0, with G0(t, x) := u0(x) + it(∆− q0)u0(x), (t, x) ∈ Q, (1.2)

where q0 = q0(x) is a given scalar function we shall make precise below.
In the particular case where q is a priori known outside some given compact subset of Ω and on

the boundary Γ, it is shown in [7] that the scalar potential may be Lipschitz stably retrieved from one
partial Neumann observation of the solution to (1.1) for suitable initial and boundary conditions u0

and g. This result is similar to [2, Theorem 1], which was derived by Baudouin and Puel for the same
operator but acting in a bounded domain. The main technical assumption common to [2, 7] is that

u ∈ C1([0, T ];L∞(Ω)). (1.3)

In this paper we pursue two main goals. First we want to analyze the direct problem associated
to (1.1)-(1.2) in order to exhibit sufficient conditions on q and u0 ensuring (1.3). Second, we aim to
weaken the compactness condition imposed in [7] on the support of the unknown part of q, in the inverse
problem of determining the scalar potential appearing in (1.1) from one partial Neumann observation
of u.

The following result solves the direct problem associated to (1.1)-(1.2). Here and in the remaining
part of this text we note ‖w‖j,O, j ∈ N, for the usual Hj-norm of w in any subset O of Rm, m ∈ N∗,
where H0(O) stands for L2(O).

Theorem 1.1. Let k ≥ 2, assume that ∂ω is C2k and pick

(q0, u0) ∈
(
W 2k,∞(Ω) ∩ C2(k−1)(Ω;R)

)
×H2(k+1)(Ω),

such that
(−∆ + q0)2+ju0 = 0 on ∂Ω for all j ∈ Nk−2 := {0, 1, . . . , k − 2}. (1.4)

Then for each q ∈W 2k,∞(Ω) ∩ C2(k−1)(Ω) obeying the condition

∂mx q = ∂mx q0 on ∂Ω for all m := (mj)
n
j=1 ∈ Nn with |m| :=

n∑
j=1

mj ≤ 2(k − 2), (1.5)

there is a unique solution u ∈ ∩kj=0C
j([0, T ];H2(k−j)(Ω)) to the boundary value problem (1.1)-(1.2).

Moreover, we have the estimate

k∑
j=0

‖u(j)‖C0([0,T ];H2(k−j)(Ω)) ≤ C‖u0‖2(k+1),Ω, (1.6)

where C > 0 is a constant depending only on T , ω, k, and max(‖q0‖W 2k,∞(Ω), ‖q‖W 2k,∞(Ω)).
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Remark 1.2. It can be seen from the reasoning developed in section 2 that Theorem 1.1 may be
generalized to the case of more general boundary conditions than (1.2). Nevertheless, in order to avoid
the inadequate expense of the size of this article, we shall not go into this matter further.

We now consider the natural number

` ∈ N∗ ∩ (n/4, n/4 + 1] . (1.7)

Then, applying Theorem 1.1 with k = ` + 1, we get that u ∈ C1([0, T ];H2`(Ω)) and the estimate
‖u‖C1([0,T ];H2`(Ω)) ≤ C‖u0‖2(`+2),Ω. Since 2` > n/2 then H2`(Ω) is continuously embedded in L∞(Ω).
This assertion, that is established by Lemma 2.7 in section 2.4, extends the corresponding well-known
Sobolev embedding theorem in Rn (see e.g. [3, Corollary IX.13] or [6, Section 5.10, Problem 18]) to
the case of the unbounded cylindrical domain Ω. This immediately entails

Corollary 1.3. Under the conditions of Theorem 1.1 for k = ` + 1, where ` is defined by (1.7), the
solution u to (1.1)-(1.2) satisfies (1.3) and the estimate

‖u‖C1([0,T ],L∞(Ω)) ≤ C‖u0‖2(`+2),Ω.

Here C > 0 is a constant depending only on T , ω and max(‖q0‖W 2(`+1),∞(Ω), ‖q‖W 2(`+1),∞(Ω)).

For q0 (and u0) as in Theorem 1.1, we aim to retrieve real-valued scalar potentials q verifying

|q(x′, xn)− q0(x′, xn)| ≤ ae−b〈xn〉
dε
, (x′, xn) ∈ Ω, (1.8)

where a > 0, b > 0, ε > 0 and dε ∈ (2(1 + ε)/3,+∞) are a priori fixed constants. Here and henceforth
the notation 〈t〉 stands for (1 + t2)1/2, t ∈ R. Notice that (1.8) weakens the compactness condition
imposed in [7, Theorem 1.1] on the support of the unknown part of q. Namely, we introduce the set of
admissible potentials as

Aε(q0) := {q ∈W 2(`+1),∞(Ω) ∩ C2`(Ω;R) verifying (1.5) for k = `+ 1 and (1.8)}.

Our main result on the above mentioned inverse problem is as follows.

Theorem 1.4. Let ∂ω, q0 and u0 obey the conditions of Theorem 1.1 for k = ` + 1, where ` is the
same as in (1.7). Assume moreover that there are two constants υ0 > 0 and ε > 0 such that we have

|u0(x′, xn)| ≥ υ0〈xn〉−(1+ε)/2, (x′, xn) ∈ Ω. (1.9)

For M > 0 fixed, we consider two potentials qj, j = 1, 2, in Aε(q0), such that ‖qj‖W 2(`+1),∞(Ω) ≤ M ,
and we note uj the solution to (1.1)-(1.2) where qj is substituted for q, given by Theorem 1.1. Then,
for all δ ∈ (0, b), where b is the same as in (1.8), there exists a subboundary γ∗ ⊂ ∂ω and a constant
C > 0, depending only on ω, T , M , ‖u0‖2(`+2),Ω, δ, ε, a, b and υ0, such that the estimate

‖q1 − q2‖0,Ω ≤ C‖∂νu′1 − ∂νu′2‖θ0,Σ∗ , (1.10)

holds for Σ∗ := (0, T )× γ∗ × R and θ := (b− δ)/(2b− δ).

It is evident that Theorem 1.4 yields uniqueness in the identification of the scalar potential in Aε(q0)
from the knowledge of partial Neumann data for the time-derivative of the solution to (1.1)-(1.2):

∀(q1, q2) ∈ Aε(q0)2, (∂νu
′
1(t, x) = ∂νu

′
2(t, x), (t, x) ∈ Σ∗) =⇒ (q1(x) = q2(x), x ∈ Ω) .

Further, it is worth mentioning that Theorem 1.4 applies for any subboundary Γ∗ = γ∗ × R such
that

γ∗ ⊃ {x′ ∈ ∂ω, (x′ − x′0) · ν′(x′) ≥ 0},
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for some arbitrary x′0 ∈ Rn−1 \ ω, where ν′(x′) ∈ Rn−1 denotes the outgoing normal vector to ∂ω
computed at x′. See Assumption 3.1 in subsection 3.2 for more details.

Moreover, we stress out that there are actual scalar potentials q0 and initial values u0 fulfilling the
conditions of Theorem 1.4. For the sake of completeness a whole class of such matching q0’s and u0’s
is indeed exhibited in the concluding remark ending the paper.

The remaining part of the paper is organized with two main sections. Section 2 contains the proofs
of Theorem 1.1 and Corollary 1.3, while Theorem 1.4 is shown in section 3.

2 Analysis of the direct problem

In this section we examine the direct problem associated to (1.1). To this end we introduce the Dirichlet
Laplacian

A0 := −∆, D(A0) := H1
0 (Ω) ∩H2(Ω), (2.11)

which is selfadjoint in H := L2(Ω) (see e.g. [5, Lemma 2.2]), provided ∂ω is C2. We perturb A0 by the
scalar potential q ∈ L∞(Ω). Since q is assumed to be real then the operator

Aq := A0 + q, D(Aq) := D(A0) = H1
0 (Ω) ∩H2(Ω),

is selfadjoint in H = L2(Ω).

2.1 Abstract evolution problem

To study the direct problem associated to (1.1) we consider the abstract evolution problem{
−iv′(t) +Aqv(t) = f(t), t ∈ (0, T )

v(0) = v0,
(2.12)

with initial data v0 and source f . We shall derive smoothness properties of the solution to (2.12) with
the aid of the following technical result, which is borrowed from [5, Lemma 2.1]:

Lemma 2.1. Let X be a Banach space and let M be an m-accretive operator in X with dense do-
main D(M). Assume that v0 ∈ D(M) and h ∈ C1([0, T ];X). Then there is a unique solution
v ∈ C1([0, T ];X) ∩ C0([0, T ]; D(M)) to the following evolution problem{

v′(t) +Mv(t) = h(t), t ∈ (0, T )
v(0) = v0.

(2.13)

Moreover, the estimate

‖v‖C0([0,T ];D(M)) + ‖v′‖C0([0,T ];X) ≤ C
(
‖v0‖D(M) + ‖h‖C1([0,T ];X)

)
, (2.14)

holds for some positive constant C depending only on T .

Assume that ∂ω is C2, let q ∈ L∞(Ω) be real and choose v0 ∈ D(Aq) and f ∈ C1([0, T ];H). Since Aq
is selfadjoint in H then the operator iAq is m-accretive so Lemma 2.1 applies with X = H, M = iAq
and h = if : there is a unique solution

v ∈ C1([0, T ];H) ∩ C0([0, T ]; D(Aq)) (2.15)

to (2.12), such that

‖v‖C0([0,T ];D(Aq)) + ‖v′‖C0([0,T ];H) ≤ C1

(
‖v0‖D(Aq) + ‖f‖C1([0,T ];H)

)
, (2.16)
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for some constant C1 > 0 depending only on T .
We shall improve (2.15)-(2.16) upon assuming higher regularity of ∂ω, q, v0 and f . This requires that

the following notations be preliminarily introduced. First, for the sake of definiteness we set A0
q := I

and D(A0
q) := H, where I denotes the identity operator in H. Then we put

Akqv := Aq(A
k−1
q v), v ∈ D(Akq ) := {v ∈ D(Ak−1

q ), Aqv ∈ D(Ak−1
q )},

for each k ∈ N∗, and recall that the linear space D(Akq ) endowed with the scalar product

〈v, w〉D(Akq ) :=

k∑
j=0

〈Ajqv,Ajqw〉0,Ω,

is Hilbertian.

Proposition 2.2. For k ≥ 2 fixed, assume that v0 ∈ D(Akq ) and f ∈ ∩kj=1C
j([0, T ]; D(Ak−jq )). Then

(2.12) admits a unique solution
v ∈ ∩kj=0C

j([0, T ]; D(Ak−jq )),

which satisfies the estimate

k∑
j=0

‖v(j)‖C0([0,T ];D(Ak−jq )) ≤ Ck

‖v0‖D(Akq ) + ‖f‖C0([0,T ];D(Ak−1
q )) +

k∑
j=1

‖f (j)‖C0([0,T ];D(Ak−jq ))

 ,

(2.17)
where Ck is a positive constant depending only on T .

Proof. The proof is by induction on k ≥ 2.
a) Suppose that k = 2. We consider the space H̃ := D(Aq), which is Hilbertian for the scalar product

〈v, w〉H̃ := 〈v, w〉D(Aq), and define the operator Ãq, acting in H̃, by

Ãqv := Aqv, v ∈ D(Ãq) := D(A2
q).

Since q is real, then the sesquilinear form aq[w] := ‖∇w‖2H+ 〈qw,w〉H ∈ R for every w ∈ H1
0 (Ω), hence

Re
(
〈iÃqv, v〉H̃

)
= Re (i(aq[v] + aq[Aqv])) = 0, v ∈ D(Ãq).

Moreover, for all ϕ ∈ H̃ it is clear that the vector vϕ := (iAq + 1)−2(iÃq + 1)ϕ ∈ D(Ãq) verifies (iÃq +

1)vϕ = ϕ, proving that Ran(iÃq + 1) = H̃. Thus iÃq is m-accretive in H̃. Therefore, applying Lemma

2.1 for X = H̃, M = iÃq and h = if , we see that there is a unique function v ∈ C1([0, T ]; D(Aq)) ∩
C0([0, T ]; D(A2

q)), that is a solution to{
−iv′(t) + Ãqv(t) = f(t), t ∈ (0, T )

v(0) = v0,
(2.18)

and fulfills

‖v‖C0([0,T ];D(A2
q))

+ ‖v′‖C0([0,T ];D(Aq)) ≤ C1

(
‖v0‖D(A2

q)
+ ‖f‖C1([0,T ];D(Aq))

)
. (2.19)

Since v is a solution to (2.18), it is also a solution to (2.12). Hence v is the solution to (2.12), by
uniqueness. Further, since Aq is linear bounded from D(Aq) into H and v ∈ C1([0, T ]; D(Aq)), we have
Aqv ∈ C1([0, T ];H) with

(Aqv)′(t) = Aqv
′(t). (2.20)
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In light of (2.12) this entails that v′(t) = i(f(t) − Aqv(t)) ∈ C1([0, T ];H). As a consequence we have
v ∈ C2([0, T ];H) and

− iv′′(t) +Aqv
′(t) = f ′(t), t ∈ (0, T ), (2.21)

according to (2.20). Moreover, (2.21) yields

‖v′′‖C0([0,T ];H) ≤ ‖Aqv′‖C0([0,T ];H) + ‖f ′‖C0([0,T ];H) ≤ ‖v′‖C0([0,T ];D(Aq)) + ‖f ′‖C0([0,T ];H).

From this and (2.19) then follows that

2∑
j=0

‖v(j)‖C0([0,T ];D(A2−j
q )) ≤ max(1, 2C1)

(
‖v0‖D(A2

q)
+ ‖f‖C1([0,T ];D(Aq))

)
,

which entails (2.17) for k = 2.
b) Let us now prove the result for k ≥ 3. We suppose that the assertion holds true for all nonzero
natural numbers smaller or equal to k − 1 and choose v0 ∈ D(Akq ) and f ∈ ∩kj=1C

j([0, T ]; D(Ak−jq )).

We know from part a) that the solution v of (2.12) is lying in C2([0, T ];H) ∩ C1([0, T ]; D(Aq)) and
satisfies (2.21). Putting w = v′ we thus find that w ∈ C1([0, T ];H) ∩ C0([0, T ]; D(Aq)) is a solution to
the problem {

−iw′(t) +Aqw(t) = f ′(t), t ∈ (0, T )
w(0) = i(f(0)−Aqv0).

Since f(0) − Aqv0 ∈ D(Ak−1
q ) and f ′ ∈ ∩k−1

j=1C
j([0, T ]; D(Ak−1−j

q )), we deduce from the induction

hypothesis that w ∈ ∩k−1
j=0C

j([0, T ]; D(Ak−1−j
q )) and that

∑k−1
j=0 ‖w(j)‖C0([0,T ];D(Ak−1−j

q )) is majorized,

up to the multiplicative constant Ck−1, by the following upper bound:

‖f(0)−Aqv0‖D(Ak−1
q ) + ‖f ′‖C0([0,T ];D(Ak−2

q )) +

k−1∑
j=1

‖f (j+1)‖C0([0,T ];D(Ak−1−j
q ))

≤ ‖v0‖D(Akq ) + ‖f‖C0([0,T ];D(Ak−1
q )) + ‖f ′‖C0([0,T ];D(Ak−2

q )) +

k∑
j=2

‖f (j)‖C0([0,T ];D(Ak−jq )).

This entails

k−1∑
j=0

‖w(j)‖C0([0,T ];D(Ak−1−j
q )) ≤ Ck−1

‖v0‖D(Akq ) + ‖f‖C0([0,T ];D(Ak−1
q )) +

k∑
j=1

‖f (j)‖C0([0,T ];D(Ak−jq ))

 .

As a consequence we have
v ∈ ∩kj=1C

j([0, T ]; D(Ak−jq )), (2.22)

and

k∑
j=1

‖v(j)‖C0([0,T ];D(Ak−jq )) ≤ Ck−1

‖v0‖D(Akq ) + ‖f‖C0([0,T ];D(Ak−1
q )) +

k∑
j=1

‖f (j)‖C0([0,T ];D(Ak−jq ))

 .

(2.23)
Now it remains to show that v ∈ C0([0, T ]; D(Akq )). This can be seen from (2.12) and (2.22), entailing

Aqv = f + iv′ ∈ C0([0, T ]; D(Ak−1
q )).

Therefore we have ‖v‖C0([0,T ];D(Akq )) ≤ ‖f‖C0([0,T ];D(Ak−1
q )) + ‖v′‖C0([0,T ];D(Ak−1

q )), which together with

(2.23), yields (2.17).

Remark 2.3. It is clear from (2.15)-(2.16) that the statement of Proposition 2.2 holds true for k = 1
as well.
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2.2 Characterizing D(Ak
q) for k ∈ N∗

In light of Proposition 2.2 we need to describe more explicitly the domain of the operator Akq , k ∈ N∗.
Namely, under suitable assumptions on ∂ω and q we shall characterize D(Akq ) as a subset of H2k(Ω).
The main tool we use in the derivation of this result, stated in Proposition 2.5, is the elliptic boundary
regularity property in Ω established in Lemma 2.4.

2.2.1 Elliptic boundary regularity in Ω

We now extend the classical elliptic boundary regularity result for the Dirichlet Laplacian, which is well
known in any sufficiently smooth bounded domain of Rn (see e.g. [8, Section 2, Theorem 5.1] or [6,
Section 6.3, Theorem 5]), to the case of the unbounded cylindrical waveguide Ω. Namely we consider
the following problem {

−∆v = ϕ in Ω
v = 0 on ∂Ω,

(2.24)

and establish the coming:

Lemma 2.4. Let ` ∈ N, assume that ∂ω is C2(`+1) and choose ϕ ∈ H2`(Ω). Then (2.24) admits a
unique solution v ∈ H2(`+1)(Ω), obeying

‖v‖2(`+1),Ω ≤ C`‖ϕ‖2`,Ω, (2.25)

where C` > 0 is a constant depending only on ω and `.

Proof. The proof is by induction on ` ∈ N and relies essentially on the following decomposition of the
Dirichlet Laplacian A0

FA0F−1 =

∫ ⊕
R
Â0,pdp. (2.26)

Here F denotes the partial Fourier transform with respect to xn, i.e.

(Fw)(x′, p) = ŵ(x′, p) =
1

(2π)1/2

∫
R
e−ipxnw(x′, xn)dxn, (x′, p) ∈ Ω,

and
Â0,p := −∆x′ + p2, p ∈ R, (2.27)

is the selfadjoint operator in L2(ω) generated by the closed quadratic form

â0,p[w] :=

∫
ω

(|∇x′w(x′)|2 + p2|w(x′)|2)dx′, w ∈ D(â0,p) := H1
0 (ω).

Since ω is a bounded domain with boundary no less than C2, we have

D(Â0,p) = H1
0 (ω) ∩H2(ω), p ∈ R, (2.28)

from [1]. For further reference we notice for all p ∈ R that

〈Â0,pw,w〉0,ω = â0,p[w] ≥ (c0(ω) + p2)‖w‖0,ω, w ∈ H1
0 (Ω) ∩H2(Ω),

where c0(ω) > 0 is the constant appearing in the Poincaré inequality associated with the bounded

domain ω. As a consequence the operator Â0,p is boundedly invertible in L2(ω) and it holds true that

‖Â−1
0,p‖B(L2(ω)) ≤ (c0(ω) + p2)−1, p ∈ R. (2.29)
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In light of (2.11) and (2.28) we see that v ∈ H1
0 (Ω)∩H2(Ω) is a solution to (2.24) iff v̂(p) ∈ H1

0 (ω)∩H2(ω)
verifies {

Â0,pv̂(p) = ϕ̂(p) in ω
v̂(p) = 0 on ∂ω,

(2.30)

for a.e. p ∈ R.
a) Having said that we first examine the case ` = 0. We pick ϕ ∈ L2(Ω) and assume that ∂ω is C2.
Since ϕ̂(p) ∈ L2(ω) for a.e. p ∈ R we deduce from [6, Section 6.3, Theorem 5] that there is a unique
solution v̂(p) ∈ H2(ω) to (2.30). Taking into account that

−∆x′ v̂(p) = g(p) with g(p) := ϕ̂(p)− p2v̂(p) ∈ L2(ω), p ∈ R,

we get (see e.g. the remark following [6, Section 6.3, Theorem 5]):

‖v̂(p)‖2,ω ≤ C(ω)‖g(p)‖0,ω ≤ C(ω)(‖ϕ̂(p)‖0,ω + p2‖v̂(p)‖0,ω), p ∈ R. (2.31)

Here and henceforth C(ω) denotes some generic positive constant depending only on ω. On the other

hand, since v̂(p) = Â−1
0,pϕ̂(p) by (2.30), we have

‖v̂(p)‖0,ω ≤ (c0(ω) + p2)−1‖ϕ̂(p)‖0,ω, p ∈ R,

according to (2.29). From this and (2.31) then follows that

‖v̂(p)‖2,ω ≤ C(ω)‖ϕ̂(p)‖0,ω, p ∈ R. (2.32)

Since p 7→ ϕ̂(p) ∈ L2(R;L2(ω)) as ϕ ∈ L2(Ω), then we have v = F−1v̂ ∈ L2(R;H2(ω)) and

‖v‖L2(R;H2(ω)) ≤ C(ω)‖ϕ‖0,Ω, (2.33)

by (2.32). Further, taking into account that

‖Â0,pv̂(p)‖20,ω = ‖∆x′ v̂(p)‖20,ω + 2p2‖∇x′ v̂(p)‖20,ω + p4‖v̂(p)‖20,ω = ‖ϕ̂(p)‖20,ω, p ∈ R,

from (2.27) and (2.30), we get that
∫
R p

4‖v̂(p)‖20,ωdp ≤ ‖ϕ‖20,Ω. This entails that v ∈ H2(R;L2(ω))
obeys

‖v‖H2(R;L2(ω)) ≤ ‖ϕ‖0,Ω. (2.34)

Applying [8, Section 1, Theorem 7.4] to v ∈ L2(R;H2(ω)) ∩ H2(R;L2(ω)) we find that v ∈ H2(Ω).
Moreover, the norm in L2(R;H2(ω))∩H2(R;L2(ω)) being equivalent to the usual one in H2(Ω), (2.33)-
(2.34) yields

‖v‖2,Ω ≤ C(ω)‖ϕ‖0,Ω.

b) For ` ≥ 1 fixed, assume that ∂ω is C2(`+1) and let ϕ ∈ H2`(Ω). We suppose in addition that the
claim obtained by substituting k ∈ N`−1 for ` in Lemma 2.4, and the following estimate

‖v̂(p)‖2(k+1),ω ≤ C(ω)

k∑
j=0

p2j‖ϕ̂(p)‖2(k−j),ω, p ∈ R, (2.35)

both hold true. Notice that (2.35) actually reduces to (2.32) in the particular case where ` − 1 = 0.
Taking into account that ϕ̂(p) ∈ H2`(ω) for a.e. p ∈ R and ∂ω is C2(`+1), the solution v̂(p) to (2.30) is
uniquely defined in H2(`+1)(ω) by [6, Section 6.3, Theorem 5], and it satisfies:

‖v̂(p)‖2(`+1),ω ≤ C(ω)(‖ϕ̂(p)‖2`,ω + p2‖v̂(p)‖2`,ω). (2.36)
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Moreover, due to (2.35), the estimate p2‖v̂(p)‖2`,ω ≤ C(ω)
∑`
j=1 p

2j‖ϕ̂(p)‖2(`−j),ω holds for a.e. p ∈ R,
hence

‖v̂(p)‖2(`+1),ω ≤ C(ω)
∑̀
j=0

p2j‖ϕ̂(p)‖2(`−j),ω, p ∈ R, (2.37)

from (2.36). As a consequence we have v ∈ L2(R;H2(`+1)(ω)) and the following estimate:

‖v‖L2(R;H2(`+1)(ω)) ≤ C(ω)
∑̀
j=0

‖ϕ‖H2j(R;H2(`−j)(ω)) ≤ C(ω)‖ϕ‖2`,Ω. (2.38)

Further, multiplying (2.30) by p2` yields p2(`+1)v̂(p) = p2`(ϕ̂(p) + ∆x′ v̂(p)) for a.e. p ∈ R, so we get

p2(`+1)‖v̂(p)‖0,ω ≤ p2`(‖ϕ̂(p)‖0,ω + ‖v̂(p)‖2,ω) ≤ C(w)p2`‖ϕ̂(p)‖0,ω, p ∈ R,

by applying (2.35) with k = 0. From this then follows that v ∈ H2(`+1)(R;L2(ω)), with

‖v‖H2(`+1)(R;L2(ω)) ≤ C(ω)‖ϕ‖H2`(R;L2(ω)) ≤ C(ω)‖ϕ‖2`,Ω. (2.39)

Summing up, we have v ∈ L2(R;H2(`+1)(ω)) ∩ H2(`+1)(R;L2(ω)). Interpolating with [8, Section 1,
Theorem 7.4], we thus find that v ∈ H2(`+1)(Ω). Finally, (2.25) follows from (2.38)-(2.39) and the
equivalence of norms in L2(R;H2(`+1)(ω)) ∩H2(`+1)(R;L2(ω)) and H2(`+1)(Ω). This and (2.37) prove
the assertion of the lemma.

2.2.2 More on D(Akq ), k ∈ N∗

Armed with Lemma 2.4 we are now in position to prove the following:

Proposition 2.5. Let k ∈ N∗, q ∈W 2(k−1),∞(Ω), and assume that ∂ω is C2k. Then we have

D(Akq ) = {v ∈ H2k(Ω), Ajqv ∈ H1
0 (Ω) for all j ∈ Nk−1}. (2.40)

Moreover, ‖ · ‖D(Akq ) is equivalent to the usual norm in H2k(Ω). Namely, if ‖q‖W 2(k−1),∞(Ω) ≤ M for

some M > 0, then we may find a constant ck = ck(M,ω) > 0, such that we have

1

ck
‖v‖D(Akq ) ≤ ‖v‖2k,Ω ≤ ck‖v‖D(Akq ), v ∈ D(Akq ). (2.41)

Proof. We proceed by induction on k ∈ N∗.
a) Case k = 1. Recalling that D(Aq) = H1

0 (Ω) ∩H2(Ω), it is enough to prove the right inequality in
(2.41). This can be done by noticing that v ∈ D(Aq) is a solution to (2.24) with ϕ = Aqv − qv ∈ H,
which entails

‖ϕ‖0,Ω ≤M‖v‖0,Ω + ‖Aqv‖0,Ω ≤ max(1,M)‖v‖D(Aq),

and then applying (2.25) with ` = 0.
b) Let k ≥ 2 be fixed and suppose that (2.40)-(2.41) is valid for all j ∈ Nk−1. Assume moreover that
q ∈ W 2(k−1),∞(Ω) and ∂ω is C2k. Pick v ∈ D(Akq ) and put ϕ = Aqv − qv. Both v and Aqv are in

D(Ak−1
q ), which is embedded in H2(k−1)(Ω) by induction assumption, so we have ϕ ∈ H2(k−1)(Ω).

Therefore, v being solution to (2.24), it holds true that v ∈ H2k(Ω), from Lemma 2.4. Moreover, the
r.h.s. of (2.41), and hence both sides, since the l.h.s. is completely straightforward, follow by applying
(2.25) with ` = k − 1. Further, the induction hypothesis combined with the fact that v ∈ D(Ak−1

q )

(resp., Aqv ∈ D(Ak−1
q ) for all j ∈ N∗k−1) yields v ∈ H1

0 (Ω) (resp., Ajqv ∈ H1
0 (Ω) for all j ∈ N∗k−1).

Summing up, we have

D(Akq ) ⊂ {v ∈ H2k(Ω), Ajqv ∈ H1
0 (Ω) for all j ∈ Nk−1}. (2.42)
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On the other hand, each v ∈ H2k(Ω) such that Ajqv ∈ H1
0 (Ω) for all j ∈ Nk−1, fulfills

Amq v ∈ H2(k−1)(Ω) and Ajq(A
m
q v) ∈ H1

0 (Ω), j ∈ Nk−2, m = 0, 1,

so we get that v ∈ D(Ak−1
q ) (resp., Aqv ∈ D(Ak−1

q )), by applying the induction assumption to Amq v

with m = 0 (resp., m = 1). As a consequence we have v ∈ D(Akq ), showing that the inclusion relation
may be reversed in (2.42), which proves the desired result.

This immediately entails

Corollary 2.6. For k ≥ 2, assume that ∂ω is C2k and let q0, q ∈ W 2(k−1),∞(Ω) ∩ C2(k−2)(Ω) fulfill
(1.5). Then we have D(Akq ) = D(Akq0).

2.3 Proof of Theorem 1.1

Evidently, u is a solution to (1.1)-(1.2) iff v := u − G0 is a solution to the following boundary value
problem  −iv

′ −∆v + qv = f in Q
v(0, x) = 0, x ∈ Ω
v(t, x) = 0, (t, x) ∈ Σ,

(2.43)

where
f := iG′0 + (∆− q)G0 = it(−∆ + q0)2u0 − (q − q0)G0, (2.44)

and G0 is the function defined by (1.2). We first prove that

f ∈ C∞([0, T ]; D(Ak−1
q )), (2.45)

and
‖f‖C1([0,T ];D(Ak−1

q )) ≤ C‖u0‖2(k+1),Ω, (2.46)

where C denotes some generic positive constant depending only on T , ω and M . To do that we notice
from (1.2) that G0 ∈ C∞([0, T ];H2k(Ω)), with

‖G0‖C1([0,T ];H2k(Ω)) ≤ C‖u0‖2(k+1),Ω. (2.47)

As a consequence we have (q − q0)G0 ∈ C∞([0, T ];H2(k−1)(Ω)). Hence Proposition 2.5 yields

(q − q0)G0 ∈ C∞([0, T ]; D(Ak−1
q )), (2.48)

since every (−∆ + q0)j(q − q0)G0, j ∈ Nk−2, vanishes on ∂Ω, by (1.5). Here we used the identity
D(Ak−1

q ) = D(Ak−1
q0 ), arising from (1.5) and Corollary 2.6. Similarly, since (−∆+q0)2u0 ∈ H2(k−1)(Ω),

we deduce from (1.4) that (−∆+q0)2u0 ∈ D(Ak−1
q ). This, (2.44) and (2.48), entails (2.45), while (2.46)

follows from (2.47) and the basic estimate ‖(−∆ + q0)2u0‖2(k−1),Ω ≤ C‖u0‖2(k+1),Ω.

Further, referring to (2.43), we see that v is a solution to (2.12). Since f ∈ C∞([0, T ]; D(Ak−1
q )), by

(2.45), then v is uniquely defined in ∩kj=0C
j([0, T ]; D(Ak−jq )) from Proposition 2.2. Moreover, bearing

in mind that f is affine in t, we get

k∑
j=0

‖v(j)‖C0([0,T ];D(Ak−jq )) ≤ C‖u0‖2(k+1),Ω, (2.49)

by (2.17) and (2.46). Now, upon recalling that G0 is an affine function of t, the claim of Theorem 1.1
follows readily from the identity u = v +G0, (2.47), (2.49) and Proposition 2.5.
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2.4 A Sobolev embedding theorem in Ω

The derivation of Corollary 1.3 from Theorem 1.1 boils down to the following result.

Lemma 2.7. Let k ∈ N∗ satisfy k > n/2 and assume that ∂ω is Ck. Then we have Hk(Ω) ⊂ L∞(Ω).
Moreover, there is a constant c > 0, depending only on n, k and ω, such that the estimate

‖h‖L∞(Ω) ≤ c‖h‖k,Ω, (2.50)

holds for all h ∈ Hk(Ω).

Proof. Since ω is a bounded domain of Rn−1 with Ck boundary, there exists an extension operator

P ∈ B(Hj(ω);Hj(Rn−1)), j ∈ Nk, (2.51)

such that
(Pf)|ω = f, f ∈ L2(ω), (2.52)

according to [8, Section 1, Theorem 8.1]. Next, for all f ∈ L2(Ω), put

Pf(x′, xn) = [Pf(·, xn)](x′), (x′, xn) ∈ Ω.

It is apparent from (2.51) that P ∈ B(Hm(R;Hj(ω));Hm(R;Hj(Rn−1)) for all natural numbers m and
j such that m+ j ≤ k. As a consequence we have

P ∈ B(Hk(Ω);Hk(Rn)). (2.53)

Moreover, it follows readily from (2.52) that

(Ph)|Ω = h, h ∈ L2(Ω). (2.54)

Pick h ∈ Hk(Ω). Since Ph ∈ Hk(Rn) by (2.53), then the Sobolev embedding theorem [3, Corollary
IX.13] yields Ph ∈ L∞(Rn) and the estimate

‖Ph‖L∞(Rn) ≤ C‖Ph‖k,Rn , (2.55)

where the constant C > 0 is independent of h. From this and (2.54) then follows that h ∈ L∞(Ω), with

‖h‖L∞(Ω) ≤ ‖Ph‖L∞(Rn). (2.56)

Putting (2.53) and (2.55)-(2.56) together we end up getting (2.50).

3 Stability estimate

In this section we prove (1.10) by adapting the Bukhgeim-Klibanov method introduced in [4]. It is by
means of a Carleman estimate specifically designed for the system under consideration.

3.1 Linearization and time symmetrization

Set ρ := q1 − q2 so that u := u1 − u2 is a solution to the boundary value problem −iu
′ −∆u+ q1u = −ρu2 in Q

u(0, x) = 0, x ∈ Ω
u(t, x) = 0, (t, x) ∈ Σ.

(3.57)
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Since u ∈ C2([0, T ];H2(`−1)(Ω))∩C1([0, T ];H2`(Ω)) by Theorem 1.1, we may differentiate (3.57) w.r.t.
t, getting  −iv

′ −∆v + q1v = −ρu′2 in Q
v(0, x) = −iρu0, x ∈ Ω
v(t, x) = 0, (t, x) ∈ Σ,

(3.58)

where v := u′. Since qj ∈ Aε(q0), j = 1, 2, we have ρu0 ∈ H1
0 (Ω) ∩ H2(Ω). Consequently v ∈

C1([0, T ];L2(Ω)) ∩ C0([0, T ];H1
0 (Ω) ∩H2(Ω)) by applying Remark 2.3 and Proposition 2.5 for k = 1.

Further, putting u2(−t, x) = u2(t, x) for all (t, x) ∈ [−T, 0) × Ω and bearing in mind that u0 and qj ,
j = 1, 2, are real-valued, we deduce from (3.58) that the function v, extended on [−T, 0)×Ω by setting
v(t, x) := −v(−t, x), is the C1([−T, T ];L2(Ω)) ∩ C0([−T, T ];H1

0 (Ω) ∩H2(Ω))-solution to the system −iv
′ −∆v + q1v = −ρu′2 in Q̃ := (−T, T )× Ω

v(0, x) = −iρu0, x ∈ Ω

v(t, x) = 0, (t, x) ∈ Σ̃ := (−T, T )× Γ.

(3.59)

The main tool needed for the derivation of (1.10) is a global Carleman inequality for the Schrödinger
equation in (3.59). We use the estimate derived in [7, Proposition 3.3], that is specifically designed for
unbounded cylindrical domains of the type of Ω.

3.2 Global Carleman estimate for the Schrödinger equation in Ω

Given the Schrödinger operator acting in (C∞0 )′(Q̃),

L := −i∂t −∆, (3.60)

we introduce a function β̃ ∈ C4(ω;R+) and an open subset γ∗ of ∂ω, satisfying the following conditions:

Assumption 3.1.

(i) ∃C0 > 0 such that the estimate |∇x′ β̃(x′)| ≥ C0 holds for all x′ ∈ ω;

(ii) ∂ν β̃(x′) := ∇x′ β̃(x′).ν(x′) < 0 for all x′ ∈ ∂ω\γ∗, where ν is the outward unit normal vector to
∂ω;

(iii) ∃Λ1 > 0, ∃ε > 0 such that we have λ|∇x′ β̃(x′) · ζ|2 +D2β̃(x′, ζ, ζ) ≥ ε|ζ|2 for all ζ ∈ Rn−1, x′ ∈ ω
and λ > Λ1, where D2β̃(x′) :=

(
∂2β̃(x′)
∂xi∂xj

)
1≤i,j≤n−1

and D2β̃(x′, ζ, ζ) denotes the Rn−1-scalar

product of D2β̃(x′)ζ with ζ.

Notice that there are actual functions β̃ verifying Assumption 3.1, such as ω 3 x′ 7→ |x′ − x′0|2, for
an arbitrary x′0 ∈ Rn−1 \ ω and a subboundary γ∗ ⊃ {x′ ∈ ∂ω, (x′ − x′0) · ν′(x′) ≥ 0}.

Next, for all x = (x′, xn) ∈ Ω, put

β(x) := β̃(x′) +K, where K := r‖β̃‖∞ for some r > 1, (3.61)

and define the two following weight functions for λ > 0:

ϕ(t, x) :=
eλβ(x)

(T + t)(T − t)
and η(t, x) :=

e2λK − eλβ(x)

(T + t)(T − t)
, (t, x) ∈ Q̃. (3.62)

Finally, for all s > 0, we introduce the two following operators acting in (C∞0 )′(Q̃):

M1 := i∂t + ∆ + s2|∇η|2 and M2 := isη′ + 2s∇η · ∇+ s(∆η). (3.63)

It is apparent that M1 (resp. M2) is the adjoint (resp. skew-adjoint) part of the operator e−sηLesη,
where L is given by (3.60).

We may now state the following global Carleman estimate, that is borrowed from [7, Proposition
3.3].
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Proposition 3.2. Let β̃ and γ∗ obey Assumption 3.1, let β, ϕ and η be given by (3.61)-(3.62), and
let the operators Mj, j = 1, 2, be defined by (3.63). Then there are two constants s0 > 0 and C > 0,
depending only on T , ω and γ∗, such that the estimate

s‖e−sη∇x′w‖20,Q̃ + s3‖e−sηw‖2
0,Q̃

+
∑
j=1,2

‖Mje
−sηw‖2

0,Q̃

≤ C
(
s‖e−sηϕ1/2(∂νβ)1/2∂νw‖20,Σ̃∗ + ‖e−sηLw‖2

0,Q̃

)
,

holds for all s ≥ s0 and any function w ∈ L2(−T, T ; H1
0(Ω)) verifying Lw ∈ L2(Q̃) and ∂νw ∈

L2(−T, T ;L2(Γ∗)). Here Γ∗ (resp., Σ̃∗) stands for γ∗ × R (resp., (−T, T )× γ∗ × R).

3.3 Proof of Theorem 1.4

We use the same notations as in §3.1 and, for the sake of notational simplicity, we denote the various
positive constants appearing in the derivation of Theorem 1.4 by C. Following [7, Lemmas 3.3 & 3.4],
we start by establishing the coming technical result with the aid of Proposition 3.2.

Lemma 3.3. For all s > 0, we have the estimate:

‖e−sη(0,·)ρu0‖20,Ω ≤ C
(
s−3/2‖e−sη(0,·)ρu′2‖20,Q + s−1/2‖e−sη(0,·)∂νv‖20,Σ∗

)
.

Proof. Put φ := e−sηv. In light of (3.61)-(3.62) it holds true that lim
t↓(−T )

η(t, x) = +∞ for all x ∈ Ω,

hence lim
t↓(−T )

φ(t, x) = 0. As a consequence we have

‖φ(0, ·)‖20,Ω =

∫
(−T,0)×Ω

(|φ|2)′(t, x)dtdx = 2Re

(∫
(−T,0)×Ω

φ′(t, x)φ(t, x)dtdx

)
. (3.64)

On the other hand, (3.63) and the Green formula yield

Im

(∫
(−T,0)×Ω

M1φ(t, x)φ(t, x)dtdx

)
= Re

(∫
(−T,0)×Ω

φ′(t, x)φ(t, x)dtdx

)
+W,

with W := Im
(∫

(−T,0)×Ω
∆φ(t, x)φ(t, x)dtdx+ s2‖(∇η)φ‖20,(−T,0)×Ω

)
= Im

(
‖∇φ‖20,(−T,0)×Ω

)
= 0.

This, along with (3.64) and the identity ‖φ(0, ·)‖0,Ω = ‖e−sη(0,·)v(0, ·)‖0,Ω entail

‖e−sη(0,·)v(0, ·)‖20,Ω = 2Im

(∫
(−T,0)×Ω

M1φ(t, x)φ(t, x)dtdx

)
≤ 2‖M1φ‖0,Q̃‖φ‖0,Q̃ ≤ s

−3/2
(
s3‖e−sηv‖2

0,Q̃
+ ‖M1e

−sηv‖2
0,Q̃

)
.

Finally, the desired result follows from this upon recalling (3.59) and applying Proposition 3.2 to v.

Fix y > 0. In virtue of Lemma 3.3, it holds true that

‖e−sη(0,·)ρu0‖20,ω×(−y,y) ≤ C
(
s−3/2‖e−sη(0,·)ρu′2‖20,Q + s−1/2µ

)
, s > 0,

where µ := ‖∂νu′1 − ∂νu′2‖20,Σ∗ . This entails

(υ2
0〈y〉−(1+ε) − Cs−3/2)‖e−sη(0,·)ρ‖20,ω×(−y,y) ≤ C

(
s−3/2‖ρ‖20,ω×(R\(−y,y)) + s−1/2µ

)
, s > 0, (3.65)
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since |u0(x)| ≥ υ0〈y〉−(1+ε)/2 for all x ∈ ω × (−y, y), by (1.9), ‖u′2‖L∞(Q) ≤ C by Corollary 1.3, and

η(0, x) ≥ 0 for all x ∈ Ω. Taking s = (υ2
0/(2C))−2/3〈y〉2(1+ε)/3 in (3.65) and bearing in mind that

‖η(0, .)‖L∞(Ω) ≤ e2K/T 2, we thus obtain that

‖ρ‖20,ω×(−y,y) ≤ Ce
C〈y〉2(1+ε)/3

(
‖ρ‖20,ω×(R\(−y,y)) + 〈y〉2(1+ε)/3µ

)
. (3.66)

Moreover, we know from (1.8) that

‖ρ‖20,ω×(R\(−y,y)) ≤ 4a2|ω|2
∫
R\(−y,y)

e−2b〈xn〉dεdxn ≤
(

4a2|ω|2
∫
R
e−δ〈xn〉

dε
dxn

)
e−(2b−δ)〈y〉dε .

From this and (3.66) then follows that

‖ρ‖20,ω×(−y,y) ≤ C〈y〉
2(1+ε)/3eC〈y〉

2(1+ε)/3
(
e−(2b−δ)〈y〉dε + µ

)
. (3.67)

Set µδ := e−(2b−δ). We examine the two cases µ ∈ (0, µδ) and µ ≥ µδ separately. If µ ∈ (0, µδ) we take

y = y(µ) :=

((
− lnµ

2b−δ

)2/dε
− 1

)1/2

in (3.67), getting:

‖ρ‖20,ω×(−y,y) ≤ C〈y〉
2(1+ε)/3eC〈y〉

2(1+ε)/3−(2b−δ)〈y〉dε .

Since dε > 2(1 + ε)/3, this entails that

‖ρ‖20,ω×(−y,y) ≤ C
(

sup
t>1

t2(1+ε)/3eCt
2(1+ε)/3−δtdε

)
e−2(b−δ)〈y〉dε ≤ Cµ2θ, µ ∈ (0, µδ). (3.68)

On the other hand, it follows from (1.8) that

‖ρ‖20,ω×(R\(−y,y)) ≤ C
(∫

R
e−2δ〈xn〉dxn

)
e−2(b−δ)〈y〉dε ≤ Cµ2θ, µ ∈ (0, µδ). (3.69)

Putting (3.68)-(3.69) together, we obtain that

‖ρ‖20,Ω ≤ Cµ2θ, µ ∈ (0, µδ). (3.70)

Finally, if µ ≥ µδ, we use the estimate ‖ρ‖20,Ω ≤ 4a2|ω|(
∫
R e
−2b〈xn〉dεdxn), arising from (1.8), and find:

‖ρ‖20,Ω ≤

(
4a2|ω|

∫
R e
−2b〈xn〉dεdxn

µ2θ
δ

)
µ2θ ≤ Cµ2θ, µ ≥ µδ.

Therefore, (1.10) follows from this and (3.70).

3.4 Concluding remark

In this subsection we build a class of scalar potentials q0 and initial conditions u0, fulfilling the conditions
of Theorem 1.4. To do that we first introduce two functions ub, qb : R→ R, defined by

ub(y) := c〈y〉−(1+ε)/2, qb(y) :=
u′′b (y)

ub(y)
, y ∈ R, (3.71)

where c > 0 is some fixed constant. Evidently, we have

ub ∈ H2(`+2)(R) and qb ∈W 2(`+1),∞(R) ∩ C2`(R). (3.72)
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Since ω is an open bounded subset of Rn−1 then ∂ω is compact in Rn−1 so we may find O ⊂ Rn−1, open
and bounded, that is a neighborhood of ∂ω. Further, let χ ∈ C∞0 (Rn−1) verify χ(x′) = 1 for x′ ∈ O
and 0 ≤ χ(x′) ≤ 1 for all x′ ∈ Rn−1, pick qi ∈W 2(`+1),∞(Ω)∩C2`(Ω) and choose ui ∈ H2(`+2)(Ω) such
that

ui(x
′, xn) ≥ ub(xn) = c〈xn〉−(1+ε)/2, (x′, xn) ∈ Ω. (3.73)

Then, upon setting for all x = (x′, xn) ∈ Ω,

q0(x) := χ(x′)qb(xn) + (1− χ(x′))qi(x) and u0(x) := χ(x′)ub(xn) + (1− χ(x′))ui(x), (3.74)

it is apparent from (3.72) that q0 ∈W 2(`+1),∞(Ω) ∩ C2`(Ω) and u0 ∈ H2(`+2)(Ω). Moreover, it follows
readily from (3.71) and (3.73)-(3.74) that

u0(x) ≥ χ(x′)ub(xn) + (1− χ(x′))ub(xn) ≥ c〈xn〉−(1+ε)/2, x = (x′, xn) ∈ Ω.

Finally, to show that (q0, u0) satisfies (1.4), we invoke (3.74), getting

u0(x′, xn) = ub(xn) and q0(x′, xn) = qb(xn), x = (x′, xn) ∈ O × R,

and consequently

(−∆ + q0)u0(x′, xn) = −u′′b (xn) + qb(xn)ub(xn) = 0, (x′, xn) ∈ Ω ∩ (O × R),

by (3.71). This immediately yields

(−∆ + q0)2+ju0(x) = (−∆ + q0)1+j(−∆ + q0)u0(x) = 0, x ∈ Ω ∩ (O × R), j = 0, 1, · · · , `− 1,

which, in turn, entails (1.4), since O × R is a neighborhood of ∂Ω in Rn.
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